Index

$ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form

$

$ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation $
$(String) - Static method in interface smile.data.formula.Terms
Creates a variable.

A

a - Variable in class smile.validation.metric.ContingencyTable
The row sum of contingency table.
aat() - Method in class smile.math.matrix.BigMatrix
Returns A * A'.
aat() - Method in class smile.math.matrix.fp32.Matrix
Returns A * A'.
aat() - Method in class smile.math.matrix.fp32.SparseMatrix
Returns A * A'.
aat() - Method in class smile.math.matrix.Matrix
Returns A * A'.
aat() - Method in class smile.math.matrix.SparseMatrix
Returns A * A'.
Abbreviations - Interface in smile.nlp.dictionary
A dictionary interface for abbreviations.
abs() - Method in class smile.math.Complex
Returns the abs/modulus/magnitude.
abs(String) - Static method in interface smile.data.formula.Terms
The abs(x) term.
abs(Term) - Static method in interface smile.data.formula.Terms
The abs(x) term.
Abs - Class in smile.data.formula
The term of abs function.
Abs(Term) - Constructor for class smile.data.formula.Abs
Constructor.
AbstractBiFunction - Class in smile.data.formula
This class provides a skeletal implementation of the bi-function term.
AbstractBiFunction(String, Term, Term) - Constructor for class smile.data.formula.AbstractBiFunction
Constructor.
AbstractClassifier<T> - Class in smile.classification
Abstract base class of classifiers.
AbstractClassifier(int[]) - Constructor for class smile.classification.AbstractClassifier
Constructor.
AbstractClassifier(BaseVector<?, ?, ?>) - Constructor for class smile.classification.AbstractClassifier
Constructor.
AbstractClassifier(IntSet) - Constructor for class smile.classification.AbstractClassifier
Constructor.
AbstractFunction - Class in smile.data.formula
This class provides a skeletal implementation of the function term.
AbstractFunction(String, Term) - Constructor for class smile.data.formula.AbstractFunction
Constructor.
AbstractInterpolation - Class in smile.interpolation
Abstract base class of one-dimensional interpolation methods.
AbstractInterpolation(double[], double[]) - Constructor for class smile.interpolation.AbstractInterpolation
Constructor.
AbstractTuple - Class in smile.data
Abstract tuple base class.
AbstractTuple() - Constructor for class smile.data.AbstractTuple
 
accept(int) - Method in interface smile.graph.VertexVisitor
Performs some operations on the currently-visiting vertex during DFS or BFS.
accept(int, int, double) - Method in interface smile.math.matrix.DoubleConsumer
Accepts one matrix element and performs the operation on the given arguments.
accept(int, int, float) - Method in interface smile.math.matrix.fp32.FloatConsumer
Accepts one matrix element and performs the operation on the given arguments.
accept(File) - Method in class smile.swing.FileChooser.SimpleFileFilter
 
accuracy() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the accuracy record component.
Accuracy - Class in smile.deep.metric
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
Accuracy - Class in smile.validation.metric
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
Accuracy() - Constructor for class smile.deep.metric.Accuracy
Constructor.
Accuracy() - Constructor for class smile.validation.metric.Accuracy
 
Accuracy(double) - Constructor for class smile.deep.metric.Accuracy
Constructor.
acf(double[], int) - Static method in interface smile.timeseries.TimeSeries
Autocorrelation function.
acos() - Method in class smile.deep.tensor.Tensor
Returns a new tensor with the arccosine of the elements of input.
acos(String) - Static method in interface smile.data.formula.Terms
The acos(x) term.
acos(Term) - Static method in interface smile.data.formula.Terms
The acos(x) term.
acos_() - Method in class smile.deep.tensor.Tensor
Computes the arccosine of the elements of input in place.
actionPerformed(ActionEvent) - Method in class smile.plot.swing.PlotGrid
 
actionPerformed(ActionEvent) - Method in class smile.swing.table.ButtonCellRenderer
 
actionPerformed(ActionEvent) - Method in class smile.swing.table.ColorCellEditor
 
actionPerformed(ActionEvent) - Method in class smile.swing.table.FontCellEditor
 
actionPerformed(ActionEvent) - Method in class smile.swing.table.TableCopyPasteAdapter
This method is activated on the Keystrokes we are listening to in this implementation.
activation() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the activation record component.
ActivationFunction - Class in smile.deep.activation
The activation function.
ActivationFunction - Interface in smile.base.mlp
The activation function in hidden layers.
ActivationFunction(String, boolean) - Constructor for class smile.deep.activation.ActivationFunction
Constructor.
AdaBoost - Class in smile.classification
AdaBoost (Adaptive Boosting) classifier with decision trees.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[]) - Constructor for class smile.classification.AdaBoost
Constructor.
AdaBoost(Formula, int, DecisionTree[], double[], double[], double[], IntSet) - Constructor for class smile.classification.AdaBoost
Constructor.
Adam(Model, double) - Static method in class smile.deep.Optimizer
Returns an Adam optimizer.
Adam(Model, double, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
Returns an Adam optimizer.
AdamW(Model, double) - Static method in class smile.deep.Optimizer
Returns an AdamW optimizer.
AdamW(Model, double, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
Returns an AdamW optimizer.
adaptiveAvgPool2d(int) - Static method in interface smile.deep.layer.Layer
Returns an adaptive average pooling layer.
AdaptiveAvgPool2dLayer - Class in smile.deep.layer
An adaptive average pooling that reduces a tensor by combining cells.
AdaptiveAvgPool2dLayer(int) - Constructor for class smile.deep.layer.AdaptiveAvgPool2dLayer
Constructor.
AdaptiveAvgPool2dLayer(int, int) - Constructor for class smile.deep.layer.AdaptiveAvgPool2dLayer
Constructor.
adb(Transpose, BigMatrix, double[], Transpose, BigMatrix) - Static method in class smile.math.matrix.BigMatrix
Returns A * D * B, where D is a diagonal matrix.
adb(Transpose, Matrix, float[], Transpose, Matrix) - Static method in class smile.math.matrix.fp32.Matrix
Returns A * D * B, where D is a diagonal matrix.
adb(Transpose, Matrix, double[], Transpose, Matrix) - Static method in class smile.math.matrix.Matrix
Returns A * D * B, where D is a diagonal matrix.
add(double) - Method in class smile.deep.tensor.Tensor
Returns A + b.
add(double) - Method in class smile.math.matrix.BigMatrix
A += b
add(double) - Method in class smile.math.matrix.Matrix
A += b
add(double) - Method in class smile.sort.DoubleHeapSelect
Assimilate a new value from the stream.
add(double) - Method in class smile.sort.IQAgent
Assimilate a new value from the stream.
add(double) - Method in class smile.util.Array2D
A += x.
add(double) - Method in class smile.util.DoubleArrayList
Appends the specified value to the end of this list.
add(double...) - Method in class smile.plot.swing.Isoline
Add a point to the contour line.
add(double[]) - Method in class smile.util.DoubleArrayList
Appends an array to the end of this list.
add(double[], double[]) - Static method in class smile.math.MathEx
Element-wise sum of two arrays y = x + y.
add(double, double[], double[]) - Method in class smile.math.matrix.BigMatrix
Rank-1 update A += alpha * x * y'
add(double, double[], double[]) - Method in class smile.math.matrix.Matrix
Rank-1 update A += alpha * x * y'
add(double, double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise addition A = alpha * A + beta * B
add(double, double, Matrix) - Method in class smile.math.matrix.Matrix
Element-wise addition A = alpha * A + beta * B
add(double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise addition A += beta * B
add(double, BigMatrix, double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise addition C = alpha * A + beta * B
add(double, Matrix) - Method in class smile.math.matrix.Matrix
Element-wise addition A += beta * B
add(double, Matrix, double, Matrix) - Method in class smile.math.matrix.Matrix
Element-wise addition C = alpha * A + beta * B
add(float) - Method in class smile.deep.tensor.Tensor
Returns A + b.
add(float) - Method in class smile.math.matrix.fp32.Matrix
A += b
add(float) - Method in class smile.sort.FloatHeapSelect
Assimilate a new value from the stream.
add(float, float[], float[]) - Method in class smile.math.matrix.fp32.Matrix
Rank-1 update A += alpha * x * y'
add(float, float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise addition A = alpha * A + beta * B
add(float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise addition A += beta * B
add(float, Matrix, float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise addition C = alpha * A + beta * B
add(int) - Method in class smile.neighbor.lsh.Bucket
Adds a point to bucket.
add(int) - Method in class smile.sort.IntHeapSelect
Assimilate a new value from the stream.
add(int) - Method in class smile.util.IntArray2D
A += x.
add(int) - Method in class smile.util.IntArrayList
Appends the specified value to the end of this list.
add(int) - Method in class smile.util.IntHashSet
Adds the specified element to this set if it is not already present.
add(int...) - Method in class smile.util.IntArrayList
Appends an array to the end of this list.
add(int, double[]) - Method in class smile.neighbor.lsh.Hash
Insert an item into the hash table.
add(int, double[]) - Method in class smile.neighbor.lsh.MultiProbeHash
 
add(int, int, double) - Method in class smile.math.matrix.BigMatrix
A[i,j] += b
add(int, int, double) - Method in class smile.math.matrix.Matrix
A[i,j] += b
add(int, int, double) - Method in class smile.util.Array2D
A[i, j] += x.
add(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
A[i,j] += b
add(int, int, int) - Method in class smile.util.IntArray2D
A[i, j] += x.
add(E) - Method in class smile.util.PairingHeap
 
add(String, double) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, double[]) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, double, double) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, double, double, double) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int[]) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int, int) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, int, int, int) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, String) - Static method in interface smile.data.formula.Terms
Adds two terms.
add(String, String) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, String[]) - Method in class smile.hpo.Hyperparameters
Adds a parameter.
add(String, Module) - Method in class smile.deep.layer.LayerBlock
Adds a sub-layer.
add(String, Term) - Static method in interface smile.data.formula.Terms
Adds two terms.
add(String, Layer) - Method in class smile.deep.layer.LayerBlock
Adds a sub-layer.
add(String, T) - Method in class smile.hash.PerfectMap.Builder
Add a new key-value pair.
add(Map<K, V>) - Method in class smile.neighbor.BKTree
Adds a dataset into BK-tree.
add(K, V) - Method in class smile.neighbor.BKTree
Adds a datum into the BK-tree.
add(Term, String) - Static method in interface smile.data.formula.Terms
Adds two terms.
add(Term, Term) - Static method in interface smile.data.formula.Terms
Adds two terms.
add(Layer) - Method in class smile.deep.layer.SequentialBlock
Adds a layer to the sequential block.
add(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A + B.
add(Tensor, double) - Method in class smile.deep.tensor.Tensor
Returns A + alpha * B.
add(Complex) - Method in class smile.math.Complex
Returns this + b.
add(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise addition A += B
add(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise addition A += B
add(Matrix) - Method in class smile.math.matrix.Matrix
Element-wise addition A += B
add(Text) - Method in class smile.nlp.SimpleCorpus
Adds a document to the corpus.
add(Plot) - Method in class smile.plot.swing.Canvas
Add a graphical shape to the canvas.
add(PlotPanel) - Method in class smile.plot.swing.PlotGrid
Add a plot into the frame.
add(Shape) - Method in class smile.plot.swing.Canvas
Add a graphical shape to the canvas.
add(Array2D) - Method in class smile.util.Array2D
A += B.
add(IntArray2D) - Method in class smile.util.IntArray2D
A += B.
add(IntArrayList) - Method in class smile.util.IntArrayList
Appends an array to the end of this list.
add(T) - Method in class smile.sort.HeapSelect
Assimilate a new value from the stream.
add(T) - Method in class smile.util.AutoScope
Adds resource to this scope.
Add - Class in smile.data.formula
The term of a + b expression.
Add(Term, Term) - Constructor for class smile.data.formula.Add
Constructor.
add_(double) - Method in class smile.deep.tensor.Tensor
Returns A += b.
add_(float) - Method in class smile.deep.tensor.Tensor
Returns A += b.
add_(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A += B.
add_(Tensor, double) - Method in class smile.deep.tensor.Tensor
Returns A += alpha * B.
add2(double, double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise addition A = alpha * A + beta * B^2
add2(double, double, Matrix) - Method in class smile.math.matrix.Matrix
Element-wise addition A = alpha * A + beta * B^2
add2(float, float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise addition A = alpha * A + beta * B^2
addAll(Collection<? extends E>) - Method in class smile.util.PairingHeap
 
addAnchor(String) - Method in interface smile.nlp.AnchorText
Adds a link label to the anchor text.
addAnchor(String) - Method in class smile.nlp.SimpleText
 
addChild(String) - Method in class smile.taxonomy.Concept
Adds a child to this node.
addChild(K[], V, int) - Method in class smile.nlp.Trie.Node
Adds a child.
addChild(Concept) - Method in class smile.taxonomy.Concept
Adds a child to this node.
addDiag(double) - Method in class smile.math.matrix.BigMatrix
A[i, i] += b
addDiag(double) - Method in class smile.math.matrix.Matrix
A[i, i] += b
addDiag(double[]) - Method in class smile.math.matrix.BigMatrix
A[i, i] += b[i]
addDiag(double[]) - Method in class smile.math.matrix.Matrix
A[i, i] += b[i]
addDiag(float) - Method in class smile.math.matrix.fp32.Matrix
A[i, i] += b
addDiag(float[]) - Method in class smile.math.matrix.fp32.Matrix
A[i, i] += b[i]
addEdge(int, int) - Method in class smile.graph.Graph
Creates a new edge in this graph, going from the source vertex to the target vertex, and returns the created edge.
addEdge(int, int, double) - Method in class smile.graph.Graph
Creates a new edge in this graph, going from the source vertex to the target vertex, and returns the created edge.
addEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Adds an edge.
addEdge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Adds an edge.
addEdges(Collection<Graph.Edge>) - Method in class smile.graph.Graph
Adds a set of edges to the graph.
addExtension(String) - Method in class smile.swing.FileChooser.SimpleFileFilter
Adds a file type "dot" extension to filter against.
addKeywords(String...) - Method in class smile.taxonomy.Concept
Adds a list of synomym to the concept synset.
addNode(E) - Method in class smile.util.PairingHeap
Adds a new element to the pairing heap.
addNotify() - Method in class smile.swing.Table.RowHeader
 
addPropertyChangeListener(PropertyChangeListener) - Method in class smile.plot.swing.Canvas
Add a PropertyChangeListener to the listener list.
AdjacencyList - Class in smile.graph
An adjacency list representation of a graph.
AdjacencyList(int) - Constructor for class smile.graph.AdjacencyList
Constructor.
AdjacencyList(int, boolean) - Constructor for class smile.graph.AdjacencyList
Constructor.
AdjacencyMatrix - Class in smile.graph
An adjacency matrix representation of a graph.
AdjacencyMatrix(int) - Constructor for class smile.graph.AdjacencyMatrix
Constructor.
AdjacencyMatrix(int, boolean) - Constructor for class smile.graph.AdjacencyMatrix
Constructor.
AdjustedMutualInformation - Class in smile.validation.metric
Adjusted Mutual Information (AMI) for comparing clustering.
AdjustedMutualInformation(AdjustedMutualInformation.Method) - Constructor for class smile.validation.metric.AdjustedMutualInformation
Constructor.
AdjustedMutualInformation.Method - Enum Class in smile.validation.metric
The normalization method.
adjustedR2() - Method in class smile.timeseries.AR
Returns adjusted R2 statistic.
adjustedR2() - Method in class smile.timeseries.ARMA
Returns adjusted R2 statistic.
AdjustedRandIndex - Class in smile.validation.metric
Adjusted Rand Index.
AdjustedRandIndex() - Constructor for class smile.validation.metric.AdjustedRandIndex
 
adjustedRSquared() - Method in class smile.regression.LinearModel
Returns adjusted R2 statistic.
age - Variable in class smile.vq.hebb.Edge
The age of the edges.
age() - Method in class smile.vq.hebb.Neuron
Increments the age of all edges emanating from the neuron.
aggregate(String) - Method in class smile.plot.vega.Field
Sets the aggregation function for the field (e.g., "mean", "sum", "median", "min", "max", "count").
aggregate(String, String, String, String...) - Method in class smile.plot.vega.Transform
Aggregate summarizes a table as one record for each group.
AIC() - Method in class smile.classification.LogisticRegression
Returns the AIC score.
AIC() - Method in class smile.classification.Maxent
Returns the AIC score.
AIC() - Method in class smile.classification.SparseLogisticRegression
Returns the AIC score.
AIC() - Method in class smile.glm.GLM
Returns the AIC score.
AIC(double, int) - Static method in interface smile.validation.ModelSelection
Akaike information criterion.
align(String) - Method in class smile.plot.vega.Concat
 
align(String) - Method in class smile.plot.vega.Facet
 
align(String) - Method in class smile.plot.vega.FacetField
Sets the alignment to apply to row/column facet's subplot.
align(String) - Method in class smile.plot.vega.Repeat
 
align(String) - Method in interface smile.plot.vega.ViewLayoutComposition
Sets the alignment to apply to grid rows and columns.
align(String, String) - Method in class smile.plot.vega.Concat
 
align(String, String) - Method in class smile.plot.vega.Facet
 
align(String, String) - Method in class smile.plot.vega.Repeat
 
align(String, String) - Method in interface smile.plot.vega.ViewLayoutComposition
Sets different alignments for rows and columns.
all() - Method in class smile.deep.tensor.Tensor
Tests if all elements in the tensor are true.
ALL - Enum constant in enum class smile.math.blas.EigenRange
All eigenvalues will be found.
ALL - Enum constant in enum class smile.math.blas.SVDJob
All left (or right) singular vectors are returned in supplied matrix U (or Vt).
allocate(long) - Static method in class smile.io.Arrow
Creates the root allocator.
allowSpecialTokens(boolean) - Method in class smile.llm.tokenizer.Tiktoken
Sets how special tokens will be encoded.
alpha - Variable in class smile.stat.distribution.BetaDistribution
The shape parameter.
alpha() - Method in class smile.stat.distribution.BetaDistribution
Returns the shape parameter alpha.
alpha() - Method in record class smile.swing.AlphaIcon
Returns the value of the alpha record component.
AlphaIcon - Record Class in smile.swing
An Icon wrapper that paints the contained icon with a specified transparency.
AlphaIcon(Icon, float) - Constructor for record class smile.swing.AlphaIcon
Creates an instance of a AlphaIcon record class.
anchor(double) - Method in class smile.plot.vega.BinParams
Sets the value in the binned domain at which to anchor the bins, shifting the bin boundaries if necessary to ensure that a boundary aligns with the anchor value.
AnchorText - Interface in smile.nlp
The anchor text is the visible, clickable text in a hyperlink.
and(Tensor) - Method in class smile.deep.tensor.Tensor
Returns logical AND of two boolean tensors.
and(Predicate...) - Static method in class smile.plot.vega.Predicate
Logical AND composition to combine predicates.
and_(Tensor) - Method in class smile.deep.tensor.Tensor
Returns logical AND of two boolean tensors.
andThen(Transform) - Method in interface smile.data.transform.Transform
Returns a composed function that first applies this function to its input, and then applies the after function to the result.
angular(double[], double[]) - Static method in class smile.math.MathEx
Returns the angular distance.
angular(float[], float[]) - Static method in class smile.math.MathEx
Returns the angular distance.
antecedent() - Method in record class smile.association.AssociationRule
Returns the value of the antecedent record component.
anyNull() - Method in interface smile.data.Tuple
Returns true if there are any NULL values in this tuple.
anyNull() - Method in interface smile.data.vector.Vector
Returns true if there are any NULL values in this row.
append(int, double) - Method in class smile.util.SparseArray
Append an entry to the array, optimizing for the case where the index is greater than all existing indices in the array.
apply(double) - Method in interface smile.math.Function
Computes the value of the function at x.
apply(double) - Method in interface smile.math.kernel.DotProductKernel
Computes the kernel function.
apply(double) - Method in interface smile.math.kernel.IsotropicKernel
Computes the kernel function.
apply(double[]) - Method in class smile.feature.extraction.KernelPCA
 
apply(double[]) - Method in class smile.feature.extraction.Projection
Project a data point to the feature space.
apply(double...) - Method in interface smile.math.MultivariateFunction
Computes the value of the function at x.
apply(double[][]) - Method in class smile.feature.extraction.Projection
Project a set of data to the feature space.
apply(double, FPTree) - Static method in class smile.association.ARM
Mines the association rules.
apply(int) - Method in interface smile.data.DataFrame
Returns the row at the specified index.
apply(int) - Method in interface smile.data.Dataset
Returns the index at the specified index.
apply(int) - Method in interface smile.data.Tuple
Returns the value at position i.
apply(int) - Method in interface smile.data.vector.BaseVector
Returns the value at position i, which may be null.
apply(int) - Method in class smile.math.Complex.Array
Returns the i-th element.
apply(int) - Method in interface smile.math.IntFunction
Computes the value of the function at x.
apply(int) - Method in interface smile.math.TimeFunction
Returns the function value at time step t.
apply(int...) - Method in interface smile.data.vector.BaseVector
Returns a new vector with selected entries.
apply(int, double) - Method in interface smile.util.ArrayElementConsumer
Performs this operation on the given element.
apply(int, double) - Method in interface smile.util.ArrayElementFunction
Performs this operation on the given element.
apply(int, int) - Method in class smile.math.matrix.fp32.IMatrix
Returns A[i,j].
apply(int, int) - Method in class smile.math.matrix.IMatrix
Returns A[i,j] for Scala users.
apply(int, int) - Method in class smile.util.Array2D
Returns A[i, j].
apply(int, int) - Method in class smile.util.IntArray2D
Returns A[i, j].
apply(int, int, int, Fitness<BitString>) - Method in class smile.feature.selection.GAFE
Genetic algorithm based feature selection for classification.
apply(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
apply(String) - Method in interface smile.data.DataFrame
Selects column based on the column name and return it as a Column.
apply(String) - Method in interface smile.data.Tuple
Returns the value by field name.
apply(String) - Method in class smile.feature.extraction.BagOfWords
Returns the bag-of-words features of a document.
apply(String) - Method in class smile.feature.extraction.HashEncoder
Returns the bag-of-words features of a document.
apply(String) - Method in class smile.nlp.embedding.Word2Vec
Returns the embedding vector of a word.
apply(String) - Method in interface smile.nlp.stemmer.Stemmer
 
apply(String) - Method in interface smile.nlp.tokenizer.Tokenizer
 
apply(JTable) - Method in class smile.swing.table.TableColumnSettings
Apply this column settings to given table.
apply(JTable) - Static method in class smile.swing.table.TableCopyPasteAdapter
Creates and attaches a copy-paste adapter for a table.
apply(FPTree) - Static method in class smile.association.FPGrowth
Mines the frequent item sets.
apply(DataFrame) - Method in interface smile.data.formula.Feature
Applies the term on a data frame.
apply(DataFrame) - Method in class smile.data.transform.ColumnTransform
 
apply(DataFrame) - Method in interface smile.data.transform.Transform
Applies this transform to the given argument.
apply(DataFrame) - Method in class smile.feature.extraction.BinaryEncoder
Generates the compact representation of sparse binary features for a data frame.
apply(DataFrame) - Method in class smile.feature.extraction.Projection
 
apply(DataFrame) - Method in class smile.feature.extraction.SparseEncoder
Generates the sparse representation of a data frame.
apply(DataFrame) - Method in class smile.feature.imputation.SimpleImputer
 
apply(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a tuple.
apply(Tuple) - Method in class smile.data.formula.Formula
Apply the formula on a tuple to generate the model data.
apply(Tuple) - Method in class smile.data.transform.ColumnTransform
 
apply(Tuple) - Method in class smile.feature.extraction.BagOfWords
 
apply(Tuple) - Method in class smile.feature.extraction.BinaryEncoder
Generates the compact representation of sparse binary features for given object.
apply(Tuple) - Method in class smile.feature.extraction.Projection
 
apply(Tuple) - Method in class smile.feature.extraction.SparseEncoder
Generates the sparse representation of given object.
apply(Tuple) - Method in class smile.feature.imputation.KMedoidsImputer
 
apply(Tuple) - Method in class smile.feature.imputation.KNNImputer
 
apply(Tuple) - Method in class smile.feature.imputation.SimpleImputer
 
apply(Tuple) - Method in class smile.feature.transform.Normalizer
 
apply(Tensor) - Method in interface smile.deep.layer.Layer
 
apply(Tensor) - Method in class smile.deep.Model
 
apply(Tensor, Tensor, Tensor) - Static method in interface smile.llm.RotaryPositionalEncoding
Applies rotary embeddings to the input query and key tensors.
apply(BitString, BitString) - Method in enum class smile.gap.Crossover
Returns a pair of offsprings by crossovering parent chromosomes.
apply(T) - Method in class smile.manifold.KPCA
 
apply(T[]) - Method in interface smile.gap.Selection
Select a chromosome with replacement from the population based on their fitness.
apply(T[]) - Method in class smile.manifold.KPCA
Project a set of data to the feature space.
apply(T, T) - Method in interface smile.math.distance.Distance
Returns the distance measure between two objects.
apply(T, T) - Method in interface smile.math.kernel.MercerKernel
Kernel function.
applyAsBoolean(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces a boolean-valued result.
applyAsByte(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces a byte-valued result.
applyAsChar(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces a char-valued result.
applyAsDouble(double[]) - Method in interface smile.math.MultivariateFunction
 
applyAsDouble(double[], double[]) - Method in interface smile.validation.metric.RegressionMetric
 
applyAsDouble(int[], int[]) - Method in interface smile.validation.metric.ClassificationMetric
 
applyAsDouble(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces a double-valued result.
applyAsDouble(T) - Method in interface smile.classification.Classifier
 
applyAsDouble(T) - Method in interface smile.regression.Regression
 
applyAsDouble(T, T) - Method in interface smile.math.distance.Distance
 
applyAsDouble(T, T) - Method in interface smile.math.kernel.MercerKernel
 
applyAsFloat(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces a float-valued result.
applyAsFloat(T) - Method in interface smile.util.ToFloatFunction
Applies this function to the given argument.
applyAsInt(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces an int-valued result.
applyAsInt(T) - Method in interface smile.classification.Classifier
 
applyAsLong(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces a long-valued result.
applyAsShort(Tuple) - Method in interface smile.data.formula.Feature
Applies the term on a data object and produces a short-valued result.
ar() - Method in class smile.timeseries.AR
Returns the linear coefficients of AR (without intercept).
ar() - Method in class smile.timeseries.ARMA
Returns the linear coefficients of AR(p).
AR - Class in smile.timeseries
Autoregressive model.
AR(double[], double[], double, AR.Method) - Constructor for class smile.timeseries.AR
Constructor.
AR.Method - Enum Class in smile.timeseries
The fitting method.
arange(long, long, long) - Static method in class smile.deep.tensor.Tensor
Returns a 1-D tensor of size (end - start) / step with values from the interval [start, end) taken with common difference step beginning from start.
arbitraryInsertion() - Method in class smile.graph.Graph
Returns the approximate solution to TSP with the arbitrary insertion heuristic.
arff(String) - Static method in interface smile.io.Read
Reads an ARFF file.
arff(Path) - Static method in interface smile.io.Read
Reads an ARFF file.
arff(DataFrame, Path, String) - Static method in interface smile.io.Write
Writes the data frame to an ARFF file.
Arff - Class in smile.io
Weka ARFF (attribute relation file format) is an ASCII text file format that is essentially a CSV file with a header that describes the meta-data.
Arff(Reader) - Constructor for class smile.io.Arff
Constructor.
Arff(String) - Constructor for class smile.io.Arff
Constructor.
Arff(String, Charset) - Constructor for class smile.io.Arff
Constructor.
Arff(Path) - Constructor for class smile.io.Arff
Constructor.
Arff(Path, Charset) - Constructor for class smile.io.Arff
Constructor.
argmax(int, boolean) - Method in class smile.deep.tensor.Tensor
Returns the indices of the maximum value of a tensor across a dimension.
aria(boolean) - Method in class smile.plot.vega.Axis
Sets if ARIA attributes should be included (SVG output only).
aria(boolean) - Method in class smile.plot.vega.Legend
Sets if ARIA attributes should be included (SVG output only).
aria(boolean) - Method in class smile.plot.vega.Mark
Sets the aria.
ARM - Class in smile.association
Association Rule Mining.
ARMA - Class in smile.timeseries
Autoregressive moving-average model.
ARMA(double[], double[], double[], double, double[], double[]) - Constructor for class smile.timeseries.ARMA
Constructor.
ARPACK - Class in smile.math.matrix
ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
ARPACK - Class in smile.math.matrix.fp32
ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
ARPACK.AsymmOption - Enum Class in smile.math.matrix
Which eigenvalues of asymmetric matrix to compute.
ARPACK.AsymmOption - Enum Class in smile.math.matrix.fp32
Which eigenvalues of asymmetric matrix to compute.
ARPACK.SymmOption - Enum Class in smile.math.matrix
Which eigenvalues of symmetric matrix to compute.
ARPACK.SymmOption - Enum Class in smile.math.matrix.fp32
Which eigenvalues of symmetric matrix to compute.
array() - Method in interface smile.data.vector.BaseVector
Returns the array that backs this vector.
array() - Method in interface smile.data.vector.BooleanVector
 
array() - Method in interface smile.data.vector.ByteVector
 
array() - Method in interface smile.data.vector.CharVector
 
array() - Method in interface smile.data.vector.DoubleVector
 
array() - Method in interface smile.data.vector.FloatVector
 
array() - Method in interface smile.data.vector.IntVector
 
array() - Method in interface smile.data.vector.LongVector
 
array() - Method in interface smile.data.vector.ShortVector
 
array() - Method in record class smile.util.Bytes
Returns the value of the array record component.
array(DataType) - Static method in class smile.data.type.DataTypes
Creates an array data type.
Array - Enum constant in enum class smile.data.type.DataType.ID
Array type ID.
Array(int) - Constructor for class smile.math.Complex.Array
Constructor.
Array2D - Class in smile.util
2-dimensional array of doubles.
Array2D(double[][]) - Constructor for class smile.util.Array2D
Constructor.
Array2D(int, int) - Constructor for class smile.util.Array2D
Constructor of all-zero matrix.
Array2D(int, int, double) - Constructor for class smile.util.Array2D
Constructor.
Array2D(int, int, double[]) - Constructor for class smile.util.Array2D
Constructor.
ArrayElementConsumer - Interface in smile.util
Represents an operation that accepts an array element of double value and returns no result.
ArrayElementFunction - Interface in smile.util
Represents a function that accepts an array element of double value and produces a result.
ArrayType - Class in smile.data.type
Array of primitive data type.
arrow(String) - Static method in interface smile.io.Read
Reads an Apache Arrow file.
arrow(Path) - Static method in interface smile.io.Read
Reads an Apache Arrow file.
arrow(DataFrame, Path) - Static method in interface smile.io.Write
Writes an Apache Arrow file.
Arrow - Class in smile.io
Apache Arrow is a cross-language development platform for in-memory data.
Arrow() - Constructor for class smile.io.Arrow
Constructor.
Arrow(int) - Constructor for class smile.io.Arrow
Constructor.
as() - Method in record class smile.plot.vega.WindowTransformField
Returns the value of the as record component.
as(String...) - Method in class smile.plot.vega.DensityTransform
Sets the output fields for the sample value and corresponding density estimate.
as(String...) - Method in class smile.plot.vega.LoessTransform
Sets the output field names for the smoothed points generated by the loess transform.
as(String...) - Method in class smile.plot.vega.QuantileTransform
Sets the output field names for the probability and quantile values.
as(String...) - Method in class smile.plot.vega.RegressionTransform
Sets the output field names for the smoothed points generated by the loess transform.
asin() - Method in class smile.deep.tensor.Tensor
Returns a new tensor with the arcsine of the elements of input.
asin(String) - Static method in interface smile.data.formula.Terms
The asin(x) term.
asin(Term) - Static method in interface smile.data.formula.Terms
The asin(x) term.
asin_() - Method in class smile.deep.tensor.Tensor
Computes the arcsine of the elements of input in place.
asolve(double[], double[]) - Method in interface smile.math.matrix.IMatrix.Preconditioner
Solve P * x = b for the preconditioner matrix P.
asolve(float[], float[]) - Method in interface smile.math.matrix.fp32.IMatrix.Preconditioner
Solve P * x = b for the preconditioner matrix P.
assistant - Enum constant in enum class smile.llm.Role
AI assistant.
AssociationRule - Record Class in smile.association
Association rule object.
AssociationRule(int[], int[], double, double, double, double) - Constructor for record class smile.association.AssociationRule
Creates an instance of a AssociationRule record class.
asTorch() - Method in class smile.deep.activation.ActivationFunction
 
asTorch() - Method in class smile.deep.layer.AdaptiveAvgPool2dLayer
 
asTorch() - Method in class smile.deep.layer.AvgPool2dLayer
 
asTorch() - Method in class smile.deep.layer.BatchNorm1dLayer
 
asTorch() - Method in class smile.deep.layer.BatchNorm2dLayer
 
asTorch() - Method in class smile.deep.layer.Conv2dLayer
 
asTorch() - Method in class smile.deep.layer.DropoutLayer
 
asTorch() - Method in class smile.deep.layer.EmbeddingLayer
 
asTorch() - Method in class smile.deep.layer.GroupNormLayer
 
asTorch() - Method in interface smile.deep.layer.Layer
Returns the PyTorch Module object.
asTorch() - Method in class smile.deep.layer.LayerBlock
 
asTorch() - Method in class smile.deep.layer.LinearLayer
 
asTorch() - Method in class smile.deep.layer.MaxPool2dLayer
 
asTorch() - Method in class smile.deep.layer.RMSNormLayer
 
asTorch() - Method in class smile.deep.Model
Returns the PyTorch Module object.
asTorch() - Method in class smile.deep.tensor.Device
Returns the PyTorch device object.
asTorch() - Method in enum class smile.deep.tensor.ScalarType
 
asTorch() - Method in class smile.deep.tensor.Tensor
Returns the PyTorch tensor object.
asTorch() - Method in class smile.llm.PositionalEncoding
 
asTorch() - Method in class smile.vision.layer.StochasticDepth
 
asum(double[]) - Method in interface smile.math.blas.BLAS
Sums the absolute values of the elements of a vector.
asum(float[]) - Method in interface smile.math.blas.BLAS
Sums the absolute values of the elements of a vector.
asum(int, double[], int) - Method in interface smile.math.blas.BLAS
Sums the absolute values of the elements of a vector.
asum(int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
asum(int, float[], int) - Method in interface smile.math.blas.BLAS
Sums the absolute values of the elements of a vector.
asum(int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ata() - Method in class smile.math.matrix.BigMatrix
Returns A' * A.
ata() - Method in class smile.math.matrix.fp32.Matrix
Returns A' * A.
ata() - Method in class smile.math.matrix.fp32.SparseMatrix
Returns A' * A.
ata() - Method in class smile.math.matrix.Matrix
Returns A' * A.
ata() - Method in class smile.math.matrix.SparseMatrix
Returns A' * A.
atan(String) - Static method in interface smile.data.formula.Terms
The atan(x) term.
atan(Term) - Static method in interface smile.data.formula.Terms
The atan(x) term.
Attention - Class in smile.llm.llama
Multi-head attention.
Attention(ModelArgs) - Constructor for class smile.llm.llama.Attention
Constructor.
attractors - Variable in class smile.clustering.DENCLUE
The density attractor of each observation.
auc() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the auc record component.
AUC - Class in smile.validation.metric
The area under the curve (AUC).
AUC() - Constructor for class smile.validation.metric.AUC
 
AutoScope - Class in smile.util
AutoScope allows for predictable, deterministic resource deallocation.
AutoScope(AutoCloseable...) - Constructor for class smile.util.AutoScope
Constructors.
autosize() - Method in class smile.plot.vega.Concat
 
autosize() - Method in class smile.plot.vega.Config
Sets the overall size of the visualization.
autosize() - Method in class smile.plot.vega.Facet
 
autosize() - Method in class smile.plot.vega.Repeat
 
autosize() - Method in class smile.plot.vega.VegaLite
Sets the overall size of the visualization.
autosize() - Method in class smile.plot.vega.View
 
autosize(String, boolean, String) - Method in class smile.plot.vega.Concat
 
autosize(String, boolean, String) - Method in class smile.plot.vega.Config
Sets the overall size of the visualization.
autosize(String, boolean, String) - Method in class smile.plot.vega.Facet
 
autosize(String, boolean, String) - Method in class smile.plot.vega.Repeat
 
autosize(String, boolean, String) - Method in class smile.plot.vega.VegaLite
Sets the overall size of the visualization.
autosize(String, boolean, String) - Method in class smile.plot.vega.View
 
Averaging - Enum Class in smile.deep.metric
The averaging strategy to aggregate binary performance metrics across multi-classes.
Averaging - Enum Class in smile.validation.metric
The averaging strategy to aggregate binary performance metrics across multi-classes.
avg - Variable in class smile.validation.ClassificationValidations
The average of metrics.
avg - Variable in class smile.validation.RegressionValidations
The average of metrics.
avgDocSize() - Method in interface smile.nlp.Corpus
Returns the average size of documents in the corpus.
avgDocSize() - Method in class smile.nlp.SimpleCorpus
 
avgPool2d(int) - Static method in interface smile.deep.layer.Layer
Returns an average pooling layer that reduces a tensor by combining cells, and assigning the average value of the input cells to the output cell.
AvgPool2dLayer - Class in smile.deep.layer
An average pooling layer that reduces a tensor by combining cells, and assigning the average value of the input cells to the output cell.
AvgPool2dLayer(int) - Constructor for class smile.deep.layer.AvgPool2dLayer
Constructor.
AvgPool2dLayer(int, int) - Constructor for class smile.deep.layer.AvgPool2dLayer
Constructor.
avro(String, InputStream) - Static method in interface smile.io.Read
Reads an Apache Avro file.
avro(String, String) - Static method in interface smile.io.Read
Reads an Apache Avro file.
avro(Path, InputStream) - Static method in interface smile.io.Read
Reads an Apache Avro file.
avro(Path, Path) - Static method in interface smile.io.Read
Reads an Apache Avro file.
Avro - Class in smile.io
Apache Avro is a data serialization system.
Avro(InputStream) - Constructor for class smile.io.Avro
Constructor.
Avro(Path) - Constructor for class smile.io.Avro
Constructor.
Avro(Schema) - Constructor for class smile.io.Avro
Constructor.
axis() - Method in class smile.plot.vega.Config
Returns the axis definition object.
axis() - Method in class smile.plot.vega.Field
Returns the axis definition object.
axis() - Method in class smile.plot.vega.ViewConfig
Returns the axis definition object.
Axis - Class in smile.plot.swing
This class describes an axis of a coordinate system.
Axis - Class in smile.plot.vega
Axes provide axis lines, ticks, and labels to convey how a positional range represents a data range.
Axis(Base, int) - Constructor for class smile.plot.swing.Axis
Constructor.
axpy(double, double[], double[]) - Method in interface smile.math.blas.BLAS
Computes a constant alpha times a vector x plus a vector y.
axpy(double, double[], double[]) - Static method in class smile.math.MathEx
Update an array by adding a multiple of another array y = a * x + y.
axpy(float, float[], float[]) - Method in interface smile.math.blas.BLAS
Computes a constant alpha times a vector x plus a vector y.
axpy(int, double, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
Computes a constant alpha times a vector x plus a vector y.
axpy(int, double, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
axpy(int, float, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
Computes a constant alpha times a vector x plus a vector y.
axpy(int, float, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 

B

b - Variable in class smile.validation.metric.ContingencyTable
The column sum of contingency table.
B - Variable in class smile.vq.BIRCH
The branching factor of non-leaf nodes.
background() - Method in class smile.plot.vega.View
Returns the view background's fill and stroke object.
background(String) - Method in class smile.plot.vega.Concat
 
background(String) - Method in class smile.plot.vega.Config
Sets the background with CSS color property.
background(String) - Method in class smile.plot.vega.Facet
 
background(String) - Method in class smile.plot.vega.Repeat
 
background(String) - Method in class smile.plot.vega.VegaLite
Sets the background of the entire view with CSS color property.
background(String) - Method in class smile.plot.vega.View
 
Background - Class in smile.plot.vega
The view background of a single-view or layer specification.
backpopagateDropout() - Method in class smile.base.mlp.Layer
Propagates the errors back through the (implicit) dropout layer.
backpropagate(boolean) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the errors back through the network.
backpropagate(double[]) - Method in class smile.base.mlp.HiddenLayer
 
backpropagate(double[]) - Method in class smile.base.mlp.InputLayer
 
backpropagate(double[]) - Method in class smile.base.mlp.Layer
Propagates the errors back to a lower layer.
backpropagate(double[]) - Method in class smile.base.mlp.OutputLayer
 
backward() - Method in class smile.deep.tensor.Tensor
Computes the gradients.
Bag - Record Class in smile.validation
A bag of random selected samples.
Bag(int[], int[]) - Constructor for record class smile.validation.Bag
Creates an instance of a Bag record class.
BagOfWords - Class in smile.feature.extraction
The bag-of-words feature of text used in natural language processing and information retrieval.
BagOfWords(String[], Function<String, String[]>, String[], boolean) - Constructor for class smile.feature.extraction.BagOfWords
Constructor.
BagOfWords(Function<String, String[]>, String[]) - Constructor for class smile.feature.extraction.BagOfWords
Constructor.
BandMatrix - Class in smile.math.matrix
A band matrix is a sparse matrix, whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.
BandMatrix - Class in smile.math.matrix.fp32
A band matrix is a sparse matrix, whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.
BandMatrix(int, int, int, int) - Constructor for class smile.math.matrix.BandMatrix
Constructor.
BandMatrix(int, int, int, int) - Constructor for class smile.math.matrix.fp32.BandMatrix
Constructor.
BandMatrix(int, int, int, int, double[][]) - Constructor for class smile.math.matrix.BandMatrix
Constructor.
BandMatrix(int, int, int, int, float[][]) - Constructor for class smile.math.matrix.fp32.BandMatrix
Constructor.
BandMatrix.Cholesky - Class in smile.math.matrix
The Cholesky decomposition of a symmetric, positive-definite matrix.
BandMatrix.Cholesky - Class in smile.math.matrix.fp32
The Cholesky decomposition of a symmetric, positive-definite matrix.
BandMatrix.LU - Class in smile.math.matrix
The LU decomposition.
BandMatrix.LU - Class in smile.math.matrix.fp32
The LU decomposition.
bandPosition(double) - Method in class smile.plot.vega.Axis
For band scales, sets the interpolation fraction where axis ticks should be positioned.
bandwidth() - Method in class smile.stat.distribution.KernelDensity
Returns the bandwidth of kernel.
bandwidth(double) - Method in class smile.plot.vega.DensityTransform
Sets the bandwidth (standard deviation) of the Gaussian kernel.
bandwidth(double) - Method in class smile.plot.vega.LoessTransform
Sets a bandwidth parameter in the range [0, 1] that determines the amount of smoothing.
Bar - Class in smile.plot.swing
Bars with heights proportional to the value.
Bar(double[][], double, Color) - Constructor for class smile.plot.swing.Bar
Constructor.
BarPlot - Class in smile.plot.swing
A barplot draws bars with heights proportional to the value.
BarPlot(Bar...) - Constructor for class smile.plot.swing.BarPlot
Constructor.
BarPlot(Bar[], Legend[]) - Constructor for class smile.plot.swing.BarPlot
Constructor.
base(int) - Method in class smile.plot.vega.BinParams
Sets the number base to use for automatic bin determination (default is base 10).
Base - Class in smile.plot.swing
The coordinate base of PlotCanvas.
Base(double[], double[]) - Constructor for class smile.plot.swing.Base
Constructor.
Base(double[], double[], boolean) - Constructor for class smile.plot.swing.Base
Constructor.
BaseVector<T,TS,S> - Interface in smile.data.vector
Base interface for immutable named vectors, which are sequences of elements supporting random access and sequential stream operations.
batch(int) - Method in interface smile.data.Dataset
Returns an iterator of mini-batches.
batchNorm1d(int) - Static method in interface smile.deep.layer.Layer
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
batchNorm1d(int, double, double, boolean) - Static method in interface smile.deep.layer.Layer
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
BatchNorm1dLayer - Class in smile.deep.layer
A batch normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
BatchNorm1dLayer(int) - Constructor for class smile.deep.layer.BatchNorm1dLayer
Constructor.
BatchNorm1dLayer(int, double, double, boolean) - Constructor for class smile.deep.layer.BatchNorm1dLayer
Constructor.
batchNorm2d(int) - Static method in interface smile.deep.layer.Layer
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
batchNorm2d(int, double, double, boolean) - Static method in interface smile.deep.layer.Layer
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
BatchNorm2dLayer - Class in smile.deep.layer
A batch normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
BatchNorm2dLayer(int) - Constructor for class smile.deep.layer.BatchNorm2dLayer
Constructor.
BatchNorm2dLayer(int, double, double, boolean) - Constructor for class smile.deep.layer.BatchNorm2dLayer
Constructor.
BBDTree - Class in smile.clustering
Balanced Box-Decomposition Tree.
BBDTree(double[][]) - Constructor for class smile.clustering.BBDTree
Constructs a tree out of the given n data points living in R^d.
BE - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
Computes nev eigenvalues, half from each end of the spectrum.
BE - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
Computes nev eigenvalues, half from each end of the spectrum.
Bernoulli - Interface in smile.glm.model
The response variable is of Bernoulli distribution.
BERNOULLI - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
The document Bernoulli model generates an indicator for each term of the vocabulary, either indicating presence of the term in the document or indicating absence.
bernoulli_(double) - Method in class smile.deep.tensor.Tensor
Draws binary random numbers (0 or 1) from a Bernoulli distribution.
BernoulliDistribution - Class in smile.stat.distribution
Bernoulli's distribution is a discrete probability distribution, which takes value 1 with success probability p and value 0 with failure probability q = 1 - p.
BernoulliDistribution(boolean[]) - Constructor for class smile.stat.distribution.BernoulliDistribution
Construct a Bernoulli from the given samples.
BernoulliDistribution(double) - Constructor for class smile.stat.distribution.BernoulliDistribution
Constructor.
BestLocalizedWavelet - Class in smile.wavelet
Best localized wavelets.
BestLocalizedWavelet(int) - Constructor for class smile.wavelet.BestLocalizedWavelet
Constructor.
beta - Variable in class smile.glm.GLM
The linear weights.
beta - Variable in class smile.stat.distribution.BetaDistribution
The shape parameter.
beta() - Method in class smile.stat.distribution.BetaDistribution
Returns the shape parameter beta.
beta(double, double) - Static method in class smile.math.special.Beta
Beta function, also called the Euler integral of the first kind.
Beta - Class in smile.math.special
The beta function, also called the Euler integral of the first kind.
BetaDistribution - Class in smile.stat.distribution
The beta distribution is defined on the interval [0, 1] parameterized by two positive shape parameters, typically denoted by α and β.
BetaDistribution(double, double) - Constructor for class smile.stat.distribution.BetaDistribution
Constructor.
bfcc() - Method in class smile.graph.Graph
Returns the connected components by breadth-first search.
BFGS - Class in smile.math
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems.
BFGS() - Constructor for class smile.math.BFGS
 
BFloat16 - Enum constant in enum class smile.deep.tensor.ScalarType
The bfloat16 (brain floating point) floating-point format occupies 16 bits.
bfs(VertexVisitor) - Method in class smile.graph.Graph
BFS search on graph and performs some operation defined in visitor on each vertex during traveling.
bfsort() - Method in class smile.graph.Graph
Topological sort digraph by breadth-first search of graph.
bias - Variable in class smile.base.mlp.Layer
The bias.
bias() - Method in record class smile.data.formula.Intercept
Returns the value of the bias record component.
biasGradient - Variable in class smile.base.mlp.Layer
The bias gradient.
biasGradientMoment1 - Variable in class smile.base.mlp.Layer
The first moment of bias gradient.
biasGradientMoment2 - Variable in class smile.base.mlp.Layer
The second moment of bias gradient.
biasUpdate - Variable in class smile.base.mlp.Layer
The bias update.
bic - Variable in class smile.stat.distribution.DiscreteExponentialFamilyMixture
The BIC score when the distribution is fit on a sample data.
bic - Variable in class smile.stat.distribution.ExponentialFamilyMixture
The BIC score when the distribution is fit on a sample data.
bic - Variable in class smile.stat.distribution.MultivariateExponentialFamilyMixture
The BIC score when the distribution is fit on a sample data.
bic(double[]) - Method in class smile.stat.distribution.DiscreteMixture
Returns the BIC score.
bic(double[]) - Method in class smile.stat.distribution.Mixture
Returns the BIC score.
bic(double[][]) - Method in class smile.stat.distribution.MultivariateMixture
Returns the BIC score.
BIC() - Method in class smile.glm.GLM
Returns the BIC score.
BIC(double, int, int) - Static method in interface smile.validation.ModelSelection
Bayesian information criterion.
BicubicInterpolation - Class in smile.interpolation
Bicubic interpolation in a two-dimensional regular grid.
BicubicInterpolation(double[], double[], double[][]) - Constructor for class smile.interpolation.BicubicInterpolation
Constructor.
BigMatrix - Class in smile.math.matrix
Big dense matrix of double precision values for more than 2 billion elements.
BigMatrix(int, int) - Constructor for class smile.math.matrix.BigMatrix
Constructor of zero matrix.
BigMatrix(int, int, double) - Constructor for class smile.math.matrix.BigMatrix
Constructor.
BigMatrix(int, int, int, DoublePointer) - Constructor for class smile.math.matrix.BigMatrix
Constructor.
BigMatrix.Cholesky - Class in smile.math.matrix
The Cholesky decomposition of a symmetric, positive-definite matrix.
BigMatrix.EVD - Class in smile.math.matrix
Eigenvalue decomposition.
BigMatrix.LU - Class in smile.math.matrix
The LU decomposition.
BigMatrix.QR - Class in smile.math.matrix
The QR decomposition.
BigMatrix.SVD - Class in smile.math.matrix
Singular Value Decomposition.
Bigram - Class in smile.nlp
Bigrams or digrams are groups of two words, and are very commonly used as the basis for simple statistical analysis of text.
Bigram - Class in smile.nlp.collocation
Collocations are expressions of multiple words which commonly co-occur.
Bigram(String, String) - Constructor for class smile.nlp.Bigram
Constructor.
Bigram(String, String, int, double) - Constructor for class smile.nlp.collocation.Bigram
Constructor.
bigramCount() - Method in interface smile.nlp.Corpus
Returns the number of bigrams in the corpus.
bigramCount() - Method in class smile.nlp.SimpleCorpus
 
bigrams() - Method in interface smile.nlp.Corpus
Returns the iterator over the bigrams in the corpus.
bigrams() - Method in class smile.nlp.SimpleCorpus
 
BilinearInterpolation - Class in smile.interpolation
Bilinear interpolation in a two-dimensional regular grid.
BilinearInterpolation(double[], double[], double[][]) - Constructor for class smile.interpolation.BilinearInterpolation
Constructor.
bin(boolean) - Method in class smile.plot.vega.FacetField
Turns on/off binning a quantitative field.
bin(boolean) - Method in class smile.plot.vega.Field
Turns on/off binning a quantitative field.
bin(String) - Method in class smile.plot.vega.FacetField
Indicates that the data for x or y channel are binned before they are imported into Vega-Lite.
bin(String) - Method in class smile.plot.vega.Field
Indicates that the data for x or y channel are binned before they are imported into Vega-Lite.
bin(String, String) - Method in class smile.plot.vega.Transform
Adds a bin transformation.
bin(BinParams) - Method in class smile.plot.vega.Field
Sets custom binning parameters.
binary(int, KernelMachine<int[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
binary(String) - Static method in interface smile.math.kernel.MercerKernel
Returns a binary sparse kernel function.
BinaryEncoder - Class in smile.feature.extraction
Encodes categorical features using sparse one-hot scheme.
BinaryEncoder(StructType, String...) - Constructor for class smile.feature.extraction.BinaryEncoder
Constructor.
BinarySparseDataset<T> - Interface in smile.data
Binary sparse dataset.
BinarySparseGaussianKernel - Class in smile.math.kernel
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
BinarySparseGaussianKernel(double) - Constructor for class smile.math.kernel.BinarySparseGaussianKernel
Constructor.
BinarySparseGaussianKernel(double, double, double) - Constructor for class smile.math.kernel.BinarySparseGaussianKernel
Constructor.
BinarySparseHyperbolicTangentKernel - Class in smile.math.kernel
The hyperbolic tangent kernel on binary sparse data.
BinarySparseHyperbolicTangentKernel() - Constructor for class smile.math.kernel.BinarySparseHyperbolicTangentKernel
Constructor with scale 1.0 and offset 0.0.
BinarySparseHyperbolicTangentKernel(double, double) - Constructor for class smile.math.kernel.BinarySparseHyperbolicTangentKernel
Constructor.
BinarySparseHyperbolicTangentKernel(double, double, double[], double[]) - Constructor for class smile.math.kernel.BinarySparseHyperbolicTangentKernel
Constructor.
BinarySparseLaplacianKernel - Class in smile.math.kernel
Laplacian kernel, also referred as exponential kernel.
BinarySparseLaplacianKernel(double) - Constructor for class smile.math.kernel.BinarySparseLaplacianKernel
Constructor.
BinarySparseLaplacianKernel(double, double, double) - Constructor for class smile.math.kernel.BinarySparseLaplacianKernel
Constructor.
BinarySparseLinearKernel - Class in smile.math.kernel
The linear dot product kernel on sparse binary arrays in int[], which are the indices of nonzero elements.
BinarySparseLinearKernel() - Constructor for class smile.math.kernel.BinarySparseLinearKernel
Constructor.
BinarySparseMaternKernel - Class in smile.math.kernel
The class of Matérn kernels is a generalization of the Gaussian/RBF.
BinarySparseMaternKernel(double, double) - Constructor for class smile.math.kernel.BinarySparseMaternKernel
Constructor.
BinarySparseMaternKernel(double, double, double, double) - Constructor for class smile.math.kernel.BinarySparseMaternKernel
Constructor.
BinarySparsePolynomialKernel - Class in smile.math.kernel
The polynomial kernel on binary sparse data.
BinarySparsePolynomialKernel(int) - Constructor for class smile.math.kernel.BinarySparsePolynomialKernel
Constructor with scale 1 and offset 0.
BinarySparsePolynomialKernel(int, double, double) - Constructor for class smile.math.kernel.BinarySparsePolynomialKernel
Constructor.
BinarySparsePolynomialKernel(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.BinarySparsePolynomialKernel
Constructor.
BinarySparseThinPlateSplineKernel - Class in smile.math.kernel
The Thin Plate Spline kernel on binary sparse data.
BinarySparseThinPlateSplineKernel(double) - Constructor for class smile.math.kernel.BinarySparseThinPlateSplineKernel
Constructor.
BinarySparseThinPlateSplineKernel(double, double, double) - Constructor for class smile.math.kernel.BinarySparseThinPlateSplineKernel
Constructor.
bind(StructType) - Method in class smile.data.formula.Abs
 
bind(StructType) - Method in class smile.data.formula.Add
 
bind(StructType) - Method in class smile.data.formula.Date
 
bind(StructType) - Method in class smile.data.formula.Delete
 
bind(StructType) - Method in class smile.data.formula.Div
 
bind(StructType) - Method in class smile.data.formula.Dot
 
bind(StructType) - Method in class smile.data.formula.DoubleFunction
 
bind(StructType) - Method in class smile.data.formula.FactorCrossing
 
bind(StructType) - Method in class smile.data.formula.FactorInteraction
 
bind(StructType) - Method in class smile.data.formula.Formula
Binds the formula to a schema and returns the schema of predictors.
bind(StructType) - Method in record class smile.data.formula.Intercept
 
bind(StructType) - Method in class smile.data.formula.IntFunction
 
bind(StructType) - Method in class smile.data.formula.Mul
 
bind(StructType) - Method in class smile.data.formula.Round
 
bind(StructType) - Method in class smile.data.formula.Sub
 
bind(StructType) - Method in interface smile.data.formula.Term
Binds the term to a schema.
bind(StructType) - Method in record class smile.data.formula.Variable
 
binomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits binomial logistic regression.
binomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
binomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
binomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
binomial(SparseDataset<Integer>) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
binomial(SparseDataset<Integer>, double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
binomial(SparseDataset<Integer>, Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits binomial logistic regression.
Binomial - Interface in smile.glm.model
The response variable is of Binomial distribution.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Binomial
Constructor.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.Maxent.Binomial
Constructor.
Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Binomial
Constructor.
BinomialDistribution - Class in smile.stat.distribution
The binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p.
BinomialDistribution(int, double) - Constructor for class smile.stat.distribution.BinomialDistribution
Constructor.
BinParams - Class in smile.plot.vega
To test a data point in a filter transform or a test property in conditional encoding, a predicate definition of the following forms must be specified:
BinParams() - Constructor for class smile.plot.vega.BinParams
Constructor.
bins(double[], double) - Static method in interface smile.math.Histogram
Returns the number of bins for a data based on a suggested bin width h.
bins(int) - Static method in interface smile.math.Histogram
Returns the number of bins by square-root rule, which takes the square root of the number of data points in the sample (used by Excel histograms and many others).
BIRCH - Class in smile.vq
Balanced Iterative Reducing and Clustering using Hierarchies.
BIRCH(int, int, int, double) - Constructor for class smile.vq.BIRCH
Constructor.
bits() - Method in class smile.gap.BitString
Returns the bit string of chromosome.
BitString - Class in smile.gap
The standard bit string representation of the solution domain.
BitString(byte[], Fitness<BitString>) - Constructor for class smile.gap.BitString
Constructor.
BitString(byte[], Fitness<BitString>, Crossover, double, double) - Constructor for class smile.gap.BitString
Constructor.
BitString(int, Fitness<BitString>) - Constructor for class smile.gap.BitString
Constructor.
BitString(int, Fitness<BitString>, Crossover, double, double) - Constructor for class smile.gap.BitString
Constructor.
bk() - Method in class smile.math.matrix.fp32.SymmMatrix
Bunch-Kaufman decomposition.
bk() - Method in class smile.math.matrix.SymmMatrix
Bunch-Kaufman decomposition.
BKTree<K,V> - Class in smile.neighbor
A BK-tree is a metric tree specifically adapted to discrete metric spaces.
BKTree(Metric<K>) - Constructor for class smile.neighbor.BKTree
Constructor.
BLACK - Static variable in interface smile.plot.swing.Palette
 
blas() - Method in enum class smile.math.blas.Diag
Returns the int value for BLAS.
blas() - Method in enum class smile.math.blas.Layout
Returns the int value for BLAS.
blas() - Method in enum class smile.math.blas.Side
Returns the int value for BLAS.
blas() - Method in enum class smile.math.blas.Transpose
Returns the int value for BLAS.
blas() - Method in enum class smile.math.blas.UPLO
Returns the int value for BLAS.
BLAS - Interface in smile.math.blas
Basic Linear Algebra Subprograms.
blend(String) - Method in class smile.plot.vega.Mark
Sets the color blend mode for drawing an item on its current background.
block() - Method in record class smile.vision.layer.MBConvConfig
Returns the value of the block record component.
BLUE - Static variable in interface smile.plot.swing.Palette
 
BM25 - Class in smile.nlp.relevance
The BM25 weighting scheme, often called Okapi weighting, after the system in which it was first implemented, was developed as a way of building a probabilistic model sensitive to term frequency and document length while not introducing too many additional parameters into the model.
BM25() - Constructor for class smile.nlp.relevance.BM25
Default constructor with k1 = 1.2, b = 0.75, delta = 1.0.
BM25(double, double, double) - Constructor for class smile.nlp.relevance.BM25
Constructor.
body - Variable in class smile.nlp.Text
The text body.
Boolean - Enum constant in enum class smile.data.type.DataType.ID
Boolean type ID.
BOOLEAN - Static variable in interface smile.util.Regex
Boolean regular expression pattern.
BOOLEAN_REGEX - Static variable in interface smile.util.Regex
Boolean regular expression.
BooleanArrayType - Static variable in class smile.data.type.DataTypes
Boolean Array data type.
BooleanObjectType - Static variable in class smile.data.type.DataTypes
Boolean Object data type.
BooleanType - Class in smile.data.type
Boolean data type.
BooleanType - Static variable in class smile.data.type.DataTypes
Boolean data type.
booleanVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
booleanVector(int) - Method in class smile.data.IndexDataFrame
 
booleanVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
booleanVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
BooleanVector - Interface in smile.data.vector
An immutable boolean vector.
boolValue() - Method in class smile.deep.tensor.Tensor
Returns the boolean value when the tensor holds a single value.
Bootstrap - Interface in smile.validation
The bootstrap is a general tool for assessing statistical accuracy.
bounds(String) - Method in class smile.plot.vega.Concat
 
bounds(String) - Method in class smile.plot.vega.Facet
 
bounds(String) - Method in class smile.plot.vega.Repeat
 
bounds(String) - Method in interface smile.plot.vega.ViewLayoutComposition
Sets the bounds calculation method to use for determining the extent of a sub-plot.
Box_Pierce - Enum constant in enum class smile.timeseries.BoxTest.Type
Box-Pierce test.
boxed() - Method in interface smile.data.type.DataType
Returns the boxed data type if this is a primitive type.
boxed(Collection<Tuple>) - Method in class smile.data.type.StructType
Updates the field type to the boxed one if the field has null/missing values in the data.
BoxPlot - Class in smile.plot.swing
A boxplot is a convenient way of graphically depicting groups of numerical data through their five-number summaries the smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation (sample maximum).
BoxPlot(double[][], String[]) - Constructor for class smile.plot.swing.BoxPlot
Constructor.
BoxTest - Class in smile.timeseries
Portmanteau test jointly that several autocorrelations of time series are zero.
BoxTest.Type - Enum Class in smile.timeseries
The type of test.
branch(Tuple) - Method in class smile.base.cart.InternalNode
Returns true if the instance goes to the true branch.
branch(Tuple) - Method in class smile.base.cart.NominalNode
 
branch(Tuple) - Method in class smile.base.cart.OrdinalNode
 
BreakIteratorSentenceSplitter - Class in smile.nlp.tokenizer
A sentence splitter based on the java.text.BreakIterator, which supports multiple natural languages (selected by locale setting).
BreakIteratorSentenceSplitter() - Constructor for class smile.nlp.tokenizer.BreakIteratorSentenceSplitter
Constructor for the default locale.
BreakIteratorSentenceSplitter(Locale) - Constructor for class smile.nlp.tokenizer.BreakIteratorSentenceSplitter
Constructor for the given locale.
BreakIteratorTokenizer - Class in smile.nlp.tokenizer
A word tokenizer based on the java.text.BreakIterator, which supports multiple natural languages (selected by locale setting).
BreakIteratorTokenizer() - Constructor for class smile.nlp.tokenizer.BreakIteratorTokenizer
Constructor for the default locale.
BreakIteratorTokenizer(Locale) - Constructor for class smile.nlp.tokenizer.BreakIteratorTokenizer
Constructor for the given locale.
breaks() - Method in record class smile.feature.selection.InformationValue
Returns the value of the breaks record component.
breaks(double[], double) - Static method in interface smile.math.Histogram
Returns the breakpoints between histogram cells for a dataset based on a suggested bin width h.
breaks(double[], int) - Static method in interface smile.math.Histogram
Returns the breakpoints between histogram cells for a dataset.
breaks(double, double, double) - Static method in interface smile.math.Histogram
Returns the breakpoints between histogram cells for a given range based on a suggested bin width h.
breaks(double, double, int) - Static method in interface smile.math.Histogram
Returns the breakpoints between histogram cells for a given range.
BROWN - Static variable in interface smile.plot.swing.Palette
 
bubble(int) - Static method in interface smile.vq.Neighborhood
Returns the bubble neighborhood function.
bucket - Variable in class smile.neighbor.lsh.Bucket
The bucket id is given by the universal bucket hashing.
Bucket - Class in smile.neighbor.lsh
A bucket is a container for points that all have the same value for hash function g (function g is a vector of k LSH functions).
Bucket(int) - Constructor for class smile.neighbor.lsh.Bucket
Constructor.
build() - Method in class smile.hash.PerfectMap.Builder
Builds the perfect map.
build(int) - Method in class smile.base.mlp.HiddenLayerBuilder
 
build(int) - Method in class smile.base.mlp.LayerBuilder
Builds a layer.
build(int) - Method in class smile.base.mlp.OutputLayerBuilder
 
build(String, String, int, int) - Static method in class smile.llm.llama.Llama
Builds a Llama instance by initializing and loading a model checkpoint.
build(String, String, int, int, Integer) - Static method in class smile.llm.llama.Llama
Builds a Llama instance by initializing and loading a model checkpoint.
builder(String, int, double, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer.
Builder() - Constructor for class smile.hash.PerfectMap.Builder
Constructor.
Builder(Map<String, T>) - Constructor for class smile.hash.PerfectMap.Builder
Constructor.
BunchKaufman(SymmMatrix, int[], int) - Constructor for class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
Constructor.
BunchKaufman(SymmMatrix, int[], int) - Constructor for class smile.math.matrix.SymmMatrix.BunchKaufman
Constructor.
BURGUNDY - Static variable in interface smile.plot.swing.Palette
 
Button - Class in smile.swing
Action initialized JButton.
Button(Action) - Constructor for class smile.swing.Button
Constructor.
ButtonCellRenderer - Class in smile.swing.table
The ButtonCellRenderer class provides a renderer and an editor that looks like a JButton.
ButtonCellRenderer(JTable, Action, int) - Constructor for class smile.swing.table.ButtonCellRenderer
Create the ButtonCellRenderer to be used as a renderer and editor.
Byte - Enum constant in enum class smile.data.type.DataType.ID
Byte type ID.
byteArray() - Method in class smile.deep.tensor.Tensor
Returns the byte array of tensor elements
ByteArrayCellRenderer - Class in smile.swing.table
Byte array renderer in JTable.
ByteArrayCellRenderer() - Constructor for class smile.swing.table.ByteArrayCellRenderer
Constructor.
ByteArrayType - Static variable in class smile.data.type.DataTypes
Byte Array data type.
ByteObjectType - Static variable in class smile.data.type.DataTypes
Byte Object data type.
Bytes - Record Class in smile.util
Byte string.
Bytes(byte[]) - Constructor for record class smile.util.Bytes
Creates an instance of a Bytes record class.
Bytes(String) - Constructor for record class smile.util.Bytes
Constructor with a string input.
ByteType - Class in smile.data.type
Byte data type.
ByteType - Static variable in class smile.data.type.DataTypes
Byte data type.
byteValue() - Method in class smile.deep.tensor.Tensor
Returns the byte value when the tensor holds a single value.
byteVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
byteVector(int) - Method in class smile.data.IndexDataFrame
 
byteVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
byteVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
ByteVector - Interface in smile.data.vector
An immutable byte vector.

C

c(double...) - Static method in class smile.math.MathEx
Combines the arguments to form a vector.
c(double[]...) - Static method in class smile.math.MathEx
Concatenates multiple vectors into one.
c(float...) - Static method in class smile.math.MathEx
Combines the arguments to form a vector.
c(float[]...) - Static method in class smile.math.MathEx
Concatenates multiple vectors into one.
c(int...) - Static method in class smile.math.MathEx
Combines the arguments to form a vector.
c(int[]...) - Static method in class smile.math.MathEx
Concatenates multiple vectors into one.
c(String...) - Static method in class smile.math.MathEx
Combines the arguments to form a vector.
c(String[]...) - Static method in class smile.math.MathEx
Concatenates multiple vectors into one array of strings.
CacheFiles - Interface in smile.util
Static methods that manage cache files.
CADET_BLUE - Static variable in interface smile.plot.swing.Palette
 
calculate(String, String) - Method in class smile.plot.vega.Transform
Adds a formula transform extends data objects with new fields (columns) according to an expression.
CANCEL_OPTION - Static variable in class smile.swing.FontChooser
Return value from showDialog().
canvas - Variable in class smile.plot.swing.Projection
The canvas associated with this projection.
canvas() - Method in class smile.plot.swing.BarPlot
 
canvas() - Method in class smile.plot.swing.BoxPlot
 
canvas() - Method in class smile.plot.swing.Contour
 
canvas() - Method in class smile.plot.swing.Dendrogram
 
canvas() - Method in class smile.plot.swing.Heatmap
 
canvas() - Method in class smile.plot.swing.Hexmap
 
canvas() - Method in class smile.plot.swing.LinePlot
 
canvas() - Method in class smile.plot.swing.Plot
Returns a canvas of the plot.
canvas() - Method in class smile.plot.swing.ScreePlot
 
canvas() - Method in class smile.plot.swing.SparseMatrixPlot
 
canvas() - Method in class smile.plot.swing.StaircasePlot
 
Canvas - Class in smile.plot.swing
Canvas for mathematical plots.
Canvas(double[], double[]) - Constructor for class smile.plot.swing.Canvas
Constructor
Canvas(double[], double[], boolean) - Constructor for class smile.plot.swing.Canvas
Constructor
CARDINAL_NUMBER - Static variable in interface smile.util.Regex
Cardinal numbers.
CARDINAL_NUMBER_WITH_COMMA - Static variable in interface smile.util.Regex
Cardinal numbers, optionally thousands are separated by comma.
CART - Class in smile.base.cart
Classification and regression tree.
CART(DataFrame, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.base.cart.CART
Constructor.
CART(Formula, StructType, StructField, Node, double[]) - Constructor for class smile.base.cart.CART
Constructor.
CategoricalEncoder - Enum Class in smile.data
Categorical variable encoder.
CategoricalMeasure - Class in smile.data.measure
Categorical data can be stored into groups or categories with the aid of names or labels.
CategoricalMeasure(int[]) - Constructor for class smile.data.measure.CategoricalMeasure
Constructor.
CategoricalMeasure(int[], String[]) - Constructor for class smile.data.measure.CategoricalMeasure
Constructor.
CategoricalMeasure(String...) - Constructor for class smile.data.measure.CategoricalMeasure
Constructor.
CategoricalMeasure(List<String>) - Constructor for class smile.data.measure.CategoricalMeasure
Constructor.
cbind(double[]...) - Static method in class smile.math.MathEx
Concatenates vectors by columns.
cbind(float[]...) - Static method in class smile.math.MathEx
Concatenates vectors by columns.
cbind(int[]...) - Static method in class smile.math.MathEx
Concatenates vectors by columns.
cbind(String[]...) - Static method in class smile.math.MathEx
Concatenates vectors by columns.
cbrt(String) - Static method in interface smile.data.formula.Terms
The cbrt(x) term.
cbrt(Term) - Static method in interface smile.data.formula.Terms
The cbrt(x) term.
CC - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Coordinating conjunction.
CD - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Cardinal number.
cdf(double) - Method in class smile.stat.distribution.BernoulliDistribution
 
cdf(double) - Method in class smile.stat.distribution.BetaDistribution
 
cdf(double) - Method in class smile.stat.distribution.BinomialDistribution
 
cdf(double) - Method in class smile.stat.distribution.ChiSquareDistribution
 
cdf(double) - Method in class smile.stat.distribution.DiscreteMixture
 
cdf(double) - Method in interface smile.stat.distribution.Distribution
Cumulative distribution function.
cdf(double) - Method in class smile.stat.distribution.EmpiricalDistribution
 
cdf(double) - Method in class smile.stat.distribution.ExponentialDistribution
 
cdf(double) - Method in class smile.stat.distribution.FDistribution
 
cdf(double) - Method in class smile.stat.distribution.GammaDistribution
 
cdf(double) - Method in class smile.stat.distribution.GaussianDistribution
 
cdf(double) - Method in class smile.stat.distribution.GeometricDistribution
 
cdf(double) - Method in class smile.stat.distribution.HyperGeometricDistribution
 
cdf(double) - Method in class smile.stat.distribution.KernelDensity
Cumulative distribution function.
cdf(double) - Method in class smile.stat.distribution.LogisticDistribution
 
cdf(double) - Method in class smile.stat.distribution.LogNormalDistribution
 
cdf(double) - Method in class smile.stat.distribution.Mixture
 
cdf(double) - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
cdf(double) - Method in class smile.stat.distribution.PoissonDistribution
 
cdf(double) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
cdf(double) - Method in class smile.stat.distribution.TDistribution
 
cdf(double) - Method in class smile.stat.distribution.WeibullDistribution
 
cdf(double[]) - Method in interface smile.stat.distribution.MultivariateDistribution
Cumulative distribution function.
cdf(double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
Algorithm from Alan Genz (1992) Numerical Computation of Multivariate Normal Probabilities, Journal of Computational and Graphical Statistics, pp.
cdf(double[]) - Method in class smile.stat.distribution.MultivariateMixture
 
cdf2tailed(double) - Method in class smile.stat.distribution.TDistribution
Two-tailed cdf.
ceil(String) - Static method in interface smile.data.formula.Terms
The ceil(x) term.
ceil(Term) - Static method in interface smile.data.formula.Terms
The ceil(x) term.
center() - Method in class smile.feature.extraction.PCA
Returns the center of data.
center() - Method in class smile.feature.extraction.ProbabilisticPCA
Returns the center of data.
center(boolean) - Method in class smile.plot.vega.Concat
 
center(boolean) - Method in class smile.plot.vega.Facet
 
center(boolean) - Method in class smile.plot.vega.FacetField
Sets if facet's subviews should be centered relative to their respective rows or columns.
center(boolean) - Method in class smile.plot.vega.Repeat
 
center(boolean) - Method in interface smile.plot.vega.ViewLayoutComposition
Sets if subviews should be centered relative to their respective rows or columns.
center(double, double) - Method in class smile.plot.vega.Projection
Sets the projection's center, a two-element array of longitude and latitude in degrees.
center(int, int) - Method in class smile.plot.vega.Concat
 
center(int, int) - Method in class smile.plot.vega.Facet
 
center(int, int) - Method in class smile.plot.vega.Repeat
 
center(int, int) - Method in interface smile.plot.vega.ViewLayoutComposition
Sets if subviews should be centered relative to their respective rows or columns.
CentroidClustering<T,U> - Class in smile.clustering
In centroid-based clustering, clusters are represented by a central vector, which may not necessarily be a member of the data set.
CentroidClustering(double, T[], int[]) - Constructor for class smile.clustering.CentroidClustering
Constructor.
centroids - Variable in class smile.clustering.CentroidClustering
The centroids of each cluster.
centroids() - Method in class smile.vq.BIRCH
Returns the cluster centroids of leaf nodes.
change(int) - Method in class smile.util.PriorityQueue
The priority of item k has changed.
Char - Enum constant in enum class smile.data.type.DataType.ID
Char type ID.
CharArrayType - Static variable in class smile.data.type.DataTypes
Char Array data type.
CharObjectType - Static variable in class smile.data.type.DataTypes
Char Object data type.
charset(Charset) - Method in class smile.io.CSV
Sets the charset.
charset(Charset) - Method in class smile.io.JSON
Sets the charset.
CharType - Class in smile.data.type
Char data type.
CharType - Static variable in class smile.data.type.DataTypes
Char data type.
charVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
charVector(int) - Method in class smile.data.IndexDataFrame
 
charVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
charVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
CharVector - Interface in smile.data.vector
An immutable char vector.
chat(Message[][], int, double, double, boolean, Long, SubmissionPublisher<String>) - Method in class smile.llm.llama.Llama
Generates assistant responses for a list of conversational dialogs.
ChebyshevDistance - Class in smile.math.distance
Chebyshev distance (or Tchebychev distance), or L metric is a metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension.
ChebyshevDistance() - Constructor for class smile.math.distance.ChebyshevDistance
Constructor.
children() - Method in class smile.taxonomy.Concept
Gets all children concepts.
chisq() - Method in record class smile.stat.hypothesis.ChiSqTest
Returns the value of the chisq record component.
ChiSqTest - Record Class in smile.stat.hypothesis
Pearson's chi-square test, also known as the chi-square goodness-of-fit test or chi-square test for independence.
ChiSqTest(String, double, double, double) - Constructor for record class smile.stat.hypothesis.ChiSqTest
Constructor.
ChiSqTest(String, double, double, double, double) - Constructor for record class smile.stat.hypothesis.ChiSqTest
Creates an instance of a ChiSqTest record class.
ChiSquareDistribution - Class in smile.stat.distribution
Chi-square (or chi-squared) distribution with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables.
ChiSquareDistribution(int) - Constructor for class smile.stat.distribution.ChiSquareDistribution
Constructor.
cholesky() - Method in class smile.math.matrix.BandMatrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky() - Method in class smile.math.matrix.BigMatrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky() - Method in class smile.math.matrix.fp32.BandMatrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky() - Method in class smile.math.matrix.fp32.Matrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky() - Method in class smile.math.matrix.fp32.SymmMatrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky() - Method in class smile.math.matrix.Matrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky() - Method in class smile.math.matrix.SymmMatrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky(boolean) - Method in class smile.math.matrix.BigMatrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky(boolean) - Method in class smile.math.matrix.fp32.Matrix
Cholesky decomposition for symmetric and positive definite matrix.
cholesky(boolean) - Method in class smile.math.matrix.Matrix
Cholesky decomposition for symmetric and positive definite matrix.
Cholesky(BandMatrix) - Constructor for class smile.math.matrix.BandMatrix.Cholesky
Constructor.
Cholesky(BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.Cholesky
Constructor.
Cholesky(BandMatrix) - Constructor for class smile.math.matrix.fp32.BandMatrix.Cholesky
Constructor.
Cholesky(Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.Cholesky
Constructor.
Cholesky(SymmMatrix) - Constructor for class smile.math.matrix.fp32.SymmMatrix.Cholesky
Constructor.
Cholesky(Matrix) - Constructor for class smile.math.matrix.Matrix.Cholesky
Constructor.
Cholesky(SymmMatrix) - Constructor for class smile.math.matrix.SymmMatrix.Cholesky
Constructor.
CholeskyOfAtA() - Method in class smile.math.matrix.BigMatrix.QR
Returns the Cholesky decomposition of A'A.
CholeskyOfAtA() - Method in class smile.math.matrix.fp32.Matrix.QR
Returns the Cholesky decomposition of A'A.
CholeskyOfAtA() - Method in class smile.math.matrix.Matrix.QR
Returns the Cholesky decomposition of A'A.
choose(int, int) - Static method in class smile.math.MathEx
The n choose k.
christofides() - Method in class smile.graph.Graph
Returns the approximate solution to TSP with Christofides algorithm.
Chromosome<T> - Interface in smile.gap
Artificial chromosomes in genetic algorithm/programming encoding candidate solutions to an optimization problem.
CLARANS<T> - Class in smile.clustering
Clustering Large Applications based upon RANdomized Search.
CLARANS(double, T[], int[], Distance<T>) - Constructor for class smile.clustering.CLARANS
Constructor.
classes - Variable in class smile.classification.AbstractClassifier
The class labels.
classes - Variable in class smile.classification.ClassLabels
The class labels.
classes() - Method in class smile.classification.AbstractClassifier
 
classes() - Method in interface smile.classification.Classifier
Returns the class labels.
classes() - Method in class smile.classification.DecisionTree
 
classes() - Method in class smile.classification.MLP
 
classes() - Method in class smile.classification.SVM
 
classification(int, int) - Static method in interface smile.vision.transform.Transform
Returns a transform for image classification.
classification(int, int, float[], float[], int) - Static method in interface smile.vision.transform.Transform
Returns a transform for image classification.
classification(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of classification.
classification(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of classification.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
Runs classification bootstrap validation.
classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Cross validation of classification.
classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.Bootstrap
Runs classification bootstrap validation.
classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Cross validation of classification.
classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
classification(T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
CLASSIFICATION_ERROR - Enum constant in enum class smile.base.cart.SplitRule
Classification error.
ClassificationMetric - Interface in smile.validation.metric
An abstract interface to measure the classification performance.
ClassificationMetrics - Record Class in smile.validation
The classification validation metrics.
ClassificationMetrics(double, double, int, int, double) - Constructor for record class smile.validation.ClassificationMetrics
Constructor.
ClassificationMetrics(double, double, int, int, double, double) - Constructor for record class smile.validation.ClassificationMetrics
Constructor of multiclass soft classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double) - Constructor for record class smile.validation.ClassificationMetrics
Constructor of binary classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double) - Constructor for record class smile.validation.ClassificationMetrics
Constructor of binary soft classifier validation.
ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double, double) - Constructor for record class smile.validation.ClassificationMetrics
Creates an instance of a ClassificationMetrics record class.
ClassificationValidation<M> - Class in smile.validation
Classification model validation results.
ClassificationValidation(M, double, double, int[], int[]) - Constructor for class smile.validation.ClassificationValidation
Constructor.
ClassificationValidation(M, double, double, int[], int[], double[][]) - Constructor for class smile.validation.ClassificationValidation
Constructor of soft classifier validation.
ClassificationValidations<M> - Class in smile.validation
Classification model validation results.
ClassificationValidations(List<ClassificationValidation<M>>) - Constructor for class smile.validation.ClassificationValidations
Constructor.
Classifier<T> - Interface in smile.classification
A classifier assigns an input object into one of a given number of categories.
Classifier.Trainer<T,M> - Interface in smile.classification
The classifier trainer.
ClassLabels - Class in smile.classification
Map arbitrary class labels to [0, k), where k is the number of classes.
ClassLabels(int, int[], IntSet) - Constructor for class smile.classification.ClassLabels
Constructor.
clean() - Static method in interface smile.util.CacheFiles
Cleans up the cache directory.
clear() - Method in class smile.base.cart.CART
Clear the workspace of building tree.
clear() - Method in class smile.plot.swing.Canvas
Remove all graphic plots from the canvas.
clear() - Method in class smile.util.DoubleArrayList
Removes all the values from this list.
clear() - Method in class smile.util.IntArrayList
Removes all the values from this list.
clear() - Method in class smile.util.PairingHeap
 
clear(double) - Method in class smile.vq.NeuralMap
Removes staled neurons and the edges beyond lifetime.
clearClip() - Method in class smile.plot.swing.Graphics
Clear the restriction of the draw area.
clip() - Method in class smile.plot.swing.Graphics
Restrict the draw area to the valid base coordinate space.
clip(boolean) - Method in class smile.plot.vega.Mark
Sets whether a mark be clipped to the enclosing group's width and height.
clipAngle(double) - Method in class smile.plot.vega.Projection
Sets the projection's clipping circle radius to the specified angle in degrees.
clipExtent(double, double, double, double) - Method in class smile.plot.vega.Projection
Sets the projection's viewport clip extent to the specified bounds in pixels.
clipHeight(double) - Method in class smile.plot.vega.Legend
Sets the height in pixels to clip symbol legend entries and limit their size.
clipNorm - Variable in class smile.base.mlp.MultilayerPerceptron
The gradient clipping norm.
clipValue - Variable in class smile.base.mlp.MultilayerPerceptron
The gradient clipping value.
clone(double[][]) - Static method in class smile.math.MathEx
Deep clone a two-dimensional array.
clone(float[][]) - Static method in class smile.math.MathEx
Deep clone a two-dimensional array.
clone(int[][]) - Static method in class smile.math.MathEx
Deep clone a two-dimensional array.
close() - Method in class smile.data.SQL
 
close() - Method in record class smile.deep.SampleBatch
 
close() - Method in class smile.deep.tensor.Tensor
 
close() - Method in class smile.io.Arff
 
close() - Method in class smile.math.matrix.BigMatrix
 
close() - Method in class smile.util.AutoScope
 
close() - Method in class smile.vision.ImageDataset
 
CLOSING_PARENTHESIS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation ) ] }
CLOSING_QUOTATION - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation ' or ''
clustering(double[][], double[][], int[], int[]) - Method in class smile.clustering.BBDTree
Given k cluster centroids, this method assigns data to nearest centroids.
ClusteringMetric - Interface in smile.validation.metric
An abstract interface to measure the clustering performance.
CNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
Complement Naive Bayes.
coefficients() - Method in class smile.classification.LogisticRegression.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.LogisticRegression.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.Maxent.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.Maxent.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.SparseLogisticRegression.Binomial
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.classification.SparseLogisticRegression.Multinomial
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
coefficients() - Method in class smile.glm.GLM
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
coefficients() - Method in class smile.regression.LinearModel
Returns the linear coefficients without intercept.
coerce(DataType, DataType) - Static method in interface smile.data.type.DataType
Returns the common type.
CoifletWavelet - Class in smile.wavelet
Coiflet wavelets.
CoifletWavelet(int) - Constructor for class smile.wavelet.CoifletWavelet
Constructor.
col(int) - Method in class smile.math.matrix.BigMatrix
Returns the j-th column.
col(int) - Method in class smile.math.matrix.fp32.Matrix
Returns the j-th column.
col(int) - Method in class smile.math.matrix.Matrix
Returns the j-th column.
col(int...) - Method in class smile.math.matrix.BigMatrix
Returns the matrix of selected columns.
COL_MAJOR - Enum constant in enum class smile.math.blas.Layout
Column major layout.
collect() - Static method in interface smile.data.DataFrame.Collectors
Returns a stream collector that accumulates tuples into a DataFrame.
collect(Class<T>) - Static method in interface smile.data.DataFrame.Collectors
Returns a stream collector that accumulates objects into a DataFrame.
collector() - Static method in interface smile.data.Dataset
Returns a stream collector that accumulates elements into a Dataset.
collector() - Static method in class smile.math.matrix.Matrix
Returns a stream collector that accumulates elements into a Matrix.
colMax(double[][]) - Static method in class smile.math.MathEx
Returns the column maximum of a matrix.
colMax(int[][]) - Static method in class smile.math.MathEx
Returns the column maximum of a matrix.
colMeans() - Method in class smile.math.matrix.BigMatrix
Returns the mean of each column.
colMeans() - Method in class smile.math.matrix.fp32.Matrix
Returns the mean of each column.
colMeans() - Method in class smile.math.matrix.Matrix
Returns the mean of each column.
colMeans(double[][]) - Static method in class smile.math.MathEx
Returns the column means of a matrix.
colMin(double[][]) - Static method in class smile.math.MathEx
Returns the column minimum of a matrix.
colMin(int[][]) - Static method in class smile.math.MathEx
Returns the column minimum of a matrix.
colName(int) - Method in class smile.math.matrix.fp32.IMatrix
Returns the name of i-th column.
colName(int) - Method in class smile.math.matrix.IMatrix
Returns the name of i-th column.
colNames() - Method in class smile.math.matrix.fp32.IMatrix
Returns the column names.
colNames() - Method in class smile.math.matrix.IMatrix
Returns the column names.
colNames(String[]) - Method in class smile.math.matrix.fp32.IMatrix
Sets the column names.
colNames(String[]) - Method in class smile.math.matrix.IMatrix
Sets the column names.
Colon - Static variable in class smile.deep.tensor.Index
The colon (:) is used to slice all elements of a dimension.
COLON - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation ; : ...
color(String) - Method in class smile.plot.vega.Mark
Sets the default color.
ColorCellEditor - Class in smile.swing.table
Color editor in JTable.
ColorCellEditor() - Constructor for class smile.swing.table.ColorCellEditor
Constructor.
ColorCellRenderer - Class in smile.swing.table
Color renderer in JTable.
ColorCellRenderer() - Constructor for class smile.swing.table.ColorCellRenderer
Constructor.
ColorCellRenderer(boolean) - Constructor for class smile.swing.table.ColorCellRenderer
Constructor.
COLORS - Static variable in interface smile.plot.swing.Palette
 
cols(int...) - Method in class smile.math.matrix.fp32.Matrix
Returns the matrix of selected columns.
cols(int...) - Method in class smile.math.matrix.Matrix
Returns the matrix of selected columns.
colSds() - Method in class smile.math.matrix.BigMatrix
Returns the standard deviations of each column.
colSds() - Method in class smile.math.matrix.fp32.Matrix
Returns the standard deviations of each column.
colSds() - Method in class smile.math.matrix.Matrix
Returns the standard deviations of each column.
colSds(double[][]) - Static method in class smile.math.MathEx
Returns the column standard deviations of a matrix.
colSums() - Method in class smile.math.matrix.BigMatrix
Returns the sum of each column.
colSums() - Method in class smile.math.matrix.fp32.Matrix
Returns the sum of each column.
colSums() - Method in class smile.math.matrix.Matrix
Returns the sum of each column.
colSums(double[][]) - Static method in class smile.math.MathEx
Returns the column sums of a matrix.
colSums(int[][]) - Static method in class smile.math.MathEx
Returns the column sums of a matrix.
column(double[]) - Static method in class smile.math.matrix.BigMatrix
Returns a column vector/matrix.
column(double[]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a column vector/matrix.
column(double[]) - Static method in class smile.math.matrix.Matrix
Returns a column vector/matrix.
column(double[], int, int) - Static method in class smile.math.matrix.BigMatrix
Returns a column vector/matrix.
column(double[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
Returns a column vector/matrix.
column(double[], int, int) - Static method in class smile.math.matrix.Matrix
Returns a column vector/matrix.
column(float[]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a column vector/matrix.
column(float[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
Returns a column vector/matrix.
column(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
column(int) - Method in class smile.data.IndexDataFrame
 
column(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
column(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
column(String) - Method in class smile.plot.vega.Facet
Returns the field definition for the vertical facet of trellis plots.
columnAdded(TableColumnModelEvent) - Method in class smile.swing.table.TableColumnSettings
 
columnMarginChanged(ChangeEvent) - Method in class smile.swing.table.TableColumnSettings
 
columnMoved(TableColumnModelEvent) - Method in class smile.swing.table.TableColumnSettings
 
columnPadding(double) - Method in class smile.plot.vega.Legend
Sets the horizontal padding in pixels between symbol legend entries.
columnRemoved(TableColumnModelEvent) - Method in class smile.swing.table.TableColumnSettings
 
columns - Variable in class smile.feature.extraction.Projection
The fields of input space.
columns(int) - Method in class smile.plot.vega.Facet
Sets the number of columns to include in the view composition layout.
columns(int) - Method in class smile.plot.vega.Legend
Sets the number of columns in which to arrange symbol legend entries.
columns(int) - Method in class smile.plot.vega.Repeat
Sets the number of columns to include in the view composition layout.
columnSelectionChanged(ListSelectionEvent) - Method in class smile.swing.table.TableColumnSettings
 
ColumnTransform - Class in smile.data.transform
Column-wise data transformation.
ColumnTransform(String, Map<String, Function>) - Constructor for class smile.data.transform.ColumnTransform
Constructor.
COMMA - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation ,
COMPACT - Enum constant in enum class smile.math.blas.SVDJob
The first min(m, n) singular vectors are returned in supplied matrix U (or Vt).
comparator - Static variable in class smile.base.cart.Split
The comparator on the split score.
compareTo(CentroidClustering<T, U>) - Method in class smile.clustering.CentroidClustering
 
compareTo(MEC<T>) - Method in class smile.clustering.MEC
 
compareTo(InformationValue) - Method in record class smile.feature.selection.InformationValue
 
compareTo(SignalNoiseRatio) - Method in record class smile.feature.selection.SignalNoiseRatio
 
compareTo(SumSquaresRatio) - Method in record class smile.feature.selection.SumSquaresRatio
 
compareTo(Chromosome) - Method in class smile.gap.BitString
 
compareTo(Graph.Edge) - Method in record class smile.graph.Graph.Edge
 
compareTo(PrH) - Method in record class smile.neighbor.lsh.PrH
 
compareTo(Probe) - Method in class smile.neighbor.lsh.Probe
 
compareTo(PrZ) - Method in record class smile.neighbor.lsh.PrZ
 
compareTo(Neighbor<K, V>) - Method in record class smile.neighbor.Neighbor
 
compareTo(Bigram) - Method in class smile.nlp.collocation.Bigram
 
compareTo(NGram) - Method in class smile.nlp.collocation.NGram
 
compareTo(Relevance) - Method in class smile.nlp.relevance.Relevance
 
compareTo(MutableInt) - Method in class smile.util.MutableInt
 
compareTo(SparseArray.Entry) - Method in record class smile.util.SparseArray.Entry
 
compareTo(Neuron) - Method in class smile.vq.hebb.Neuron
 
complete(String[], int, double, double, boolean, Long, SubmissionPublisher<String>) - Method in class smile.llm.llama.Llama
Performs text completion for a list of prompts
CompleteLinkage - Class in smile.clustering.linkage
Complete linkage.
CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
CompleteLinkage(int, float[]) - Constructor for class smile.clustering.linkage.CompleteLinkage
Constructor.
CompletionPrediction - Record Class in smile.llm
Prompt completion prediction.
CompletionPrediction(String, String, int[], int[], FinishReason, float[]) - Constructor for record class smile.llm.CompletionPrediction
Creates an instance of a CompletionPrediction record class.
completionTokens() - Method in record class smile.llm.CompletionPrediction
Returns the value of the completionTokens record component.
Complex - Class in smile.math
Complex number.
Complex(double, double) - Constructor for class smile.math.Complex
Constructor.
Complex.Array - Class in smile.math
Packed array of complex numbers for better memory efficiency.
Component(double, DiscreteDistribution) - Constructor for record class smile.stat.distribution.DiscreteMixture.Component
Creates an instance of a Component record class.
Component(double, Distribution) - Constructor for record class smile.stat.distribution.Mixture.Component
Creates an instance of a Component record class.
Component(double, MultivariateDistribution) - Constructor for record class smile.stat.distribution.MultivariateMixture.Component
Creates an instance of a Component record class.
components - Variable in class smile.ica.ICA
The independent components (row-wise).
components - Variable in class smile.stat.distribution.DiscreteMixture
The components of finite mixture model.
components - Variable in class smile.stat.distribution.Mixture
The components of finite mixture model.
components - Variable in class smile.stat.distribution.MultivariateMixture
The components of finite mixture model.
compose(Transform) - Method in interface smile.data.transform.Transform
Returns a composed function that first applies the before function to its input, and then applies this function to the result.
COMPREHENSIVE - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
A very long list of stop words.
compute() - Method in class smile.deep.metric.Accuracy
 
compute() - Method in interface smile.deep.metric.Metric
Computes the metric value from the metric state, which are updated by previous update() calls.
compute() - Method in class smile.deep.metric.Precision
 
compute() - Method in class smile.deep.metric.Recall
 
computeFreqCis(int, int) - Static method in interface smile.llm.RotaryPositionalEncoding
Precompute the frequency tensor for complex exponentials (cis).
computeFreqCis(int, int, double, boolean) - Static method in interface smile.llm.RotaryPositionalEncoding
Precompute the frequency tensor for complex exponentials (cis).
computeGradient(double[]) - Method in class smile.base.mlp.InputLayer
 
computeGradient(double[]) - Method in class smile.base.mlp.Layer
Computes the parameter gradient for a sample of (mini-)batch.
computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.InputLayer
 
computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.Layer
Computes the parameter gradient and update the weights.
computeOutputGradient(double[], double) - Method in class smile.base.mlp.OutputLayer
Compute the network output gradient.
Concat - Class in smile.plot.vega
Concatenating views.
Concat(int, VegaLite...) - Constructor for class smile.plot.vega.Concat
Constructor to put multiple views into a flexible flow layout.
Concept - Class in smile.taxonomy
Concept is a set of synonyms, i.e.
Concept(Concept, String...) - Constructor for class smile.taxonomy.Concept
Constructor.
CONCISE - Enum constant in enum class smile.nlp.dictionary.EnglishDictionary
A concise dictionary of common terms in English.
condition() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the L2 norm condition number, which is max(S) / min(S).
condition() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the L2 norm condition number, which is max(S) / min(S).
condition() - Method in class smile.math.matrix.Matrix.SVD
Returns the L2 norm condition number, which is max(S) / min(S).
confidence() - Method in record class smile.association.AssociationRule
Returns the value of the confidence record component.
config() - Method in class smile.plot.vega.VegaLite
Returns the configuration object that lists properties of a visualization for creating a consistent theme.
Config - Class in smile.plot.vega
Vega-Lite's config object lists configuration properties of a visualization for creating a consistent theme.
confusion - Variable in class smile.validation.ClassificationValidation
The confusion matrix.
ConfusionMatrix - Record Class in smile.validation.metric
The confusion matrix of truth and predictions.
ConfusionMatrix(int[][]) - Constructor for record class smile.validation.metric.ConfusionMatrix
Creates an instance of a ConfusionMatrix record class.
conjugate() - Method in class smile.math.Complex
Returns the conjugate.
CONJUGATE_TRANSPOSE - Enum constant in enum class smile.math.blas.Transpose
Conjugate transpose operation on the matrix.
consequent() - Method in record class smile.association.AssociationRule
Returns the value of the consequent record component.
constant(double) - Static method in interface smile.math.TimeFunction
Returns the constant learning rate.
Constant - Class in smile.data.formula
A constant value in the formula.
Constant() - Constructor for class smile.data.formula.Constant
 
contains(double[][], double[]) - Static method in class smile.math.MathEx
Determines if the polygon contains the point.
contains(double[][], double, double) - Static method in class smile.math.MathEx
Determines if the polygon contains the point.
contains(int) - Method in class smile.util.IntHashSet
Returns true if this set contains the specified element.
contains(Object) - Method in class smile.util.PairingHeap
 
contains(String) - Method in interface smile.nlp.dictionary.Dictionary
Returns true if this dictionary contains the specified word.
contains(String) - Method in enum class smile.nlp.dictionary.EnglishDictionary
 
contains(String) - Method in class smile.nlp.dictionary.EnglishPunctuations
 
contains(String) - Method in enum class smile.nlp.dictionary.EnglishStopWords
 
contains(String) - Method in class smile.nlp.dictionary.SimpleDictionary
 
containsAll(Collection<?>) - Method in class smile.util.PairingHeap
 
content() - Method in record class smile.llm.CompletionPrediction
Returns the value of the content record component.
content() - Method in record class smile.llm.Message
Returns the value of the content record component.
content_filter - Enum constant in enum class smile.llm.FinishReason
Omitted content due to a flag from content filters.
contiguous() - Method in class smile.deep.tensor.Tensor
Returns a contiguous in memory tensor containing the same data as this tensor.
ContingencyTable - Class in smile.validation.metric
The contingency table.
ContingencyTable(int[], int[]) - Constructor for class smile.validation.metric.ContingencyTable
Constructor.
continuousHeight(int) - Method in class smile.plot.vega.ViewConfig
Sets the default height when the plot has a continuous field for y or latitude, or has arc marks.
continuousWidth(int) - Method in class smile.plot.vega.ViewConfig
Sets the default width when the plot has a continuous field for x or longitude, or has arc marks.
Contour - Class in smile.plot.swing
A contour plot is a graphical technique for representing a 3-dimensional surface by plotting constant z slices, called contours, on a 2-dimensional format.
Contour(double[][], double[]) - Constructor for class smile.plot.swing.Contour
Constructor.
Contour(double[][], int, boolean) - Constructor for class smile.plot.swing.Contour
Constructor.
Contour(double[], double[], double[][], double[]) - Constructor for class smile.plot.swing.Contour
Constructor.
Contour(double[], double[], double[][], int, boolean) - Constructor for class smile.plot.swing.Contour
Constructor.
conv2d(int, int, int) - Static method in interface smile.deep.layer.Layer
Returns a convolutional layer.
conv2d(int, int, int, int, int, int, int, boolean, String) - Static method in interface smile.deep.layer.Layer
Returns a convolutional layer.
conv2d(int, int, int, int, String, int, int, boolean, String) - Static method in interface smile.deep.layer.Layer
Returns a convolutional layer.
Conv2dLayer - Class in smile.deep.layer
A convolutional layer.
Conv2dLayer(int, int, int, int, int, int, int, boolean, String) - Constructor for class smile.deep.layer.Conv2dLayer
Constructor.
Conv2dLayer(int, int, int, int, String, int, int, boolean, String) - Constructor for class smile.deep.layer.Conv2dLayer
Constructor.
Conv2dNormActivation - Class in smile.vision.layer
Convolution2d-Normalization-Activation block.
Conv2dNormActivation(Conv2dNormActivation.Options) - Constructor for class smile.vision.layer.Conv2dNormActivation
Constructor.
Conv2dNormActivation.Options - Record Class in smile.vision.layer
Conv2dNormActivation configurations.
CooccurrenceKeywords - Interface in smile.nlp.keyword
Keyword extraction from a single document using word co-occurrence statistical information.
coordinates - Variable in class smile.manifold.SammonMapping
The coordinates.
coordinates - Variable in class smile.manifold.TSNE
The coordinate matrix in embedding space.
coordinates() - Method in record class smile.manifold.IsotonicMDS
Returns the value of the coordinates record component.
coordinates() - Method in class smile.manifold.KPCA
Returns the nonlinear principal component scores, i.e., the representation of learning data in the nonlinear principal component space.
coordinates() - Method in record class smile.manifold.MDS
Returns the value of the coordinates record component.
copy() - Method in class smile.math.matrix.BandMatrix
 
copy() - Method in class smile.math.matrix.BigMatrix
 
copy() - Method in class smile.math.matrix.fp32.BandMatrix
 
copy() - Method in class smile.math.matrix.fp32.IMatrix
Returns a deep copy of matrix.
copy() - Method in class smile.math.matrix.fp32.Matrix
 
copy() - Method in class smile.math.matrix.fp32.SparseMatrix
 
copy() - Method in class smile.math.matrix.fp32.SymmMatrix
 
copy() - Method in class smile.math.matrix.IMatrix
Returns a deep copy of matrix.
copy() - Method in class smile.math.matrix.Matrix
 
copy() - Method in class smile.math.matrix.SparseMatrix
 
copy() - Method in class smile.math.matrix.SymmMatrix
 
copy() - Method in class smile.neighbor.lsh.Probe
Returns a shallow copy that shares the range array.
copy(double[][], double[][]) - Static method in class smile.math.MathEx
Deep copy x into y.
copy(float[][], float[][]) - Static method in class smile.math.MathEx
Deep copy x into y.
copy(int[][], int[][]) - Static method in class smile.math.MathEx
Copy x into y.
cor() - Method in record class smile.stat.hypothesis.CorTest
Returns the value of the cor record component.
cor(double[][]) - Static method in class smile.math.MathEx
Returns the sample correlation matrix.
cor(double[][], double[]) - Static method in class smile.math.MathEx
Returns the sample correlation matrix.
cor(double[][], String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with correlation matrix.
cor(double[], double[]) - Static method in class smile.math.MathEx
Returns the correlation coefficient between two vectors.
cor(float[], float[]) - Static method in class smile.math.MathEx
Returns the correlation coefficient between two vectors.
cor(int[], int[]) - Static method in class smile.math.MathEx
Returns the correlation coefficient between two vectors.
cor(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with correlation matrix.
cornerRadius(double) - Method in class smile.plot.vega.Legend
Sets the corner radius for the full legend.
cornerRadius(double) - Method in class smile.plot.vega.Mark
Sets the radius in pixels of rounded rectangles or arcs' corners.
cornerRadius(int) - Method in class smile.plot.vega.Background
Sets the radius of corners.
cornerRadius(int) - Method in class smile.plot.vega.ViewConfig
Sets the radius of corners.
cornerRadiusBottomLeft(double) - Method in class smile.plot.vega.Mark
Sets the radius in pixels of rounded rectangles' bottom left corner.
cornerRadiusBottomRight(double) - Method in class smile.plot.vega.Mark
Sets the radius in pixels of rounded rectangles' bottom right corner.
cornerRadiusEnd(double) - Method in class smile.plot.vega.Mark
For vertical bars, sets the top-left and top-right corner radius.
cornerRadiusTopLeft(double) - Method in class smile.plot.vega.Mark
Sets the radius in pixels of rounded rectangles' top left corner.
cornerRadiusTopRight(double) - Method in class smile.plot.vega.Mark
Sets the radius in pixels of rounded rectangles' top right corner.
Corpus - Interface in smile.nlp
A corpus is a collection of documents.
CorrelationDistance - Class in smile.math.distance
Correlation distance is defined as 1 - correlation coefficient.
CorrelationDistance() - Constructor for class smile.math.distance.CorrelationDistance
Constructor of Pearson correlation distance.
CorrelationDistance(String) - Constructor for class smile.math.distance.CorrelationDistance
Constructor.
CorTest - Record Class in smile.stat.hypothesis
Correlation test.
CorTest(String, double, double, double, double) - Constructor for record class smile.stat.hypothesis.CorTest
Creates an instance of a CorTest record class.
cos() - Method in class smile.deep.tensor.Tensor
Returns a new tensor with the cosine of the elements of input.
cos() - Method in class smile.math.Complex
Returns the complex cosine.
cos(String) - Static method in interface smile.data.formula.Terms
The cos(x) term.
cos(Term) - Static method in interface smile.data.formula.Terms
The cos(x) term.
cos_() - Method in class smile.deep.tensor.Tensor
Computes the cosine of the elements of input in place.
cosh(String) - Static method in interface smile.data.formula.Terms
The cosh(x) term.
cosh(Term) - Static method in interface smile.data.formula.Terms
The cosh(x) term.
cosine(double[], double[]) - Static method in class smile.math.MathEx
Returns the cosine similarity.
cosine(double, double, double) - Static method in interface smile.math.TimeFunction
Returns the cosine annealing function.
cosine(float[], float[]) - Static method in class smile.math.MathEx
Returns the cosine similarity.
cost() - Method in class smile.base.mlp.OutputLayer
Returns the cost function of neural network.
cost() - Method in class smile.manifold.TSNE
Returns the cost function value.
Cost - Enum Class in smile.base.mlp
Neural network cost function.
count - Variable in class smile.nlp.collocation.Bigram
The frequency of bigram in the corpus.
count - Variable in class smile.nlp.collocation.NGram
The frequency of n-gram in the corpus.
count() - Method in class smile.base.cart.DecisionNode
Returns the sample size in each class.
count(String) - Method in interface smile.nlp.Corpus
Returns the total frequency of the term in the corpus.
count(String) - Method in class smile.nlp.SimpleCorpus
 
count(Bigram) - Method in interface smile.nlp.Corpus
Returns the total frequency of the bigram in the corpus.
count(Bigram) - Method in class smile.nlp.SimpleCorpus
 
counter - Variable in class smile.vq.hebb.Neuron
The local counter variable (e.g.
counts(boolean) - Method in class smile.plot.vega.DensityTransform
Produces probability estimates or smoothed counts.
countTitle(String) - Method in class smile.plot.vega.Config
Sets the default axis and legend title for count fields.
cov - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The covariance matrix of joint predictive distribution at query points.
cov() - Method in interface smile.stat.distribution.MultivariateDistribution
The covariance matrix of distribution.
cov() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
cov() - Method in class smile.stat.distribution.MultivariateMixture
 
cov(double[][]) - Static method in class smile.math.MathEx
Returns the sample covariance matrix.
cov(double[][], double[]) - Static method in class smile.math.MathEx
Returns the sample covariance matrix.
cov(double[], double[]) - Static method in class smile.math.MathEx
Returns the covariance between two vectors.
cov(double[], int) - Static method in interface smile.timeseries.TimeSeries
Autocovariance function.
cov(float[], float[]) - Static method in class smile.math.MathEx
Returns the covariance between two vectors.
cov(int[], int[]) - Static method in class smile.math.MathEx
Returns the covariance between two vectors.
CoverTree<K,V> - Class in smile.neighbor
Cover tree is a data structure for generic nearest neighbor search, which is especially efficient in spaces with small intrinsic dimension.
CoverTree(List<K>, List<V>, Metric<K>) - Constructor for class smile.neighbor.CoverTree
Constructor.
CoverTree(List<K>, List<V>, Metric<K>, double) - Constructor for class smile.neighbor.CoverTree
Constructor.
CoverTree(K[], V[], Metric<K>) - Constructor for class smile.neighbor.CoverTree
Constructor.
CoverTree(K[], V[], Metric<K>, double) - Constructor for class smile.neighbor.CoverTree
Constructor.
CPU - Enum constant in enum class smile.deep.tensor.DeviceType
CPU
CPU() - Static method in class smile.deep.tensor.Device
Returns the CPU device.
CramerV() - Method in record class smile.stat.hypothesis.ChiSqTest
Returns the value of the CramerV record component.
CRF - Class in smile.sequence
First-order linear conditional random field.
CRF(StructType, RegressionTree[][], double) - Constructor for class smile.sequence.CRF
Constructor.
CRFLabeler<T> - Class in smile.sequence
First-order CRF sequence labeler.
CRFLabeler(CRF, Function<T, Tuple>) - Constructor for class smile.sequence.CRFLabeler
Constructor.
crop(BufferedImage, int, boolean) - Method in interface smile.vision.transform.Transform
Crops an image.
crop(BufferedImage, int, int, boolean) - Method in interface smile.vision.transform.Transform
Crops an image.
cross(int, String...) - Static method in interface smile.data.formula.Terms
Factor crossing of two or more factors.
cross(String...) - Static method in interface smile.data.formula.Terms
Factor crossing of two or more factors.
crossentropy() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the crossentropy record component.
crossEntropy() - Static method in interface smile.deep.Loss
Cross Entropy Loss Function.
crossEntropy(Tensor, Tensor, String, long) - Static method in class smile.deep.tensor.Tensor
Computes the cross entropy loss between input logits and target.
CrossEntropy - Interface in smile.validation.metric
Cross entropy generalizes the log loss metric to multiclass problems.
crossover(BitString) - Method in class smile.gap.BitString
 
crossover(T) - Method in interface smile.gap.Chromosome
Returns a pair of offsprings by crossovering this one with another one according to the crossover rate, which determines how often will be crossover performed.
Crossover - Enum Class in smile.gap
The types of crossover operation.
CrossValidation - Interface in smile.validation
Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set.
csv(String) - Static method in interface smile.io.Read
Reads a CSV file.
csv(String, char, Map<String, String>, String...) - Method in class smile.data.SQL
Creates an in-memory table from csv files.
csv(String, String) - Static method in interface smile.io.Read
Reads a CSV file.
csv(String, String...) - Method in class smile.data.SQL
Creates an in-memory table from csv files.
csv(String, Map<String, String>) - Method in class smile.plot.vega.Data
Loads a comma-separated values (CSV) file
csv(String, CSVFormat) - Static method in interface smile.io.Read
Reads a CSV file.
csv(String, CSVFormat, StructType) - Static method in interface smile.io.Read
Reads a CSV file.
csv(Path) - Static method in interface smile.io.Read
Reads a CSV file.
csv(Path, CSVFormat) - Static method in interface smile.io.Read
Reads a CSV file.
csv(Path, CSVFormat, StructType) - Static method in interface smile.io.Read
Reads a CSV file.
csv(DataFrame, Path) - Static method in interface smile.io.Write
Writes a CSV file.
csv(DataFrame, Path, CSVFormat) - Static method in interface smile.io.Write
Writes a CSV file.
CSV - Class in smile.io
Reads and writes files in variations of the Comma Separated Value (CSV) format.
CSV() - Constructor for class smile.io.CSV
Constructor.
CSV(CSVFormat) - Constructor for class smile.io.CSV
Constructor.
CubicSplineInterpolation1D - Class in smile.interpolation
Cubic spline interpolation.
CubicSplineInterpolation1D(double[], double[]) - Constructor for class smile.interpolation.CubicSplineInterpolation1D
Constructor.
CubicSplineInterpolation2D - Class in smile.interpolation
Cubic spline interpolation in a two-dimensional regular grid.
CubicSplineInterpolation2D(double[], double[], double[][]) - Constructor for class smile.interpolation.CubicSplineInterpolation2D
Constructor.
CUDA - Enum constant in enum class smile.deep.tensor.DeviceType
NVIDIA GPU
CUDA - Interface in smile.deep
NVIDIA CUDA helper functions.
CUDA() - Static method in class smile.deep.tensor.Device
Returns the default NVIDIA CUDA device.
CUDA(byte) - Static method in class smile.deep.tensor.Device
Returns the NVIDIA CUDA device.
cumulative(boolean) - Method in class smile.plot.vega.DensityTransform
Produces density estimates or cumulative density estimates.
cumulativeVarianceProportion() - Method in class smile.feature.extraction.PCA
Returns the cumulative proportion of variance contained in principal components, ordered from largest to smallest.
Currency - Static variable in interface smile.data.measure.Measure
Currency.
CURRENCY - Static variable in class smile.swing.table.NumberCellRenderer
 
cursor(String) - Method in class smile.plot.vega.Background
Sets the mouse cursor used over the view.
cursor(String) - Method in class smile.plot.vega.ViewConfig
Sets the mouse cursor used over the view.
customFormatTypes(boolean) - Method in class smile.plot.vega.FormatConfig
Allow the formatType property for text marks and guides to accept a custom formatter function registered as a Vega expression.
CYAN - Static variable in interface smile.plot.swing.Palette
 

D

d - Variable in class smile.vq.BIRCH
The dimensionality of data.
d() - Method in record class smile.stat.hypothesis.KSTest
Returns the value of the d record component.
d(byte[], byte[]) - Static method in class smile.math.distance.HammingDistance
Returns Hamming distance between the two byte arrays.
d(byte, byte) - Static method in class smile.math.distance.HammingDistance
Returns Hamming distance between the two bytes.
d(char[], char[]) - Method in class smile.math.distance.EditDistance
Edit distance between two strings.
d(double[], double[]) - Method in class smile.math.distance.ChebyshevDistance
Chebyshev distance between the two arrays of type double.
d(double[], double[]) - Method in class smile.math.distance.CorrelationDistance
Pearson correlation distance between the two arrays of type double.
d(double[], double[]) - Static method in class smile.math.distance.DynamicTimeWarping
Dynamic time warping without path constraints.
d(double[], double[]) - Method in class smile.math.distance.EuclideanDistance
Euclidean distance between the two arrays of type double.
d(double[], double[]) - Method in class smile.math.distance.JensenShannonDistance
 
d(double[], double[]) - Method in class smile.math.distance.MahalanobisDistance
 
d(double[], double[]) - Method in class smile.math.distance.ManhattanDistance
Manhattan distance between two arrays of type double.
d(double[], double[]) - Method in class smile.math.distance.MinkowskiDistance
Minkowski distance between the two arrays of type double.
d(double[], double[], int) - Static method in class smile.math.distance.DynamicTimeWarping
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.
d(float[], float[]) - Static method in class smile.math.distance.ChebyshevDistance
Chebyshev distance between the two arrays of type float.
d(float[], float[]) - Static method in class smile.math.distance.DynamicTimeWarping
Dynamic time warping without path constraints.
d(float[], float[]) - Method in class smile.math.distance.EuclideanDistance
Euclidean distance between the two arrays of type float.
d(float[], float[]) - Method in class smile.math.distance.ManhattanDistance
Manhattan distance between two arrays of type float.
d(float[], float[]) - Method in class smile.math.distance.MinkowskiDistance
Minkowski distance between the two arrays of type float.
d(float[], float[], int) - Static method in class smile.math.distance.DynamicTimeWarping
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.
d(int[], int[]) - Static method in class smile.math.distance.ChebyshevDistance
Chebyshev distance between the two arrays of type integer.
d(int[], int[]) - Static method in class smile.math.distance.DynamicTimeWarping
Dynamic time warping without path constraints.
d(int[], int[]) - Method in class smile.math.distance.EuclideanDistance
Euclidean distance between the two arrays of type integer.
d(int[], int[]) - Static method in class smile.math.distance.HammingDistance
Returns Hamming distance between the two integer arrays.
d(int[], int[]) - Method in class smile.math.distance.LeeDistance
 
d(int[], int[]) - Method in class smile.math.distance.ManhattanDistance
Manhattan distance between two arrays of type integer.
d(int[], int[]) - Method in class smile.math.distance.MinkowskiDistance
Minkowski distance between the two arrays of type integer.
d(int[], int[], int) - Static method in class smile.math.distance.DynamicTimeWarping
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.
d(int, int) - Method in class smile.clustering.linkage.Linkage
Returns the distance/dissimilarity between two clusters/objects, which are indexed by integers.
d(int, int) - Static method in class smile.math.distance.HammingDistance
Returns Hamming distance between the two integers.
d(long, long) - Static method in class smile.math.distance.HammingDistance
Returns Hamming distance between the two long integers.
d(short[], short[]) - Static method in class smile.math.distance.HammingDistance
Returns Hamming distance between the two short arrays.
d(short, short) - Static method in class smile.math.distance.HammingDistance
Returns Hamming distance between the two shorts.
d(String, String) - Method in class smile.math.distance.EditDistance
Edit distance between two strings.
d(String, String) - Method in class smile.taxonomy.TaxonomicDistance
Computes the distance between two concepts in a taxonomy.
d(BitSet, BitSet) - Method in class smile.math.distance.HammingDistance
 
d(Set<T>, Set<T>) - Static method in class smile.math.distance.JaccardDistance
Returns the Jaccard distance between sets.
d(Concept, Concept) - Method in class smile.taxonomy.TaxonomicDistance
Computes the distance between two concepts in a taxonomy.
d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseChebyshevDistance
 
d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseEuclideanDistance
 
d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseManhattanDistance
 
d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseMinkowskiDistance
 
d(T[], T[]) - Method in class smile.math.distance.DynamicTimeWarping
 
d(T[], T[]) - Method in class smile.math.distance.JaccardDistance
 
d(T, T) - Method in interface smile.math.distance.Distance
Returns the distance measure between two objects.
D(T[]) - Method in interface smile.math.distance.Distance
Returns the pairwise distance matrix.
D(T[], T[]) - Method in interface smile.math.distance.Distance
Returns the pairwise distance matrix.
D4Wavelet - Class in smile.wavelet
The simplest and most localized wavelet, Daubechies wavelet of 4 coefficients.
D4Wavelet() - Constructor for class smile.wavelet.D4Wavelet
Constructor.
damerau(char[], char[]) - Static method in class smile.math.distance.EditDistance
Damerau-Levenshtein distance between two strings allows insertion, deletion, substitution, or transposition of characters.
damerau(String, String) - Static method in class smile.math.distance.EditDistance
Damerau-Levenshtein distance between two strings allows insertion, deletion, substitution, or transposition of characters.
DARK_BLUE - Static variable in interface smile.plot.swing.Palette
 
DARK_CYAN - Static variable in interface smile.plot.swing.Palette
 
DARK_GRAY - Static variable in interface smile.plot.swing.Palette
 
DARK_GREEN - Static variable in interface smile.plot.swing.Palette
 
DARK_MAGENTA - Static variable in interface smile.plot.swing.Palette
 
DARK_PURPLE - Static variable in interface smile.plot.swing.Palette
 
DARK_RED - Static variable in interface smile.plot.swing.Palette
 
DARK_SLATE_GRAY - Static variable in interface smile.plot.swing.Palette
 
DASH - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation -
DASH - Enum constant in enum class smile.plot.swing.Line.Style
 
data - Variable in class smile.neighbor.LSH
The data objects.
data() - Method in record class smile.deep.SampleBatch
Returns the value of the data record component.
data() - Method in class smile.plot.vega.LookupData
Returns the secondary data source.
data() - Method in class smile.plot.vega.VegaLite
Returns the data specification object.
data(String) - Static method in interface smile.io.Read
Reads a data file.
data(String, String) - Static method in interface smile.io.Read
Reads a data file.
Data - Class in smile.plot.vega
The basic data model used by Vega-Lite is tabular data.
DataFrame - Interface in smile.data
An immutable collection of data organized into named columns.
DataFrame.Collectors - Interface in smile.data
Stream collectors.
DataFrameClassifier - Interface in smile.classification
Classification trait on DataFrame.
DataFrameClassifier.Trainer<M> - Interface in smile.classification
The classifier trainer.
DataFrameRegression - Interface in smile.regression
Regression trait on DataFrame.
DataFrameRegression.Trainer<M> - Interface in smile.regression
The regression trainer.
Dataset<D,T> - Interface in smile.data
An immutable collection of data objects.
Dataset - Interface in smile.deep
A dataset consists of data and an associated target (label) and can be iterated in mini-batches.
DataType - Interface in smile.data.type
The interface of data types.
DataType.ID - Enum Class in smile.data.type
Data type ID.
DataTypes - Class in smile.data.type
To get a specific data type, users should use singleton objects and factory methods in this class.
DataTypes() - Constructor for class smile.data.type.DataTypes
 
date(String) - Static method in class smile.data.type.DataTypes
Date data type with customized format.
date(String, DateFeature...) - Static method in interface smile.data.formula.Terms
Extracts date/time features.
Date - Class in smile.data.formula
Date/time feature extractor.
Date - Enum constant in enum class smile.data.type.DataType.ID
Date type ID.
Date(String, DateFeature...) - Constructor for class smile.data.formula.Date
Constructor.
DATE - Static variable in interface smile.util.Regex
Date regular expression pattern.
DateCellEditor - Class in smile.swing.table
Implements a cell editor that uses a formatted text field to edit Date values.
DateCellEditor(String) - Constructor for class smile.swing.table.DateCellEditor
Constructor.
DateCellEditor(DateFormat) - Constructor for class smile.swing.table.DateCellEditor
Constructor.
DateCellRenderer - Class in smile.swing.table
Date cell renderer.
DateCellRenderer(String) - Constructor for class smile.swing.table.DateCellRenderer
 
DateCellRenderer(DateFormat) - Constructor for class smile.swing.table.DateCellRenderer
 
DateFeature - Enum Class in smile.data.formula
The date/time features.
datetime(String) - Static method in class smile.data.type.DataTypes
DateTime data type with customized format.
DateTime - Enum constant in enum class smile.data.type.DataType.ID
DateTime type ID.
DATETIME - Static variable in interface smile.util.Regex
Datetime regular expression pattern.
DateTimeType - Class in smile.data.type
DateTime data type.
DateTimeType - Static variable in class smile.data.type.DataTypes
DateTime data type with ISO format.
DateTimeType(String) - Constructor for class smile.data.type.DateTimeType
Constructor.
DateType - Class in smile.data.type
Date data type.
DateType - Static variable in class smile.data.type.DataTypes
Date data type with ISO format.
DateType(String) - Constructor for class smile.data.type.DateType
Constructor.
DaubechiesWavelet - Class in smile.wavelet
Daubechies wavelets.
DaubechiesWavelet(int) - Constructor for class smile.wavelet.DaubechiesWavelet
Constructor.
DAY_OF_MONTH - Enum constant in enum class smile.data.formula.DateFeature
The day of month represented by an integer from 1 to 31 in the usual manner.
DAY_OF_WEEK - Enum constant in enum class smile.data.formula.DateFeature
The day of week represented by an integer from 1 to 7; 1 is Monday, 2 is Tuesday, and so forth; thus 7 is Sunday.
DAY_OF_YEAR - Enum constant in enum class smile.data.formula.DateFeature
The day of year represented by an integer from 1 to 365, or 366 in a leap year.
DBSCAN<T> - Class in smile.clustering
Density-Based Spatial Clustering of Applications with Noise.
DBSCAN(int, double, RNNSearch<T, T>, int, int[], boolean[]) - Constructor for class smile.clustering.DBSCAN
Constructor.
Decimal - Enum constant in enum class smile.data.type.DataType.ID
Decimal type ID.
DECIMAL_FORMAT - Static variable in interface smile.util.Strings
Decimal format for floating numbers.
DecimalType - Class in smile.data.type
Arbitrary-precision decimal data type.
DecimalType - Static variable in class smile.data.type.DataTypes
Decimal data type.
DecisionNode - Class in smile.base.cart
A leaf node in decision tree.
DecisionNode(int[]) - Constructor for class smile.base.cart.DecisionNode
Constructor.
DecisionTree - Class in smile.classification
Decision tree.
DecisionTree(DataFrame, int[], StructField, int, SplitRule, int, int, int, int, int[], int[][]) - Constructor for class smile.classification.DecisionTree
Constructor.
decode(int[]) - Method in class smile.llm.tokenizer.SentencePiece
 
decode(int[]) - Method in class smile.llm.tokenizer.Tiktoken
 
decode(int[]) - Method in interface smile.llm.tokenizer.Tokenizer
Decodes a list of token IDs into a string.
decrease(E) - Method in class smile.util.PairingHeap.Node
Decreases the value of an element.
decrement() - Method in class smile.util.MutableInt
Decrement by one.
decrement(int) - Method in class smile.util.MutableInt
Decrement.
DEFAULT - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
Default stop words list.
DEFAULT_MEAN - Static variable in interface smile.vision.transform.Transform
The default mean value of pixel RGB after normalized to [0, 1].
DEFAULT_STD - Static variable in interface smile.vision.transform.Transform
The default standard deviation of pixel RGB after normalized to [0, 1].
DefaultTableHeaderCellRenderer - Class in smile.swing.table
A default cell renderer for a JTableHeader.
DefaultTableHeaderCellRenderer() - Constructor for class smile.swing.table.DefaultTableHeaderCellRenderer
Constructs a DefaultTableHeaderCellRenderer.
degree() - Method in class smile.math.kernel.Polynomial
Returns the degree of polynomial.
delete(String) - Static method in interface smile.data.formula.Terms
Deletes a variable or the intercept ("1") from the formula.
delete(Term) - Static method in interface smile.data.formula.Terms
Deletes a term from the formula.
Delete - Class in smile.data.formula
Remove a factor from the formula.
Delete(Term) - Constructor for class smile.data.formula.Delete
Constructor.
DENCLUE - Class in smile.clustering
DENsity CLUstering.
DENCLUE(int, double[][], double[], double[][], double, int[], double) - Constructor for class smile.clustering.DENCLUE
Constructor.
Dendrogram - Class in smile.plot.swing
A dendrogram is a tree diagram frequently used to illustrate the arrangement of the clusters produced by hierarchical clustering.
Dendrogram(int[][], double[]) - Constructor for class smile.plot.swing.Dendrogram
Constructor.
Dendrogram(int[][], double[], Color) - Constructor for class smile.plot.swing.Dendrogram
Constructor.
denoise(double[], Wavelet) - Static method in interface smile.wavelet.WaveletShrinkage
Adaptive hard-thresholding denoising a time series with given wavelet.
denoise(double[], Wavelet, boolean) - Static method in interface smile.wavelet.WaveletShrinkage
Adaptive denoising a time series with given wavelet.
density(String, String...) - Method in class smile.plot.vega.Transform
Adds a density transformation.
DensityTransform - Class in smile.plot.vega
The density transform performs one-dimensional kernel density estimation over an input data stream and generates a new data stream of samples of the estimated densities.
depth() - Method in class smile.base.cart.InternalNode
 
depth() - Method in class smile.base.cart.LeafNode
 
depth() - Method in interface smile.base.cart.Node
Returns the maximum depth of the tree -- the number of nodes along the longest path from this node down to the farthest leaf node.
descent(double[][], int) - Static method in record class smile.graph.NearestNeighborGraph
Creates an approximate nearest neighbor graph with random projection forest and Euclidean distance.
descent(double[][], int, int, int, int, int, double) - Static method in record class smile.graph.NearestNeighborGraph
Creates an approximate nearest neighbor graph with random projection forest and Euclidean distance.
descent(T[], Metric<T>, int) - Static method in record class smile.graph.NearestNeighborGraph
Creates an approximate nearest neighbor graph with the NN-Descent algorithm.
descent(T[], Metric<T>, int, int, int, double) - Static method in record class smile.graph.NearestNeighborGraph
Creates an approximate nearest neighbor graph with the NN-Descent algorithm.
describe(String) - Method in class smile.data.SQL
Returns the columns in a table.
description(String) - Method in class smile.plot.vega.Axis
Sets the text description of this axis for ARIA accessibility (SVG output only).
description(String) - Method in class smile.plot.vega.Concat
 
description(String) - Method in class smile.plot.vega.Facet
 
description(String) - Method in class smile.plot.vega.Legend
Sets the text description of this legend for ARIA accessibility (SVG output only).
description(String) - Method in class smile.plot.vega.Mark
Sets the description.
description(String) - Method in class smile.plot.vega.Repeat
 
description(String) - Method in class smile.plot.vega.VegaLite
Sets the description of this mark for commenting purpose.
description(String) - Method in class smile.plot.vega.View
 
det() - Method in class smile.math.matrix.BandMatrix.Cholesky
Returns the matrix determinant.
det() - Method in class smile.math.matrix.BandMatrix.LU
Returns the matrix determinant.
det() - Method in class smile.math.matrix.BigMatrix.Cholesky
Returns the matrix determinant.
det() - Method in class smile.math.matrix.BigMatrix.LU
Returns the matrix determinant.
det() - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
Returns the matrix determinant.
det() - Method in class smile.math.matrix.fp32.BandMatrix.LU
Returns the matrix determinant.
det() - Method in class smile.math.matrix.fp32.Matrix.Cholesky
Returns the matrix determinant.
det() - Method in class smile.math.matrix.fp32.Matrix.LU
Returns the matrix determinant.
det() - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
Returns the matrix determinant.
det() - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
Returns the matrix determinant.
det() - Method in class smile.math.matrix.Matrix.Cholesky
Returns the matrix determinant.
det() - Method in class smile.math.matrix.Matrix.LU
Returns the matrix determinant.
det() - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
Returns the matrix determinant.
det() - Method in class smile.math.matrix.SymmMatrix.Cholesky
Returns the matrix determinant.
detach() - Method in class smile.deep.tensor.Tensor
Returns a new tensor, detached from the current graph.
DeterministicAnnealing - Class in smile.clustering
Deterministic annealing clustering.
DeterministicAnnealing(double, double[][], int[]) - Constructor for class smile.clustering.DeterministicAnnealing
Constructor.
deviance - Variable in class smile.glm.GLM
The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)).
deviance() - Method in class smile.base.cart.DecisionNode
 
deviance() - Method in class smile.base.cart.InternalNode
 
deviance() - Method in interface smile.base.cart.Node
Returns the deviance of node.
deviance() - Method in class smile.base.cart.RegressionNode
 
deviance() - Method in class smile.glm.GLM
Returns the deviance of model.
deviance(double[], double[], double[]) - Method in interface smile.glm.model.Model
The deviance function.
deviance(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the deviance of node.
devianceResiduals - Variable in class smile.glm.GLM
The deviance residuals.
devianceResiduals() - Method in class smile.glm.GLM
Returns the deviance residuals.
device - Variable in class smile.deep.layer.LayerBlock
The compute device.
device() - Static method in interface smile.deep.CUDA
Returns the default CUDA device.
device() - Method in class smile.deep.layer.LayerBlock
Returns the compute device of module.
device() - Method in class smile.deep.Model
Returns the device on which the model is stored.
device() - Method in class smile.deep.tensor.Tensor
Returns the device on which the tensor is.
device(byte) - Static method in interface smile.deep.CUDA
Returns the CUDA device of given index.
device(Device) - Method in class smile.deep.tensor.Tensor.Options
Sets a compute device on which a tensor is stored.
Device - Class in smile.deep.tensor
The compute device on which a tensor is stored.
Device(DeviceType) - Constructor for class smile.deep.tensor.Device
Constructor.
Device(DeviceType, byte) - Constructor for class smile.deep.tensor.Device
Constructor.
deviceCount() - Static method in interface smile.deep.CUDA
Returns the number of CUDA devices.
DeviceType - Enum Class in smile.deep.tensor
The compute device type.
df - Variable in class smile.glm.GLM
The degrees of freedom of the residual deviance.
df - Variable in class smile.timeseries.BoxTest
The degree of freedom.
df() - Method in class smile.regression.LinearModel
Returns the degree-of-freedom of residual standard error.
df() - Method in record class smile.stat.hypothesis.ChiSqTest
Returns the value of the df record component.
df() - Method in record class smile.stat.hypothesis.CorTest
Returns the value of the df record component.
df() - Method in record class smile.stat.hypothesis.TTest
Returns the value of the df record component.
df() - Method in class smile.timeseries.AR
Returns the degree-of-freedom of residual standard error.
df() - Method in class smile.timeseries.ARMA
Returns the degree-of-freedom of residual standard error.
df1() - Method in record class smile.stat.hypothesis.FTest
Returns the value of the df1 record component.
df2() - Method in record class smile.stat.hypothesis.FTest
Returns the value of the df2 record component.
dfcc() - Method in class smile.graph.Graph
Returns the connected components by depth-first search.
dfs(VertexVisitor) - Method in class smile.graph.Graph
DFS search on graph and performs some operation defined in visitor on each vertex during traveling.
dfsort() - Method in class smile.graph.Graph
Reverse topological sort digraph by depth-first search of graph.
diag() - Method in class smile.math.matrix.BigMatrix.EVD
Returns the block diagonal eigenvalue matrix whose diagonal are the real part of eigenvalues, lower subdiagonal are positive imaginary parts, and upper subdiagonal are negative imaginary parts.
diag() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the diagonal matrix of singular values.
diag() - Method in class smile.math.matrix.fp32.IMatrix
Returns the diagonal elements.
diag() - Method in class smile.math.matrix.fp32.Matrix.EVD
Returns the block diagonal eigenvalue matrix whose diagonal are the real part of eigenvalues, lower subdiagonal are positive imaginary parts, and upper subdiagonal are negative imaginary parts.
diag() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the diagonal matrix of singular values.
diag() - Method in class smile.math.matrix.fp32.SparseMatrix
 
diag() - Method in class smile.math.matrix.IMatrix
Returns the diagonal elements.
diag() - Method in class smile.math.matrix.Matrix.EVD
Returns the block diagonal eigenvalue matrix whose diagonal are the real part of eigenvalues, lower subdiagonal are positive imaginary parts, and upper subdiagonal are negative imaginary parts.
diag() - Method in class smile.math.matrix.Matrix.SVD
Returns the diagonal matrix of singular values.
diag() - Method in class smile.math.matrix.SparseMatrix
 
diag(double[]) - Static method in class smile.math.matrix.BigMatrix
Returns a square diagonal matrix.
diag(double[]) - Static method in class smile.math.matrix.Matrix
Returns a square diagonal matrix.
diag(float[]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a square diagonal matrix.
diag(int, double) - Static method in class smile.math.matrix.BigMatrix
Returns a square diagonal matrix.
diag(int, double) - Static method in class smile.math.matrix.Matrix
Returns a square diagonal matrix.
diag(int, float) - Static method in class smile.math.matrix.fp32.Matrix
Returns a square diagonal matrix.
diag(int, int, double) - Static method in class smile.math.matrix.BigMatrix
Returns an m-by-n diagonal matrix.
diag(int, int, double) - Static method in class smile.math.matrix.Matrix
Returns an m-by-n diagonal matrix.
diag(int, int, float) - Static method in class smile.math.matrix.fp32.Matrix
Returns an m-by-n diagonal matrix.
diag(DoublePointer) - Static method in class smile.math.matrix.BigMatrix
Returns a square diagonal matrix.
Diag - Enum Class in smile.math.blas
The flag if a triangular matrix has unit diagonal elements.
diagonal - Variable in class smile.stat.distribution.MultivariateGaussianDistribution
True if the covariance matrix is diagonal.
dialogResultValue - Variable in class smile.swing.FontChooser
 
Dictionary - Interface in smile.nlp.dictionary
A dictionary is a set of words in some natural language.
diff(double[], int) - Static method in interface smile.timeseries.TimeSeries
Returns the first-differencing of time series.
diff(double[], int, int) - Static method in interface smile.timeseries.TimeSeries
Returns the differencing of time series.
DifferentiableFunction - Interface in smile.math
A differentiable function is a function whose derivative exists at each point in its domain.
DifferentiableMultivariateFunction - Interface in smile.math
A differentiable function is a function whose derivative exists at each point in its domain.
digamma(double) - Static method in class smile.math.special.Gamma
The digamma function is defined as the logarithmic derivative of the gamma function.
DIGITS - Static variable in class smile.math.MathEx
The number of digits (in radix base) in the mantissa.
dijkstra() - Method in class smile.graph.Graph
Calculates the all pair shortest-path by Dijkstra algorithm.
dijkstra(int) - Method in class smile.graph.Graph
Calculate the shortest path from a source to all other vertices in the graph by Dijkstra algorithm.
dijkstra(int, boolean) - Method in class smile.graph.Graph
Calculate the shortest path from a source to all other vertices in the graph by Dijkstra algorithm.
dilation() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the dilation record component.
dim() - Method in class smile.deep.tensor.Tensor
Returns the number of dimensions of tensor.
dim() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the dim record component.
dimension() - Method in class smile.classification.Maxent
Returns the dimension of input space.
dimension() - Method in class smile.nlp.embedding.Word2Vec
Returns the dimension of embedding vector space.
dir() - Static method in interface smile.util.CacheFiles
Returns the cache directory path.
direction(String) - Method in class smile.plot.vega.Legend
Sets the direction of the legend, one of "vertical" or "horizontal".
DiscreteDistribution - Class in smile.stat.distribution
Univariate discrete distributions.
DiscreteDistribution() - Constructor for class smile.stat.distribution.DiscreteDistribution
 
DiscreteExponentialFamily - Interface in smile.stat.distribution
The purpose of this interface is mainly to define the method M that is the Maximization step in the EM algorithm.
DiscreteExponentialFamilyMixture - Class in smile.stat.distribution
The finite mixture of distributions from discrete exponential family.
DiscreteExponentialFamilyMixture(DiscreteMixture.Component...) - Constructor for class smile.stat.distribution.DiscreteExponentialFamilyMixture
Constructor.
discreteHeight(int) - Method in class smile.plot.vega.ViewConfig
Sets the default height when the plot has non arc marks and either a discrete y-field or no y-field.
DiscreteMixture - Class in smile.stat.distribution
The finite mixture of discrete distributions.
DiscreteMixture(DiscreteMixture.Component...) - Constructor for class smile.stat.distribution.DiscreteMixture
Constructor.
DiscreteMixture.Component - Record Class in smile.stat.distribution
A component in the mixture distribution is defined by a distribution and its weight in the mixture.
DiscreteNaiveBayes - Class in smile.classification
Naive Bayes classifier for document classification in NLP.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
Constructor of naive Bayes classifier for document classification.
DiscreteNaiveBayes.Model - Enum Class in smile.classification
The generation models of naive Bayes classifier.
discreteWidth(int) - Method in class smile.plot.vega.ViewConfig
Sets the default width when the plot has non-arc marks and either a discrete x-field or no x-field.
distance - Variable in class smile.vq.hebb.Neuron
The distance between the neuron and an input signal.
distance() - Method in record class smile.neighbor.Neighbor
Returns the value of the distance record component.
distance(double[]) - Method in class smile.vq.hebb.Neuron
Computes the distance between the neuron and a signal.
distance(double[], double[]) - Method in class smile.clustering.DeterministicAnnealing
 
distance(double[], double[]) - Method in class smile.clustering.GMeans
 
distance(double[], double[]) - Method in class smile.clustering.KMeans
 
distance(double[], double[]) - Method in class smile.clustering.XMeans
 
distance(double[], double[]) - Static method in class smile.math.MathEx
The Euclidean distance.
distance(double[], SparseArray) - Method in class smile.clustering.SIB
 
distance(float[], float[]) - Static method in class smile.math.MathEx
The Euclidean distance.
distance(int[], int[]) - Method in class smile.clustering.KModes
 
distance(int[], int[]) - Static method in class smile.math.MathEx
The Euclidean distance on binary sparse arrays, which are the indices of nonzero elements in ascending order.
distance(SparseArray, SparseArray) - Static method in class smile.math.MathEx
The Euclidean distance.
distance(T, T) - Method in class smile.clustering.CLARANS
 
distance(T, U) - Method in class smile.clustering.CentroidClustering
The distance function.
Distance<T> - Interface in smile.math.distance
An interface to calculate a distance measure between two objects.
distances() - Method in record class smile.graph.NearestNeighborGraph
Returns the value of the distances record component.
distinct() - Method in interface smile.data.vector.Vector
Returns the distinct values.
distortion - Variable in class smile.clustering.CentroidClustering
The total distortion.
distortion - Variable in class smile.clustering.SpectralClustering
The distortion in feature space.
distribution() - Method in record class smile.stat.distribution.DiscreteMixture.Component
Returns the value of the distribution record component.
distribution() - Method in record class smile.stat.distribution.Mixture.Component
Returns the value of the distribution record component.
distribution() - Method in record class smile.stat.distribution.MultivariateMixture.Component
Returns the value of the distribution record component.
Distribution - Interface in smile.stat.distribution
Probability distribution of univariate random variable.
div(double) - Method in class smile.deep.tensor.Tensor
Returns A / b.
div(double) - Method in class smile.math.matrix.BigMatrix
A /= b
div(double) - Method in class smile.math.matrix.Matrix
A /= b
div(double) - Method in class smile.util.Array2D
A /= x.
div(float) - Method in class smile.deep.tensor.Tensor
Returns A / b.
div(float) - Method in class smile.math.matrix.fp32.Matrix
A /= b
div(int) - Method in class smile.util.IntArray2D
A /= x.
div(int, int, double) - Method in class smile.math.matrix.BigMatrix
A[i,j] /= b
div(int, int, double) - Method in class smile.math.matrix.Matrix
A[i,j] /= b
div(int, int, double) - Method in class smile.util.Array2D
A[i, j] /= x.
div(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
A[i,j] /= b
div(int, int, int) - Method in class smile.util.IntArray2D
A[i, j] /= x.
div(String, String) - Static method in interface smile.data.formula.Terms
Divides two terms.
div(String, Term) - Static method in interface smile.data.formula.Terms
Divides two terms.
div(Term, String) - Static method in interface smile.data.formula.Terms
Divides two terms.
div(Term, Term) - Static method in interface smile.data.formula.Terms
Divides two terms.
div(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A / B element wisely.
div(Complex) - Method in class smile.math.Complex
Returns a / b.
div(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise division A /= B
div(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise division A /= B
div(Matrix) - Method in class smile.math.matrix.Matrix
Element-wise division A /= B
div(Array2D) - Method in class smile.util.Array2D
A /= B.
div(IntArray2D) - Method in class smile.util.IntArray2D
A /= B.
Div - Class in smile.data.formula
The term of a / b expression.
Div(Term, Term) - Constructor for class smile.data.formula.Div
Constructor.
div_(double) - Method in class smile.deep.tensor.Tensor
Returns A /= b.
div_(float) - Method in class smile.deep.tensor.Tensor
Returns A /= b.
div_(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A /= B element wisely.
divide(int...) - Method in class smile.plot.vega.BinParams
Sets the scale factors indicating allowable subdivisions.
dlink(double) - Method in interface smile.glm.model.Model
The derivative of link function.
docCount() - Method in interface smile.nlp.Corpus
Returns the number of documents in the corpus.
docCount() - Method in class smile.nlp.SimpleCorpus
 
domain(boolean) - Method in class smile.plot.vega.Axis
Sets if the domain (the axis baseline) should be included as part of the axis.
domain(double...) - Method in class smile.plot.vega.Field
Sets the customize domain values.
domain(String...) - Method in class smile.plot.vega.Field
Sets the customize domain values.
domainCap(String) - Method in class smile.plot.vega.Axis
Sets the stroke cap for the domain line's ending style.
domainColor(String) - Method in class smile.plot.vega.Axis
Sets the color of axis domain line.
domainDash(double, double) - Method in class smile.plot.vega.Axis
Sets the alternating [stroke, space] lengths for dashed domain lines.
domainDashOffset(double) - Method in class smile.plot.vega.Axis
Sets the pixel offset at which to start drawing with the domain dash array.
domainMax(double) - Method in class smile.plot.vega.Field
Sets the maximum value in the scale domain, overriding the domain property or the default domain.
domainMax(String) - Method in class smile.plot.vega.Field
Sets the maximum value in the scale domain, overriding the domain property or the default domain.
domainMin(double) - Method in class smile.plot.vega.Field
Sets the minimum value in the scale domain, overriding the domain property or the default domain.
domainMin(String) - Method in class smile.plot.vega.Field
Sets the minimum value in the scale domain, overriding the domain property or the default domain.
domainOpacity(double) - Method in class smile.plot.vega.Axis
Sets the opacity of the axis domain line.
domainWidth(double) - Method in class smile.plot.vega.Axis
Sets the stroke width of axis domain line.
dot() - Method in class smile.base.cart.CART
Returns the graphic representation in Graphviz dot format.
dot() - Static method in interface smile.data.formula.Terms
Returns the special term "." that means all columns not otherwise in the formula in the context of a data frame.
dot() - Method in class smile.graph.Graph
Returns the graphic representation in Graphviz dot format.
dot(double[], double[]) - Method in interface smile.math.blas.BLAS
Computes the dot product of two vectors.
dot(double[], double[]) - Static method in class smile.math.MathEx
Returns the dot product between two vectors.
dot(float[], float[]) - Method in interface smile.math.blas.BLAS
Computes the dot product of two vectors.
dot(float[], float[]) - Static method in class smile.math.MathEx
Returns the dot product between two vectors.
dot(int[], int[]) - Static method in class smile.math.MathEx
Returns the dot product between two binary sparse arrays, which are the indices of nonzero elements in ascending order.
dot(int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
Computes the dot product of two vectors.
dot(int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
dot(int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
Computes the dot product of two vectors.
dot(int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
dot(String, String[]) - Method in class smile.graph.Graph
Returns the graphic representation in Graphviz dot format.
dot(StructType, StructField, int) - Method in class smile.base.cart.DecisionNode
 
dot(StructType, StructField, int) - Method in interface smile.base.cart.Node
Returns the dot representation of node.
dot(StructType, StructField, int) - Method in class smile.base.cart.NominalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.OrdinalNode
 
dot(StructType, StructField, int) - Method in class smile.base.cart.RegressionNode
 
dot(SparseArray, SparseArray) - Static method in class smile.math.MathEx
Returns the dot product between two sparse arrays.
Dot - Class in smile.data.formula
The special term "." means all columns not otherwise in the formula in the context of a data frame.
Dot() - Constructor for class smile.data.formula.Dot
Constructor.
DOT - Enum constant in enum class smile.plot.swing.Line.Style
 
DOT_DASH - Enum constant in enum class smile.plot.swing.Line.Style
 
DotProductKernel - Interface in smile.math.kernel
Dot product kernel depends only on the dot product of x and y.
Double - Enum constant in enum class smile.data.type.DataType.ID
Double type ID.
DOUBLE - Static variable in interface smile.util.Regex
Double regular expression pattern.
DOUBLE_REGEX - Static variable in interface smile.util.Regex
Double regular expression.
doubleArray() - Method in class smile.deep.tensor.Tensor
Returns the double array of tensor elements
DoubleArrayCellEditor - Class in smile.swing.table
Implements a cell editor that uses a formatted text field to edit double[] values.
DoubleArrayCellEditor() - Constructor for class smile.swing.table.DoubleArrayCellEditor
Constructor.
DoubleArrayCellRenderer - Class in smile.swing.table
Double array renderer in JTable.
DoubleArrayCellRenderer() - Constructor for class smile.swing.table.DoubleArrayCellRenderer
Constructor.
DoubleArrayList - Class in smile.util
A resizeable, array-backed list of double primitives.
DoubleArrayList() - Constructor for class smile.util.DoubleArrayList
Constructs an empty list.
DoubleArrayList(double[]) - Constructor for class smile.util.DoubleArrayList
Constructs a list containing the values of the specified array.
DoubleArrayList(int) - Constructor for class smile.util.DoubleArrayList
Constructs an empty list with the specified initial capacity.
DoubleArrayType - Static variable in class smile.data.type.DataTypes
Double Array data type.
DoubleCellEditor - Class in smile.swing.table
Implements a cell editor that uses a formatted text field to edit Double values.
DoubleCellEditor() - Constructor for class smile.swing.table.DoubleCellEditor
Constructor.
DoubleCellEditor(double, double) - Constructor for class smile.swing.table.DoubleCellEditor
Constructor.
DoubleConsumer - Interface in smile.math.matrix
Double precision matrix element stream consumer.
DoubleFunction - Class in smile.data.formula
The generic term of applying a double function.
DoubleFunction(String, Term, Function) - Constructor for class smile.data.formula.DoubleFunction
Constructor.
DoubleHeapSelect - Class in smile.sort
This class tracks the smallest values seen thus far in a stream of values.
DoubleHeapSelect(double[]) - Constructor for class smile.sort.DoubleHeapSelect
Constructor.
DoubleHeapSelect(int) - Constructor for class smile.sort.DoubleHeapSelect
Constructor.
DoubleObjectType - Static variable in class smile.data.type.DataTypes
Double Object data type.
DoubleType - Class in smile.data.type
Double data type.
DoubleType - Static variable in class smile.data.type.DataTypes
Double data type.
doubleValue() - Method in class smile.deep.tensor.Tensor
Returns the double value when the tensor holds a single value.
doubleVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
doubleVector(int) - Method in class smile.data.IndexDataFrame
 
doubleVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
doubleVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
DoubleVector - Interface in smile.data.vector
An immutable double vector.
download(String) - Static method in interface smile.util.CacheFiles
Downloads a file and save to the cache directory.
download(String, boolean) - Static method in interface smile.util.CacheFiles
Downloads a file and save to the cache directory.
drawLine(double[]...) - Method in class smile.plot.swing.Graphics
Draw poly line.
drawLineBaseRatio(double[]...) - Method in class smile.plot.swing.Graphics
Draw poly line.
drawPoint(char, double...) - Method in class smile.plot.swing.Graphics
Draw a dot with given pattern.
drawPoint(double...) - Method in class smile.plot.swing.Graphics
Draw a dot.
drawPolygon(double[]...) - Method in class smile.plot.swing.Graphics
Draw polygon.
drawRect(double[], double[]) - Method in class smile.plot.swing.Graphics
Draw the outline of the specified rectangle.
drawRectBaseRatio(double[], double[]) - Method in class smile.plot.swing.Graphics
Draw the outline of the specified rectangle.
drawText(String, double[]) - Method in class smile.plot.swing.Graphics
Draw a string.
drawText(String, double[], double) - Method in class smile.plot.swing.Graphics
Draw a string with given rotation angle.
drawText(String, double[], double, double) - Method in class smile.plot.swing.Graphics
Draw a string with given reference point.
drawText(String, double[], double, double, double) - Method in class smile.plot.swing.Graphics
Draw a string with given reference point and rotation angle.
drawTextBaseRatio(String, double[]) - Method in class smile.plot.swing.Graphics
Draw a string with given rotation angle.
drawTextBaseRatio(String, double[], double) - Method in class smile.plot.swing.Graphics
Draw a string with given rotation angle.
drawTextBaseRatio(String, double[], double, double) - Method in class smile.plot.swing.Graphics
Draw a string with given reference point.
drawTextBaseRatio(String, double[], double, double, double) - Method in class smile.plot.swing.Graphics
Draw a string with given reference point and rotation angle.
drop(int...) - Method in interface smile.data.DataFrame
Returns a new DataFrame without selected columns.
drop(int...) - Method in class smile.data.IndexDataFrame
 
drop(String...) - Method in interface smile.data.DataFrame
Returns a new DataFrame without selected columns.
dropout - Variable in class smile.base.mlp.Layer
The dropout rate.
dropout - Variable in class smile.base.mlp.LayerBuilder
The dropout rate.
dropout(double) - Static method in interface smile.deep.layer.Layer
Returns a dropout layer that randomly zeroes some of the elements of the input tensor with probability p during training.
dropout(double) - Method in class smile.deep.tensor.Tensor
Randomly zeroes some elements of the input tensor with probability p.
dropout_(double) - Method in class smile.deep.tensor.Tensor
Randomly zeroes some elements in place with probability p.
DropoutLayer - Class in smile.deep.layer
A dropout layer that randomly zeroes some of the elements of the input tensor with probability p during training.
DropoutLayer(double) - Constructor for class smile.deep.layer.DropoutLayer
Constructor.
DropoutLayer(double, boolean) - Constructor for class smile.deep.layer.DropoutLayer
Constructor.
dsv(String, String) - Method in class smile.plot.vega.Data
Loads a delimited text file with a custom delimiter.
dsv(String, String, Map<String, String>) - Method in class smile.plot.vega.Data
Loads a delimited text file with a custom delimiter.
DT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Determiner.
dtype - Variable in class smile.deep.layer.LayerBlock
The data type.
dtype() - Method in class smile.deep.layer.LayerBlock
Returns the compute device of module.
dtype() - Method in class smile.deep.Model
Returns the data type.
dtype() - Method in class smile.deep.tensor.Tensor
Returns the element data type.
dtype(ScalarType) - Method in class smile.deep.tensor.Tensor.Options
Sets the data type of the elements stored in the tensor.
DUMMY - Enum constant in enum class smile.data.CategoricalEncoder
Dummy encoding.
DynamicTimeWarping<T> - Class in smile.math.distance
Dynamic time warping is an algorithm for measuring similarity between two sequences which may vary in time or speed.
DynamicTimeWarping(Distance<T>) - Constructor for class smile.math.distance.DynamicTimeWarping
Constructor.
DynamicTimeWarping(Distance<T>, double) - Constructor for class smile.math.distance.DynamicTimeWarping
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.

E

Edge - Class in smile.vq.hebb
The connection between neurons.
Edge(int, int) - Constructor for record class smile.graph.Graph.Edge
Constructor of unweighted edge.
Edge(int, int, double) - Constructor for record class smile.graph.Graph.Edge
Creates an instance of a Edge record class.
Edge(Neuron) - Constructor for class smile.vq.hebb.Edge
Constructor.
Edge(Neuron, int) - Constructor for class smile.vq.hebb.Edge
Constructor.
edges - Variable in class smile.vq.hebb.Neuron
The direct connected neighbors.
EditDistance - Class in smile.math.distance
The Edit distance between two strings is a metric for measuring the amount of difference between two sequences.
EditDistance() - Constructor for class smile.math.distance.EditDistance
Constructor.
EditDistance(boolean) - Constructor for class smile.math.distance.EditDistance
Constructor.
EditDistance(int) - Constructor for class smile.math.distance.EditDistance
Constructor.
EditDistance(int[][]) - Constructor for class smile.math.distance.EditDistance
Constructor.
EditDistance(int[][], double) - Constructor for class smile.math.distance.EditDistance
Constructor.
EditDistance(int, boolean) - Constructor for class smile.math.distance.EditDistance
Constructor.
EfficientNet - Class in smile.vision
EfficientNet is an image classification model family.
EfficientNet(MBConvConfig[], double, double, int, int, IntFunction<Layer>) - Constructor for class smile.vision.EfficientNet
Constructor.
eigen() - Method in class smile.math.matrix.BigMatrix
Eigenvalue Decomposition.
eigen() - Method in class smile.math.matrix.fp32.Matrix
Eigenvalue Decomposition.
eigen() - Method in class smile.math.matrix.Matrix
Eigenvalue Decomposition.
eigen(boolean, boolean, boolean) - Method in class smile.math.matrix.BigMatrix
Eigenvalue Decomposition.
eigen(boolean, boolean, boolean) - Method in class smile.math.matrix.fp32.Matrix
Eigenvalue Decomposition.
eigen(boolean, boolean, boolean) - Method in class smile.math.matrix.Matrix
Eigenvalue Decomposition.
eigen(double[]) - Method in class smile.math.matrix.IMatrix
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
eigen(double[], double, double, int) - Method in class smile.math.matrix.IMatrix
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
eigen(float[]) - Method in class smile.math.matrix.fp32.IMatrix
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
eigen(float[], float, float, int) - Method in class smile.math.matrix.fp32.IMatrix
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
eigen(IMatrix, ARPACK.AsymmOption, int) - Static method in class smile.math.matrix.fp32.ARPACK
Computes NEV eigenvalues of an asymmetric single precision matrix.
eigen(IMatrix, ARPACK.AsymmOption, int, int, float) - Static method in class smile.math.matrix.fp32.ARPACK
Computes NEV eigenvalues of an asymmetric single precision matrix.
eigen(IMatrix, int) - Static method in class smile.math.matrix.Lanczos
Find k-largest approximate eigen pairs of a symmetric matrix by the Lanczos algorithm.
eigen(IMatrix, int, double, int) - Static method in class smile.math.matrix.Lanczos
Find k-largest approximate eigen pairs of a symmetric matrix by the Lanczos algorithm.
eigen(IMatrix, ARPACK.AsymmOption, int) - Static method in class smile.math.matrix.ARPACK
Computes NEV eigenvalues of an asymmetric double precision matrix.
eigen(IMatrix, ARPACK.AsymmOption, int, int, double) - Static method in class smile.math.matrix.ARPACK
Computes NEV eigenvalues of an asymmetric double precision matrix.
EigenRange - Enum Class in smile.math.blas
THe option of eigenvalue range.
ElasticNet - Class in smile.regression
Elastic Net regularization.
ElasticNet() - Constructor for class smile.regression.ElasticNet
 
element() - Method in class smile.util.PairingHeap
 
Ellipsis - Static variable in class smile.deep.tensor.Index
The ellipsis (...) is used to slice higher-dimensional data structures as in numpy.
EMAIL_ADDRESS - Static variable in interface smile.util.Regex
Email address.
embedding(int, int) - Static method in interface smile.deep.layer.Layer
Returns an embedding layer that is a simple lookup table that stores embeddings of a fixed dictionary and size.
embedding(int, int, double) - Static method in interface smile.deep.layer.Layer
Returns an embedding layer that is a simple lookup table that stores embeddings of a fixed dictionary and size.
EmbeddingLayer - Class in smile.deep.layer
An embedding layer that is a simple lookup table that stores embeddings of a fixed dictionary and size.
EmbeddingLayer(int, int) - Constructor for class smile.deep.layer.EmbeddingLayer
Constructor.
EmbeddingLayer(int, int, double) - Constructor for class smile.deep.layer.EmbeddingLayer
Constructor.
EmpiricalDistribution - Class in smile.stat.distribution
An empirical distribution function or empirical cdf, is a cumulative probability distribution function that concentrates probability 1/n at each of the n numbers in a sample.
EmpiricalDistribution(double[]) - Constructor for class smile.stat.distribution.EmpiricalDistribution
Constructor.
EmpiricalDistribution(double[], IntSet) - Constructor for class smile.stat.distribution.EmpiricalDistribution
Constructor.
empty(long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with uninitialized data.
empty(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with uninitialized data.
emptyCache() - Method in class smile.deep.tensor.Device
Releases all unoccupied cached memory.
encode(String) - Method in class smile.llm.tokenizer.SentencePiece
 
encode(String) - Method in class smile.llm.tokenizer.Tiktoken
 
encode(String) - Method in interface smile.llm.tokenizer.Tokenizer
Encodes a string into a list of token IDs.
encode(String, boolean, boolean) - Method in class smile.llm.tokenizer.SentencePiece
 
encode(String, boolean, boolean) - Method in class smile.llm.tokenizer.Tiktoken
 
encode(String, boolean, boolean) - Method in interface smile.llm.tokenizer.Tokenizer
Encodes a string into a list of token IDs.
encode(String, String) - Method in class smile.plot.vega.View
Returns the field object for encoding a channel.
encodeDatum(String, double) - Method in class smile.plot.vega.Layer
 
encodeDatum(String, double) - Method in class smile.plot.vega.View
Sets a constant data value encoded via a scale.
encodeDatum(String, int) - Method in class smile.plot.vega.Layer
 
encodeDatum(String, int) - Method in class smile.plot.vega.View
Sets a constant data value encoded via a scale.
encodeDatum(String, String) - Method in class smile.plot.vega.Layer
 
encodeDatum(String, String) - Method in class smile.plot.vega.View
Sets a constant data value encoded via a scale.
encodeDialog(Message...) - Method in class smile.llm.llama.Tokenizer
Encodes the messages of a dialog.
encodeMessage(Message) - Method in class smile.llm.llama.Tokenizer
Encodes a message.
encodeValue(String, double) - Method in class smile.plot.vega.Layer
 
encodeValue(String, double) - Method in class smile.plot.vega.View
Sets an encoded constant visual value.
encodeValue(String, int) - Method in class smile.plot.vega.Layer
 
encodeValue(String, int) - Method in class smile.plot.vega.View
Sets an encoded constant visual value.
encodeValue(String, String) - Method in class smile.plot.vega.Layer
 
encodeValue(String, String) - Method in class smile.plot.vega.View
Sets an encoded constant visual value.
engine - Static variable in interface smile.math.blas.BLAS
The default BLAS engine.
engine - Static variable in interface smile.math.blas.LAPACK
The default LAPACK engine.
EnglishDictionary - Enum Class in smile.nlp.dictionary
A concise dictionary of common terms in English.
EnglishPOSLexicon - Class in smile.nlp.pos
An English lexicon with part-of-speech tags.
EnglishPunctuations - Class in smile.nlp.dictionary
Punctuation marks in English.
EnglishStopWords - Enum Class in smile.nlp.dictionary
Several sets of English stop words.
ensemble(Classifier<T>...) - Static method in interface smile.classification.Classifier
Return an ensemble of multiple base models to obtain better predictive performance.
ensemble(DataFrameClassifier...) - Static method in interface smile.classification.DataFrameClassifier
Return an ensemble of multiple base models to obtain better predictive performance.
ensemble(DataFrameRegression...) - Static method in interface smile.regression.DataFrameRegression
Return an ensemble of multiple base models to obtain better predictive performance.
ensemble(Regression<T>...) - Static method in interface smile.regression.Regression
Return an ensemble of multiple base models to obtain better predictive performance.
ensureCapacity(int) - Method in class smile.util.DoubleArrayList
Increases the capacity, if necessary, to ensure that it can hold at least the number of values specified by the minimum capacity argument.
ensureCapacity(int) - Method in class smile.util.IntArrayList
Increases the capacity, if necessary, to ensure that it can hold at least the number of values specified by the minimum capacity argument.
entropy - Variable in class smile.clustering.MEC
The conditional entropy as the objective function.
entropy() - Method in class smile.stat.distribution.BernoulliDistribution
 
entropy() - Method in class smile.stat.distribution.BetaDistribution
 
entropy() - Method in class smile.stat.distribution.BinomialDistribution
 
entropy() - Method in class smile.stat.distribution.ChiSquareDistribution
 
entropy() - Method in class smile.stat.distribution.DiscreteMixture
Shannon's entropy.
entropy() - Method in interface smile.stat.distribution.Distribution
Returns Shannon entropy of the distribution.
entropy() - Method in class smile.stat.distribution.EmpiricalDistribution
 
entropy() - Method in class smile.stat.distribution.ExponentialDistribution
 
entropy() - Method in class smile.stat.distribution.FDistribution
Shannon's entropy.
entropy() - Method in class smile.stat.distribution.GammaDistribution
 
entropy() - Method in class smile.stat.distribution.GaussianDistribution
 
entropy() - Method in class smile.stat.distribution.GeometricDistribution
Shannon's entropy.
entropy() - Method in class smile.stat.distribution.HyperGeometricDistribution
 
entropy() - Method in class smile.stat.distribution.KernelDensity
Shannon's entropy.
entropy() - Method in class smile.stat.distribution.LogisticDistribution
 
entropy() - Method in class smile.stat.distribution.LogNormalDistribution
 
entropy() - Method in class smile.stat.distribution.Mixture
Shannon's entropy.
entropy() - Method in interface smile.stat.distribution.MultivariateDistribution
Shannon's entropy of the distribution.
entropy() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
entropy() - Method in class smile.stat.distribution.MultivariateMixture
Shannon entropy.
entropy() - Method in class smile.stat.distribution.NegativeBinomialDistribution
Shannon's entropy.
entropy() - Method in class smile.stat.distribution.PoissonDistribution
 
entropy() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
entropy() - Method in class smile.stat.distribution.TDistribution
 
entropy() - Method in class smile.stat.distribution.WeibullDistribution
 
entropy(double[]) - Static method in class smile.math.MathEx
Shannon's entropy.
ENTROPY - Enum constant in enum class smile.base.cart.SplitRule
Used by the ID3, C4.5 and C5.0 tree generation algorithms.
entry - Variable in class smile.neighbor.lsh.Bucket
The indices of points that all have the same value for hash function g.
Entry(int, double) - Constructor for record class smile.util.SparseArray.Entry
Creates an instance of a Entry record class.
epsilon - Variable in class smile.base.mlp.MultilayerPerceptron
A small constant for numerical stability in RMSProp.
EPSILON - Static variable in interface smile.math.DifferentiableMultivariateFunction
A number close to zero, between machine epsilon and its square root.
EPSILON - Static variable in class smile.math.MathEx
The machine precision for the double type, which is the difference between 1 and the smallest value greater than 1 that is representable for the double type.
eq(double) - Method in class smile.deep.tensor.Tensor
Computes element-wise equality.
eq(int) - Method in class smile.deep.tensor.Tensor
Computes element-wise equality.
eq(Tensor) - Method in class smile.deep.tensor.Tensor
Computes element-wise equality.
equals(double[][], double[][]) - Static method in class smile.math.MathEx
Check if x element-wisely equals y with default epsilon 1E-10.
equals(double[][], double[][], double) - Static method in class smile.math.MathEx
Check if x element-wisely equals y in given precision.
equals(double[], double[]) - Static method in class smile.math.MathEx
Check if x element-wisely equals y with default epsilon 1E-10.
equals(double[], double[], double) - Static method in class smile.math.MathEx
Check if x element-wisely equals y in given precision.
equals(double, double) - Static method in class smile.math.MathEx
Returns true if two double values equals to each other in the system precision.
equals(float[][], float[][]) - Static method in class smile.math.MathEx
Check if x element-wisely equals y with default epsilon 1E-7.
equals(float[][], float[][], float) - Static method in class smile.math.MathEx
Check if x element-wisely equals y in given precision.
equals(float[], float[]) - Static method in class smile.math.MathEx
Check if x element-wisely equals y with default epsilon 1E-7.
equals(float[], float[], float) - Static method in class smile.math.MathEx
Check if x element-wisely equals y in given precision.
equals(Object) - Method in record class smile.association.AssociationRule
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.association.ItemSet
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class smile.base.cart.DecisionNode
 
equals(Object) - Method in class smile.base.cart.RegressionNode
 
equals(Object) - Method in class smile.data.formula.Formula
 
equals(Object) - Method in record class smile.data.formula.Intercept
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.data.formula.Variable
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class smile.data.measure.CategoricalMeasure
 
equals(Object) - Method in class smile.data.measure.NominalScale
 
equals(Object) - Method in class smile.data.measure.OrdinalScale
 
equals(Object) - Method in record class smile.data.SampleInstance
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class smile.data.type.ArrayType
 
equals(Object) - Method in class smile.data.type.BooleanType
 
equals(Object) - Method in class smile.data.type.ByteType
 
equals(Object) - Method in class smile.data.type.CharType
 
equals(Object) - Method in class smile.data.type.DateTimeType
 
equals(Object) - Method in class smile.data.type.DateType
 
equals(Object) - Method in class smile.data.type.DecimalType
 
equals(Object) - Method in class smile.data.type.DoubleType
 
equals(Object) - Method in class smile.data.type.FloatType
 
equals(Object) - Method in class smile.data.type.IntegerType
 
equals(Object) - Method in class smile.data.type.LongType
 
equals(Object) - Method in class smile.data.type.ObjectType
 
equals(Object) - Method in class smile.data.type.ShortType
 
equals(Object) - Method in class smile.data.type.StringType
 
equals(Object) - Method in class smile.data.type.StructField
 
equals(Object) - Method in class smile.data.type.StructType
 
equals(Object) - Method in class smile.data.type.TimeType
 
equals(Object) - Method in record class smile.deep.SampleBatch
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class smile.deep.tensor.Device
 
equals(Object) - Method in class smile.deep.tensor.Tensor
 
equals(Object) - Method in record class smile.feature.selection.InformationValue
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.feature.selection.SignalNoiseRatio
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.feature.selection.SumSquaresRatio
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.graph.Graph.Edge
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.graph.NearestNeighborGraph
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.llm.CompletionPrediction
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.llm.llama.ModelArgs
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.llm.Message
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.manifold.IsotonicMDS
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.manifold.MDS
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class smile.math.Complex
 
equals(Object) - Method in class smile.math.matrix.BandMatrix
 
equals(Object) - Method in class smile.math.matrix.BigMatrix
 
equals(Object) - Method in class smile.math.matrix.fp32.BandMatrix
 
equals(Object) - Method in class smile.math.matrix.fp32.Matrix
 
equals(Object) - Method in class smile.math.matrix.fp32.SymmMatrix
 
equals(Object) - Method in class smile.math.matrix.Matrix
 
equals(Object) - Method in class smile.math.matrix.SymmMatrix
 
equals(Object) - Method in record class smile.neighbor.lsh.PrH
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.neighbor.lsh.PrZ
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.neighbor.Neighbor
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in class smile.nlp.Bigram
 
equals(Object) - Method in class smile.nlp.NGram
 
equals(Object) - Method in class smile.nlp.SimpleText
 
equals(Object) - Method in record class smile.plot.vega.SortField
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.plot.vega.WindowTransformField
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.distribution.DiscreteMixture.Component
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.distribution.Mixture.Component
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.distribution.MultivariateMixture.Component
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.hypothesis.ChiSqTest
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.hypothesis.CorTest
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.hypothesis.FTest
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.hypothesis.KSTest
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.stat.hypothesis.TTest
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.swing.AlphaIcon
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.util.Bytes
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.util.IntPair
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.util.SparseArray.Entry
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.util.Tuple2
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.validation.Bag
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.validation.ClassificationMetrics
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.validation.metric.ConfusionMatrix
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.validation.RegressionMetrics
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Indicates whether some other object is "equal to" this one.
equals(Object) - Method in record class smile.vision.layer.MBConvConfig
Indicates whether some other object is "equal to" this one.
equals(BandMatrix, double) - Method in class smile.math.matrix.BandMatrix
Returns true if two matrices equal in given precision.
equals(BigMatrix, double) - Method in class smile.math.matrix.BigMatrix
Returns true if two matrices equal in given precision.
equals(BandMatrix, float) - Method in class smile.math.matrix.fp32.BandMatrix
Returns true if two matrices equal in given precision.
equals(Matrix, float) - Method in class smile.math.matrix.fp32.Matrix
Returns true if two matrices equal in given precision.
equals(SymmMatrix, float) - Method in class smile.math.matrix.fp32.SymmMatrix
Returns true if two matrices equal in given precision.
equals(Matrix, double) - Method in class smile.math.matrix.Matrix
Returns true if two matrices equal in given precision.
equals(SymmMatrix, double) - Method in class smile.math.matrix.SymmMatrix
Returns true if two matrices equal in given precision.
erf(double) - Static method in class smile.math.special.Erf
The Gauss error function.
Erf - Class in smile.math.special
The error function.
erfc(double) - Static method in class smile.math.special.Erf
The complementary error function.
erfcc(double) - Static method in class smile.math.special.Erf
The complementary error function with fractional error everywhere less than 1.2 × 10-7.
error() - Method in class smile.regression.LinearModel
Returns the residual standard error.
error() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the error record component.
Error - Class in smile.validation.metric
The number of errors in the population.
Error() - Constructor for class smile.validation.metric.Error
 
ERROR_OPTION - Static variable in class smile.swing.FontChooser
Return value from showDialog().
estimate(int, double) - Method in class smile.neighbor.lsh.HashValueParzenModel
Given a hash value h, estimate the Gaussian model (mean and variance) of neighbors existing in the corresponding bucket.
EuclideanDistance - Class in smile.math.distance
Euclidean distance.
EuclideanDistance() - Constructor for class smile.math.distance.EuclideanDistance
Constructor.
EuclideanDistance(double[]) - Constructor for class smile.math.distance.EuclideanDistance
Constructor with a given weight vector.
eval() - Method in class smile.deep.layer.LayerBlock
Sets the layer block in the evaluation/inference mode.
eval() - Method in class smile.deep.Model
Sets the model in the evaluation/inference mode.
eval(Dataset, Metric...) - Method in class smile.deep.Model
Evaluates the model accuracy on a test dataset.
EVD(double[], double[], Matrix, Matrix) - Constructor for class smile.math.matrix.Matrix.EVD
Constructor.
EVD(double[], Matrix) - Constructor for class smile.math.matrix.Matrix.EVD
Constructor.
EVD(float[], float[], Matrix, Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.EVD
Constructor.
EVD(float[], Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.EVD
Constructor.
EVD(DoublePointer, DoublePointer, BigMatrix, BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.EVD
Constructor.
EVD(DoublePointer, BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.EVD
Constructor.
EVDJob - Enum Class in smile.math.blas
The option if computing eigen vectors.
evolve() - Method in interface smile.gap.LamarckianChromosome
Performs a step of (hill-climbing) local search to evolve this chromosome.
evolve(int) - Method in class smile.gap.GeneticAlgorithm
Performs genetic algorithm for a given number of generations.
evolve(int, double) - Method in class smile.gap.GeneticAlgorithm
Performs genetic algorithm until the given number of generations is reached or the best fitness is larger than the given threshold.
EX - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Existential there.
execute(String) - Method in class smile.data.SQL
Executes an SQL statement, which may return multiple results.
exp() - Method in class smile.deep.tensor.Tensor
Returns the exponential of elements in the tensor.
exp() - Method in class smile.math.Complex
Returns the complex exponential.
exp(double, double) - Static method in interface smile.math.TimeFunction
Returns the exponential decay function.
exp(double, double, double) - Static method in interface smile.math.TimeFunction
Returns the exponential decay function.
exp(double, double, double, boolean) - Static method in interface smile.math.TimeFunction
Returns the exponential decay function.
exp(String) - Static method in interface smile.data.formula.Terms
The exp(x) term.
exp(Term) - Static method in interface smile.data.formula.Terms
The exp(x) term.
Exp - Class in smile.ica
The contrast function when the independent components are highly super-Gaussian, or when robustness is very important.
Exp() - Constructor for class smile.ica.Exp
 
exp_() - Method in class smile.deep.tensor.Tensor
Returns the exponential of elements in the tensor in place.
expand() - Method in class smile.data.formula.Delete
 
expand() - Method in class smile.data.formula.FactorCrossing
 
expand() - Method in interface smile.data.formula.Term
Expands the term (e.g.
expand() - Method in class smile.neighbor.lsh.Probe
This operation sets to one the component following the last nonzero component if it is not the last one.
expand(long...) - Method in class smile.deep.tensor.Tensor
Returns a new view of this tensor with singleton dimensions expanded to a larger size.
expand(StructType) - Method in class smile.data.formula.Formula
Expands the Dot and FactorCrossing terms on the given schema.
expandRatio() - Method in record class smile.vision.layer.MBConvConfig
Returns the value of the expandRatio record component.
expm1(String) - Static method in interface smile.data.formula.Terms
The exp(x) - 1 term.
expm1(Term) - Static method in interface smile.data.formula.Terms
The exp(x) - 1 term.
ExponentialDistribution - Class in smile.stat.distribution
An exponential distribution describes the times between events in a Poisson process, in which events occur continuously and independently at a constant average rate.
ExponentialDistribution(double) - Constructor for class smile.stat.distribution.ExponentialDistribution
Constructor.
ExponentialFamily - Interface in smile.stat.distribution
The exponential family is a class of probability distributions sharing a certain form.
ExponentialFamilyMixture - Class in smile.stat.distribution
The finite mixture of distributions from exponential family.
ExponentialFamilyMixture(Mixture.Component...) - Constructor for class smile.stat.distribution.ExponentialFamilyMixture
Constructor.
ExponentialVariogram - Class in smile.interpolation.variogram
Exponential variogram.
ExponentialVariogram(double, double) - Constructor for class smile.interpolation.variogram.ExponentialVariogram
Constructor.
ExponentialVariogram(double, double, double) - Constructor for class smile.interpolation.variogram.ExponentialVariogram
Constructor.
extend() - Method in class smile.neighbor.lsh.Probe
This operation adds one to the last nonzero component.
extendBound(double[], double[]) - Method in class smile.plot.swing.Base
Extend lower and upper bounds.
extendBound(double[], double[]) - Method in class smile.plot.swing.Canvas
Extend lower and upper bounds.
extendBound(int) - Method in class smile.plot.swing.Base
Rounds the bounds for axis i.
extendLowerBound(double[]) - Method in class smile.plot.swing.Base
Extend lower bounds.
extendLowerBound(double[]) - Method in class smile.plot.swing.Canvas
Extend lower bounds.
extendUpperBound(double[]) - Method in class smile.plot.swing.Base
Extend upper bounds.
extendUpperBound(double[]) - Method in class smile.plot.swing.Canvas
Extend upper bounds.
extent(double, double) - Method in class smile.plot.vega.BinParams
Sets the range of desired bin values
extent(double, double) - Method in class smile.plot.vega.DensityTransform
Sets a [min, max] domain from which to sample the distribution.
extent(double, double) - Method in class smile.plot.vega.RegressionTransform
Sets a [min, max] domain over the independent (x) field for the starting and ending points of the generated trend line.
extent(String) - Method in class smile.plot.vega.Mark
Sets the extent of the band.
extent(String, String) - Method in class smile.plot.vega.Transform
Adds an extent transform.
eye(int) - Static method in class smile.math.matrix.BigMatrix
Returns an identity matrix.
eye(int) - Static method in class smile.math.matrix.fp32.Matrix
Returns an identity matrix.
eye(int) - Static method in class smile.math.matrix.Matrix
Returns an identity matrix.
eye(int, int) - Static method in class smile.math.matrix.BigMatrix
Returns an m-by-n identity matrix.
eye(int, int) - Static method in class smile.math.matrix.fp32.Matrix
Returns an m-by-n identity matrix.
eye(int, int) - Static method in class smile.math.matrix.Matrix
Returns an m-by-n identity matrix.
eye(long) - Static method in class smile.deep.tensor.Tensor
Returns an identity matrix.
eye(Tensor.Options, long) - Static method in class smile.deep.tensor.Tensor
Returns an identity matrix.

F

f() - Method in record class smile.stat.hypothesis.FTest
Returns the value of the f record component.
f(double) - Method in class smile.ica.Exp
 
f(double) - Method in class smile.ica.Kurtosis
 
f(double) - Method in class smile.ica.LogCosh
 
f(double) - Method in class smile.interpolation.variogram.ExponentialVariogram
 
f(double) - Method in class smile.interpolation.variogram.GaussianVariogram
 
f(double) - Method in class smile.interpolation.variogram.PowerVariogram
 
f(double) - Method in class smile.interpolation.variogram.SphericalVariogram
 
f(double) - Method in interface smile.math.Function
Computes the value of the function at x.
f(double) - Method in interface smile.math.kernel.DotProductKernel
 
f(double) - Method in interface smile.math.kernel.IsotropicKernel
 
f(double) - Method in class smile.math.kernel.Matern
 
f(double) - Method in class smile.math.rbf.GaussianRadialBasis
 
f(double) - Method in class smile.math.rbf.InverseMultiquadricRadialBasis
 
f(double) - Method in class smile.math.rbf.MultiquadricRadialBasis
 
f(double) - Method in class smile.math.rbf.ThinPlateRadialBasis
 
f(double) - Method in class smile.math.Scaler
 
f(double[]) - Method in interface smile.base.mlp.ActivationFunction
The output function.
f(double[]) - Method in enum class smile.base.mlp.OutputFunction
The output function.
f(double[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(double[]) - Method in interface smile.math.MultivariateFunction
Computes the value of the function at x.
f(int) - Method in interface smile.math.IntFunction
Computes the value of the function at x.
f(int[]) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(SparseArray) - Method in class smile.base.svm.LinearKernelMachine
Returns the value of decision function.
f(T) - Method in class smile.base.rbf.RBF
The activation function.
f1() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the f1 record component.
F1 - Static variable in class smile.validation.metric.FScore
The F_1 score, the harmonic mean of precision and recall.
F2 - Static variable in class smile.validation.metric.FScore
The F_2 score, which weighs recall higher than precision.
facet(String) - Method in class smile.plot.vega.Facet
Returns the field definition for faceting the plot by one field.
Facet - Class in smile.plot.vega
A facet is a trellis plot (or small multiple) of a series of similar plots that displays different subsets of the same data, facilitating comparison across subsets.
Facet(VegaLite) - Constructor for class smile.plot.vega.Facet
Constructor.
FacetField - Class in smile.plot.vega
Facet field definition object.
factor(int) - Method in class smile.data.measure.CategoricalMeasure
Returns the factor value (in range [0, size)) of level.
FactorCrossing - Class in smile.data.formula
Factor crossing.
FactorCrossing(int, String...) - Constructor for class smile.data.formula.FactorCrossing
Constructor.
FactorCrossing(String...) - Constructor for class smile.data.formula.FactorCrossing
Constructor.
factorial(int) - Static method in class smile.math.MathEx
The factorial of n.
FactorInteraction - Class in smile.data.formula
The interaction of all the factors appearing in the term.
FactorInteraction(String...) - Constructor for class smile.data.formula.FactorInteraction
Constructor.
factorize(String...) - Method in interface smile.data.DataFrame
Returns a new DataFrame with given columns converted to nominal.
factorize(CategoricalMeasure) - Method in interface smile.data.vector.StringVector
Converts strings to discrete measured values.
Fallout - Class in smile.validation.metric
Fall-out, false alarm rate, or false positive rate (FPR)
Fallout() - Constructor for class smile.validation.metric.Fallout
 
falseChild() - Method in class smile.base.cart.InternalNode
Returns the false branch child.
family() - Method in class smile.llm.llama.Llama
Returns the model family name.
farthestInsertion() - Method in class smile.graph.Graph
Returns the approximate solution to TSP with the farthest insertion heuristic.
FDistribution - Class in smile.stat.distribution
F-distribution arises in the testing of whether two observed samples have the same variance.
FDistribution(int, int) - Constructor for class smile.stat.distribution.FDistribution
Constructor.
FDR - Class in smile.validation.metric
The false discovery rate (FDR) is ratio of false positives to combined true and false positives, which is actually 1 - precision.
FDR() - Constructor for class smile.validation.metric.FDR
 
feature() - Method in class smile.base.cart.InternalNode
Returns the split feature.
feature() - Method in record class smile.feature.selection.InformationValue
Returns the value of the feature record component.
feature() - Method in record class smile.feature.selection.SignalNoiseRatio
Returns the value of the feature record component.
feature() - Method in record class smile.feature.selection.SumSquaresRatio
Returns the value of the feature record component.
Feature - Interface in smile.data.formula
A feature in the formula once bound to a schema.
features - Variable in class smile.sequence.CRFLabeler
The feature function.
features() - Method in class smile.feature.extraction.BagOfWords
Returns the feature words.
features() - Method in class smile.vision.EfficientNet
Returns the feature layer block.
FeedForward - Class in smile.llm.llama
Feedforward layer in Transformer.
FeedForward(int, int, int, Double) - Constructor for class smile.llm.llama.FeedForward
Constructor.
ffnDimMultiplier() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the ffnDimMultiplier record component.
FHalf - Static variable in class smile.validation.metric.FScore
The F_0.5 score, which weighs recall lower than precision.
field() - Method in interface smile.data.formula.Feature
Returns the metadata of feature.
field() - Method in interface smile.data.vector.BaseVector
Returns a struct field corresponding to this vector.
field() - Method in record class smile.plot.vega.SortField
Returns the value of the field record component.
field() - Method in record class smile.plot.vega.WindowTransformField
Returns the value of the field record component.
field(int) - Method in class smile.data.type.StructType
Return the field at position i.
field(String) - Method in class smile.data.type.StructType
Return the field of given name.
Field - Class in smile.plot.vega
Encoding field definition object.
fields() - Method in class smile.data.type.StructType
Returns the fields.
fields(String...) - Method in class smile.plot.vega.LookupData
Returns the fields in foreign data or selection to lookup.
fieldTitle(String) - Method in class smile.plot.vega.Config
Defines how Vega-Lite generates title for fields.
file(String) - Static method in interface smile.io.HadoopInput
Returns the Parquet's InputFile instance of a file path or URI.
FileChooser - Class in smile.swing
File chooser for with file/images preview.
FileChooser() - Constructor for class smile.swing.FileChooser
Constructor.
FileChooser.SimpleFileFilter - Class in smile.swing
A simple extension-based file filter.
fill(char, int) - Static method in interface smile.util.Strings
Returns the string with a single repeated character to a specific length.
fill(double) - Method in class smile.math.matrix.BigMatrix
Fill the matrix with a value.
fill(double) - Method in class smile.math.matrix.Matrix
Fills the matrix with a value.
fill(float) - Method in class smile.math.matrix.fp32.Matrix
Fills the matrix with a value.
fill(String) - Method in class smile.plot.vega.Background
Sets the fill color.
fill(String) - Method in class smile.plot.vega.Mark
Sets the default fill color.
fill(String) - Method in class smile.plot.vega.ViewConfig
Sets the fill color.
fill_(double) - Method in class smile.deep.tensor.Tensor
Fills this tensor with the specified value.
fill_(int) - Method in class smile.deep.tensor.Tensor
Fills this tensor with the specified value.
fillColor(String) - Method in class smile.plot.vega.Legend
Sets the background fill color for the full legend.
filled(boolean) - Method in class smile.plot.vega.Mark
Sets whether the mark's color should be used as fill color instead of stroke color.
fillna(double) - Method in interface smile.data.DataFrame
Fills NaN/Inf values of floating number columns using the specified value.
fillna(double) - Method in interface smile.data.vector.DoubleVector
Fills NaN/Inf values using the specified value.
fillna(double) - Method in interface smile.data.vector.NumberVector
Fill null/NaN/Inf values using the specified value.
fillna(float) - Method in interface smile.data.vector.FloatVector
Fills NaN/Inf values using the specified value.
fillOpacity(double) - Method in class smile.plot.vega.Background
Sets the fill opacity.
fillOpacity(double) - Method in class smile.plot.vega.Mark
Sets the fill opacity.
fillOpacity(double) - Method in class smile.plot.vega.ViewConfig
Sets the fill opacity.
fillPolygon(double[]...) - Method in class smile.plot.swing.Graphics
Fill polygon.
fillPolygon(float, double[]...) - Method in class smile.plot.swing.Graphics
Fill polygon.
fillRect(double[], double[]) - Method in class smile.plot.swing.Graphics
Fill the specified rectangle.
fillRectBaseRatio(double[], double[]) - Method in class smile.plot.swing.Graphics
Fill the specified rectangle.
filter(String) - Method in class smile.plot.vega.Transform
Adds a filter transform.
filter(Predicate) - Method in class smile.plot.vega.Transform
Adds a filter transform.
find(DifferentiableFunction, double, double, double, int) - Static method in class smile.math.Root
Newton's method (also known as the Newton–Raphson method).
find(Function, double, double, double, int) - Static method in class smile.math.Root
Brent's method for root-finding.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.base.cart.CART
Finds the best split for given column.
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.classification.DecisionTree
 
findBestSplit(LeafNode, int, double, int, int) - Method in class smile.regression.RegressionTree
 
findBestSplit(LeafNode, int, int, boolean[]) - Method in class smile.base.cart.CART
Finds the best attribute to split on a set of samples.
FinishReason - Enum Class in smile.llm
The reasons that the chat completions finish.
fit(double[]) - Static method in class smile.stat.distribution.BetaDistribution
Estimates the distribution parameters by the moment method.
fit(double[]) - Static method in class smile.stat.distribution.ExponentialDistribution
Estimates the distribution parameters by MLE.
fit(double[]) - Static method in class smile.stat.distribution.GammaDistribution
Estimates the distribution parameters by (approximate) MLE.
fit(double[]) - Static method in class smile.stat.distribution.GaussianDistribution
Estimates the distribution parameters by MLE.
fit(double[]) - Static method in class smile.stat.distribution.GaussianMixture
Fits the Gaussian mixture model with the EM algorithm.
fit(double[]) - Static method in class smile.stat.distribution.LogNormalDistribution
Estimates the distribution parameters by MLE.
fit(double[][]) - Static method in class smile.anomaly.IsolationForest
Fits an isolation forest.
fit(double[][]) - Static method in class smile.stat.distribution.MultivariateGaussianDistribution
Estimates the mean and diagonal covariance by MLE.
fit(double[][]) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
Fits the Gaussian mixture model with the EM algorithm.
fit(double[][], boolean) - Static method in class smile.stat.distribution.MultivariateGaussianDistribution
Estimates the mean and covariance by MLE.
fit(double[][], boolean) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
Fits the Gaussian mixture model with the EM algorithm.
fit(double[][], double[], double, double, double) - Static method in class smile.regression.SVM
Fits a linear epsilon-SVR.
fit(double[][], double[], Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(double[][], double[], Properties) - Static method in class smile.regression.MLP
Fits a MLP model.
fit(double[][], double[], Properties) - Static method in class smile.regression.RBFNetwork
Fits an RBF network.
fit(double[][], double[], Properties) - Static method in class smile.regression.SVM
Fits an epsilon-SVR.
fit(double[][], double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], double, int, double, int) - Static method in class smile.clustering.DENCLUE
Clustering data.
fit(double[][], int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(double[][], int) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(double[][], int) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(double[][], int) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(double[][], int) - Static method in class smile.ica.ICA
Fits independent component analysis.
fit(double[][], int[]) - Static method in class smile.classification.FLD
Fits Fisher's linear discriminant.
fit(double[][], int[]) - Static method in class smile.classification.KNN
Fits the 1-NN classifier.
fit(double[][], int[]) - Static method in class smile.classification.LDA
Fits linear discriminant analysis.
fit(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[]) - Static method in class smile.classification.QDA
Fits quadratic discriminant analysis.
fit(double[][], int[], double) - Static method in class smile.classification.RDA
Fits regularized discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.LDA
Fits linear discriminant analysis.
fit(double[][], int[], double[], double) - Static method in class smile.classification.QDA
Fits quadratic discriminant analysis.
fit(double[][], int[], double, double) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(double[][], int[], double, double[], double) - Static method in class smile.classification.RDA
Fits regularized discriminant analysis.
fit(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[], double, double, int) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(double[][], int[], int) - Static method in class smile.classification.KNN
Fits the K-NN classifier.
fit(double[][], int[], int, double) - Static method in class smile.classification.FLD
Fits Fisher's linear discriminant.
fit(double[][], int[], Properties) - Static method in class smile.classification.FLD
Fits Fisher's linear discriminant.
fit(double[][], int[], Properties) - Static method in class smile.classification.LDA
Fits linear discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits logistic regression.
fit(double[][], int[], Properties) - Static method in class smile.classification.MLP
Fits a MLP model.
fit(double[][], int[], Properties) - Static method in class smile.classification.QDA
Fits quadratic discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.RBFNetwork
Fits an RBF network.
fit(double[][], int[], Properties) - Static method in class smile.classification.RDA
Fits regularized discriminant analysis.
fit(double[][], int[], Properties) - Static method in class smile.classification.SVM
Fits a binary or multiclass SVM.
fit(double[][], int, double) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(double[][], int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data with KD-tree.
fit(double[][], int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering the data.
fit(double[][], int, double, int, double, double) - Static method in class smile.clustering.DeterministicAnnealing
Clustering data into k clusters.
fit(double[][], int, int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(double[][], int, int, double) - Static method in class smile.clustering.GMeans
Clustering data with the number of clusters determined by G-Means algorithm automatically.
fit(double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters up to 100 iterations.
fit(double[][], int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int, int, double) - Static method in class smile.clustering.XMeans
Clustering data with the number of clusters determined by X-Means algorithm automatically.
fit(double[][], int, int, double, int) - Static method in class smile.anomaly.IsolationForest
Fits a random forest for classification.
fit(double[][], int, int, double, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral clustering with Nystrom approximation.
fit(double[][], int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
Fits probabilistic principal component analysis.
fit(double[][], int, Properties) - Static method in class smile.ica.ICA
Fits independent component analysis.
fit(double[][], int, DifferentiableFunction, double, int) - Static method in class smile.ica.ICA
Fits independent component analysis.
fit(double[][], String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with covariance matrix.
fit(double[][], Properties) - Static method in class smile.anomaly.IsolationForest
Fits a random forest for classification.
fit(double[][], MultivariateMixture.Component...) - Static method in class smile.stat.distribution.MultivariateExponentialFamilyMixture
Fits the mixture model with the EM algorithm.
fit(double[][], MultivariateMixture.Component[], double, int, double) - Static method in class smile.stat.distribution.MultivariateExponentialFamilyMixture
Fits the mixture model with the EM algorithm.
fit(double[], int) - Static method in class smile.timeseries.AR
Fits an autoregressive model with Yule-Walker procedure.
fit(double[], int[]) - Static method in class smile.classification.IsotonicRegressionScaling
Trains the Isotonic Regression scaling.
fit(double[], int[]) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(double[], int[], int) - Static method in class smile.classification.PlattScaling
Trains the Platt scaling.
fit(double[], int, int) - Static method in class smile.timeseries.ARMA
Fits an ARMA model with Hannan-Rissanen algorithm.
fit(double[], Mixture.Component...) - Static method in class smile.stat.distribution.ExponentialFamilyMixture
Fits the mixture model with the EM algorithm.
fit(double[], Mixture.Component[], double, int, double) - Static method in class smile.stat.distribution.ExponentialFamilyMixture
Fits the mixture model with the EM algorithm.
fit(int[]) - Static method in class smile.classification.ClassLabels
Fits the class label mapping.
fit(int[]) - Static method in class smile.stat.distribution.BernoulliDistribution
Estimates the distribution parameters by MLE.
fit(int[]) - Static method in class smile.stat.distribution.EmpiricalDistribution
Estimates the distribution.
fit(int[]) - Static method in class smile.stat.distribution.GeometricDistribution
Estimates the distribution parameters by MLE.
fit(int[]) - Static method in class smile.stat.distribution.PoissonDistribution
Estimates the distribution parameters by MLE.
fit(int[]) - Static method in class smile.stat.distribution.ShiftedGeometricDistribution
Estimates the distribution parameters by MLE.
fit(int[][], double[], int, double, double, double) - Static method in class smile.regression.SVM
Fits a linear epsilon-SVR of binary sparse data.
fit(int[][], int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(int[][], int[][]) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(int[][], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary linear SVM of binary sparse data.
fit(int[][], int[], int, double, double, int) - Static method in class smile.classification.SVM
Fits a binary linear SVM of binary sparse data.
fit(int[][], int, int) - Static method in class smile.clustering.KModes
Fits k-modes clustering.
fit(int[], DiscreteMixture.Component...) - Static method in class smile.stat.distribution.DiscreteExponentialFamilyMixture
Fits the mixture model with the EM algorithm.
fit(int[], DiscreteMixture.Component[], double, int, double) - Static method in class smile.stat.distribution.DiscreteExponentialFamilyMixture
Fits the mixture model with the EM algorithm.
fit(int[], IntSet) - Static method in class smile.stat.distribution.EmpiricalDistribution
Estimates the distribution.
fit(int, double[]) - Static method in class smile.stat.distribution.GaussianMixture
Fits the Gaussian mixture model with the EM algorithm.
fit(int, double[][]) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
Fits the Gaussian mixture model with the EM algorithm.
fit(int, double[][], boolean) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
Fits the Gaussian mixture model with the EM algorithm.
fit(int, int[][], int[]) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
fit(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
fit(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
fit(String[][], PennTreebankPOS[][]) - Static method in class smile.nlp.pos.HMMPOSTagger
Fits an HMM POS tagger by maximum likelihood estimation.
fit(Classifier<T>, T[], int[]) - Static method in class smile.classification.PlattScaling
Fits Platt Scaling to estimate posteriori probabilities.
fit(BBDTree, double[][], int, int, double) - Static method in class smile.clustering.KMeans
Partitions data into k clusters.
fit(Linkage) - Static method in class smile.clustering.HierarchicalClustering
Fits the Agglomerative Hierarchical Clustering with given linkage method, which includes proximity matrix.
fit(DataFrame) - Static method in class smile.feature.transform.WinsorScaler
Fits the data transformation with 5% lower limit and 95% upper limit.
fit(DataFrame, double, double, String...) - Static method in class smile.feature.imputation.SimpleImputer
Fits the missing value imputation values.
fit(DataFrame, double, double, String...) - Static method in class smile.feature.transform.WinsorScaler
Fits the data transformation.
fit(DataFrame, int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
Fits probabilistic principal component analysis.
fit(DataFrame, String) - Static method in record class smile.feature.selection.InformationValue
Calculates the information value.
fit(DataFrame, String) - Static method in record class smile.feature.selection.SignalNoiseRatio
Calculates the signal noise ratio of numeric variables.
fit(DataFrame, String) - Static method in record class smile.feature.selection.SumSquaresRatio
Calculates the sum squares ratio of numeric variables.
fit(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
Fits principal component analysis with covariance matrix.
fit(DataFrame, String...) - Static method in class smile.feature.imputation.SimpleImputer
Fits the missing value imputation values.
fit(DataFrame, String...) - Static method in class smile.feature.transform.MaxAbsScaler
Fits the data transformation.
fit(DataFrame, String...) - Static method in class smile.feature.transform.RobustStandardizer
Fits the data transformation.
fit(DataFrame, String...) - Static method in class smile.feature.transform.Scaler
Fits the data transformation.
fit(DataFrame, String...) - Static method in class smile.feature.transform.Standardizer
Fits the data transformation.
fit(DataFrame, String, int) - Static method in record class smile.feature.selection.InformationValue
Calculates the information value.
fit(DataFrame, Function<String, String[]>, int, String...) - Static method in class smile.feature.extraction.BagOfWords
Learns a vocabulary dictionary of top-k frequent tokens in the raw documents.
fit(DataFrame, Function<DataFrame, Transform>...) - Static method in interface smile.data.transform.Transform
Fits a pipeline of data transforms.
fit(DataFrame, Distance<Tuple>, int) - Static method in class smile.feature.imputation.KMedoidsImputer
Fits the missing value imputation values.
fit(DataFrame, MercerKernel<double[]>, int, double, String...) - Static method in class smile.feature.extraction.KernelPCA
Fits kernel principal component analysis.
fit(DataFrame, MercerKernel<double[]>, int, String...) - Static method in class smile.feature.extraction.KernelPCA
Fits kernel principal component analysis.
fit(Dataset<?, Integer>) - Static method in class smile.classification.ClassLabels
Fits the class label mapping.
fit(Formula, DataFrame) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame) - Method in interface smile.classification.DataFrameClassifier.Trainer
Fits a classification model with the default hyperparameters.
fit(Formula, DataFrame) - Static method in class smile.classification.DecisionTree
Fits a classification tree.
fit(Formula, DataFrame) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame) - Method in interface smile.regression.DataFrameRegression.Trainer
Fits a regression model with the default hyperparameters.
fit(Formula, DataFrame) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame) - Static method in class smile.regression.RegressionTree
Fits a regression tree.
fit(Formula, DataFrame) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, double) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, double[], double[], double[]) - Static method in class smile.regression.RidgeRegression
Fits a generalized ridge regression model that minimizes a weighted least squares criterion augmented with a generalized ridge penalty:
fit(Formula, DataFrame, double, double) - Static method in class smile.regression.ElasticNet
Fits an Elastic Net model.
fit(Formula, DataFrame, double, double, double, int) - Static method in class smile.regression.ElasticNet
Fits an Elastic Net model.
fit(Formula, DataFrame, double, double, int) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, int, int, int) - Static method in class smile.regression.RegressionTree
Fits a regression tree.
fit(Formula, DataFrame, int, int, int, int) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, int, int, int, int, double, double) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, int, int, int, int, int, double) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, int, int, int, double, LongStream) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[]) - Static method in class smile.classification.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[], LongStream) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, String, boolean, boolean) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary data frame classifiers.
fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary data frame classifiers.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.AdaBoost
Fits a AdaBoost model.
fit(Formula, DataFrame, Properties) - Method in interface smile.classification.DataFrameClassifier.Trainer
Fits a classification model.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.DecisionTree
Fits a classification tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.GradientTreeBoost
Fits a gradient tree boosting for classification.
fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RandomForest
Fits a random forest for classification.
fit(Formula, DataFrame, Properties) - Method in interface smile.regression.DataFrameRegression.Trainer
Fits a regression model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.ElasticNet
Fits an Elastic Net model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.LASSO
Fits a L1-regularized least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.OLS
Fits an ordinary least squares model.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RandomForest
Fits a random forest for regression.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RegressionTree
Fits a regression tree.
fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RidgeRegression
Fits a ridge regression model.
fit(Formula, DataFrame, Loss, int, int, int, int, double, double) - Static method in class smile.regression.GradientTreeBoost
Fits a gradient tree boosting for regression.
fit(Formula, DataFrame, SplitRule, int, int, int) - Static method in class smile.classification.DecisionTree
Fits a classification tree.
fit(Formula, DataFrame, Model) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(Formula, DataFrame, Model, double, int) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(Formula, DataFrame, Model, Properties) - Static method in class smile.glm.GLM
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
fit(SparseDataset<Integer>) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(SparseDataset<Integer>, double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(SparseDataset<Integer>, Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits logistic regression.
fit(Tuple[][], int[][]) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], int, int, int, int, double) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(Tuple[][], int[][], Properties) - Static method in class smile.sequence.CRF
Fits a CRF model.
fit(BaseVector<?, ?, ?>) - Static method in class smile.classification.ClassLabels
Fits the class label mapping.
fit(DifferentiableMultivariateFunction, double[][], double[], double[]) - Static method in class smile.math.LevenbergMarquardt
Fits the nonlinear least squares.
fit(DifferentiableMultivariateFunction, double[][], double[], double[], double, int) - Static method in class smile.math.LevenbergMarquardt
Fits the nonlinear least squares.
fit(DifferentiableMultivariateFunction, double[], double[], double[]) - Static method in class smile.math.LevenbergMarquardt
Fits the nonlinear least squares.
fit(DifferentiableMultivariateFunction, double[], double[], double[], double, int) - Static method in class smile.math.LevenbergMarquardt
Fits the nonlinear least squares.
fit(Matrix, int) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(Matrix, int, int, double) - Static method in class smile.clustering.SpectralClustering
Spectral graph clustering.
fit(RNNSearch<double[], double[]>, double[][], double) - Method in class smile.neighbor.MPLSH
Fits the posteriori multiple probe algorithm.
fit(RNNSearch<double[], double[]>, double[][], double, int) - Method in class smile.neighbor.MPLSH
Fits the posteriori multiple probe algorithm.
fit(RNNSearch<double[], double[]>, double[][], double, int, double) - Method in class smile.neighbor.MPLSH
Train the posteriori multiple probe algorithm.
fit(SparseArray[], double[], int, double, double, double) - Static method in class smile.regression.SVM
Fits a linear epsilon-SVR of sparse data.
fit(SparseArray[], int) - Static method in class smile.clustering.SIB
Clustering data into k clusters up to 100 iterations.
fit(SparseArray[], int[], int, double, double) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(SparseArray[], int[], int, double, double, int) - Static method in class smile.classification.SVM
Fits a binary linear SVM.
fit(SparseArray[], int, int) - Static method in class smile.clustering.SIB
Clustering data into k clusters.
fit(T[]) - Method in class smile.base.svm.OCSVM
Fits a one-class support vector machine.
fit(T[][], int[][], Function<T, Tuple>) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], Function<T, Tuple>, int, int, int, int, double) - Static method in class smile.sequence.CRFLabeler
Fits a CRF.
fit(T[][], int[][], Function<T, Tuple>, Properties) - Static method in class smile.sequence.CRFLabeler
Fits a CRF model.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMM
Fits an HMM by maximum likelihood estimation.
fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMMLabeler
Fits an HMM by maximum likelihood estimation.
fit(T[], double[]) - Method in class smile.base.svm.SVR
Fits an epsilon support vector regression model.
fit(T[], double[]) - Method in interface smile.regression.Regression.Trainer
Fits a regression model with the default hyperparameters.
fit(T[], double[], Properties) - Method in interface smile.regression.Regression.Trainer
Fits a regression model.
fit(T[], double[], RBF<T>[]) - Static method in class smile.regression.RBFNetwork
Fits an RBF network.
fit(T[], double[], RBF<T>[], boolean) - Static method in class smile.regression.RBFNetwork
Fits an RBF network.
fit(T[], double[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model by the method of subset of regressors.
fit(T[], double[], MercerKernel<T>, double, boolean, double, int) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(T[], double[], MercerKernel<T>, double, double, double) - Static method in class smile.regression.SVM
Fits an epsilon-SVR.
fit(T[], double[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits a regular Gaussian process model.
fit(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model by the method of subset of regressors.
fit(T[], int[]) - Method in interface smile.classification.Classifier.Trainer
Fits a classification model with the default hyperparameters.
fit(T[], int[], int) - Method in class smile.base.svm.LASVM
Trains the model.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(T[], int[], int, Distance<T>) - Static method in class smile.classification.KNN
Fits the K-NN classifier.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
Fits a multi-class model with binary classifiers.
fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
Fits a multi-class model with binary classifiers.
fit(T[], int[], Properties) - Method in interface smile.classification.Classifier.Trainer
Fits a classification model.
fit(T[], int[], RBF<T>[]) - Static method in class smile.classification.RBFNetwork
Fits an RBF network.
fit(T[], int[], RBF<T>[], boolean) - Static method in class smile.classification.RBFNetwork
Fits an RBF network.
fit(T[], int[], Distance<T>) - Static method in class smile.classification.KNN
Fits the 1-NN classifier.
fit(T[], int[], MercerKernel<T>, double, double) - Static method in class smile.classification.SVM
Fits a binary SVM.
fit(T[], int[], MercerKernel<T>, double, double, int) - Static method in class smile.classification.SVM
Fits a binary SVM.
fit(T[], Distance<T>, int) - Static method in class smile.clustering.CLARANS
Clustering data into k clusters.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.MEC
Clustering the data.
fit(T[], Distance<T>, int, int) - Static method in class smile.clustering.CLARANS
Constructor.
fit(T[], Metric<T>, int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(T[], Metric<T>, int, double) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(T[], Metric<T>, int, int) - Static method in class smile.base.rbf.RBF
Fits Gaussian RBF function and centers on data.
fit(T[], MercerKernel<T>) - Static method in class smile.anomaly.SVM
Fits a one-class SVM.
fit(T[], MercerKernel<T>, double, double) - Static method in class smile.anomaly.SVM
Fits a one-class SVM.
fit(T[], MercerKernel<T>, int) - Static method in class smile.manifold.KPCA
Fits kernel principal component analysis.
fit(T[], MercerKernel<T>, int, double) - Static method in class smile.manifold.KPCA
Fits kernel principal component analysis.
fit(T[], RNNSearch<T, T>, int, double) - Static method in class smile.clustering.DBSCAN
Clustering the data.
fit(T[], RNNSearch<T, T>, int, double, int[], double) - Static method in class smile.clustering.MEC
Clustering the data.
fitness() - Method in class smile.gap.BitString
 
fitness() - Method in interface smile.gap.Chromosome
Returns the fitness of chromosome.
fitness(double[][], double[], double[][], double[], RegressionMetric, BiFunction<double[][], double[], Regression<double[]>>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the regression model.
fitness(double[][], int[], double[][], int[], ClassificationMetric, BiFunction<double[][], int[], Classifier<double[]>>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the classification model.
fitness(String, DataFrame, DataFrame, ClassificationMetric, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the classification model.
fitness(String, DataFrame, DataFrame, RegressionMetric, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.feature.selection.GAFE
Returns the fitness of the regression model.
Fitness<T> - Interface in smile.gap
A measure to evaluate the fitness of chromosomes.
fittedValues - Variable in class smile.math.LevenbergMarquardt
The fitted values.
fittedValues() - Method in class smile.glm.GLM
Returns the fitted mean values.
fittedValues() - Method in class smile.regression.LinearModel
Returns the fitted values.
fittedValues() - Method in class smile.timeseries.AR
Returns the fitted values.
fittedValues() - Method in class smile.timeseries.ARMA
Returns the fitted values.
fitTime() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the fitTime record component.
fitTime() - Method in record class smile.validation.RegressionMetrics
Returns the value of the fitTime record component.
flatten() - Method in class smile.deep.tensor.Tensor
Flattens the tensor by reshaping it into a one-dimensional tensor.
flatten(int) - Method in class smile.deep.tensor.Tensor
Flattens the tensor by reshaping it into a one-dimensional tensor.
flatten(int, int) - Method in class smile.deep.tensor.Tensor
Flattens the tensor by reshaping it into a one-dimensional tensor.
flatten(String[], String[]) - Method in class smile.plot.vega.Transform
Adds a flatten transform.
FLD - Class in smile.classification
Fisher's linear discriminant.
FLD(double[], double[][], Matrix) - Constructor for class smile.classification.FLD
Constructor.
FLD(double[], double[][], Matrix, IntSet) - Constructor for class smile.classification.FLD
Constructor.
Float - Enum constant in enum class smile.data.type.DataType.ID
Float type ID.
FLOAT_DIGITS - Static variable in class smile.math.MathEx
The number of digits (in radix base) in the mantissa.
FLOAT_EPSILON - Static variable in class smile.math.MathEx
The machine precision for the float type, which is the difference between 1 and the smallest value greater than 1 that is representable for the float type.
FLOAT_MACHEP - Static variable in class smile.math.MathEx
The largest negative integer such that 1.0 + RADIXMACHEP ≠ 1.0, except that machep is bounded below by -(DIGITS+3)
FLOAT_NEGEP - Static variable in class smile.math.MathEx
The largest negative integer such that 1.0 - RADIXNEGEP ≠ 1.0, except that negeps is bounded below by -(DIGITS+3)
Float16 - Enum constant in enum class smile.deep.tensor.ScalarType
Half-precision floating-point number.
Float32 - Enum constant in enum class smile.deep.tensor.ScalarType
Single-precision floating-point number.
Float64 - Enum constant in enum class smile.deep.tensor.ScalarType
Double-precision floating-point number.
floatArray() - Method in class smile.deep.tensor.Tensor
Returns the float array of tensor elements
FloatArrayCellRenderer - Class in smile.swing.table
Float array renderer in JTable.
FloatArrayCellRenderer() - Constructor for class smile.swing.table.FloatArrayCellRenderer
Constructor.
FloatArrayFormatter - Class in smile.swing.text
Text formatter for floating array values.
FloatArrayFormatter() - Constructor for class smile.swing.text.FloatArrayFormatter
 
FloatArrayType - Static variable in class smile.data.type.DataTypes
Float Array data type.
FloatConsumer - Interface in smile.math.matrix.fp32
Single precision matrix element stream consumer.
FloatHeapSelect - Class in smile.sort
This class tracks the smallest values seen thus far in a stream of values.
FloatHeapSelect(float[]) - Constructor for class smile.sort.FloatHeapSelect
Constructor.
FloatHeapSelect(int) - Constructor for class smile.sort.FloatHeapSelect
Constructor.
FloatObjectType - Static variable in class smile.data.type.DataTypes
Float Object data type.
FloatType - Class in smile.data.type
Float data type.
FloatType - Static variable in class smile.data.type.DataTypes
Float data type.
floatValue() - Method in class smile.deep.tensor.Tensor
Returns the float value when the tensor holds a single value.
floatVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
floatVector(int) - Method in class smile.data.IndexDataFrame
 
floatVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
floatVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
FloatVector - Interface in smile.data.vector
An immutable float vector.
floor(String) - Static method in interface smile.data.formula.Terms
The floor(x) term.
floor(Term) - Static method in interface smile.data.formula.Terms
The floor(x) term.
fold(String[], String[]) - Method in class smile.plot.vega.Transform
Adds a fold transform.
folder2Id - Static variable in interface smile.vision.ImageNet
The map from folder name to class id.
folder2Target - Static variable in interface smile.vision.ImageNet
The functor mapping folder name to class id.
folders - Static variable in interface smile.vision.ImageNet
Folder names in the same order of labels.
font(String) - Method in class smile.plot.vega.Config
Sets the default font for all text marks, titles, and labels.
FontCellEditor - Class in smile.swing.table
Font editor in JTable.
FontCellEditor() - Constructor for class smile.swing.table.FontCellEditor
Constructor.
FontCellRenderer - Class in smile.swing.table
Font renderer in JTable.
FontCellRenderer() - Constructor for class smile.swing.table.FontCellRenderer
Constructor.
FontCellRenderer(String) - Constructor for class smile.swing.table.FontCellRenderer
Constructor.
FontChooser - Class in smile.swing
The FontChooser class is a swing component for font selection with JFileChooser-like APIs.
FontChooser() - Constructor for class smile.swing.FontChooser
Constructs a FontChooser object.
FontChooser(String[]) - Constructor for class smile.swing.FontChooser
Constructs a FontChooser object using the given font size array.
forEach(ArrayElementConsumer) - Method in class smile.util.SparseArray
Performs an action for each nonzero entry.
forEachEdge(int, ArrayElementConsumer) - Method in class smile.graph.AdjacencyList
 
forEachEdge(int, ArrayElementConsumer) - Method in class smile.graph.AdjacencyMatrix
 
forEachEdge(int, ArrayElementConsumer) - Method in class smile.graph.Graph
Performs an action for each edge of a vertex.
forEachNonZero(int, int, DoubleConsumer) - Method in class smile.math.matrix.SparseMatrix
For each loop on non-zero elements.
forEachNonZero(int, int, FloatConsumer) - Method in class smile.math.matrix.fp32.SparseMatrix
For each loop on non-zero elements.
forEachNonZero(DoubleConsumer) - Method in class smile.math.matrix.SparseMatrix
For each loop on non-zero elements.
forecast() - Method in class smile.timeseries.AR
Returns 1-step ahead forecast.
forecast() - Method in class smile.timeseries.ARMA
Returns 1-step ahead forecast.
forecast(int) - Method in class smile.timeseries.AR
Returns l-step ahead forecast.
forecast(int) - Method in class smile.timeseries.ARMA
Returns l-step ahead forecast.
FOREST_GREEN - Static variable in interface smile.plot.swing.Palette
 
format(double) - Static method in interface smile.util.Strings
Returns the string representation of a floating number with the minimum necessary precision.
format(float) - Static method in interface smile.util.Strings
Returns the string representation of a floating number with the minimum necessary precision.
format(String) - Method in class smile.plot.vega.Axis
Sets the text format.
format(String) - Method in class smile.plot.vega.Data
Sets the format for parsing the data.
format(String) - Method in class smile.plot.vega.Legend
Sets the text format.
format(String, Map<String, String>) - Method in class smile.plot.vega.Data
Sets the format for parsing the data.
FormatConfig - Class in smile.plot.vega
These config properties define the default number and time formats for text marks as well as axes, headers, tooltip, and legends.
formatType(String) - Method in class smile.plot.vega.Axis
Sets the format type for labels.
formatType(String) - Method in class smile.plot.vega.Legend
Sets the format type for labels.
formula - Variable in class smile.base.cart.CART
The model formula.
formula - Variable in class smile.glm.GLM
The symbolic description of the model to be fitted.
formula() - Method in class smile.classification.AdaBoost
 
formula() - Method in interface smile.classification.DataFrameClassifier
Returns the formula associated with the model.
formula() - Method in class smile.classification.DecisionTree
Returns null if the tree is part of ensemble algorithm.
formula() - Method in class smile.classification.GradientTreeBoost
 
formula() - Method in class smile.classification.RandomForest
 
formula() - Method in interface smile.feature.importance.TreeSHAP
Returns the formula associated with the model.
formula() - Method in interface smile.regression.DataFrameRegression
Returns the model formula.
formula() - Method in class smile.regression.GradientTreeBoost
 
formula() - Method in class smile.regression.LinearModel
 
formula() - Method in class smile.regression.RandomForest
 
formula() - Method in class smile.regression.RegressionTree
Returns null if the tree is part of ensemble algorithm.
Formula - Class in smile.data.formula
The model fitting formula in a compact symbolic form.
Formula(Term, Term...) - Constructor for class smile.data.formula.Formula
Constructor.
forward(BufferedImage...) - Method in interface smile.vision.transform.Transform
Transforms images to 4-D tensor with shape [samples, channels, height, width].
forward(BufferedImage...) - Method in class smile.vision.VisionModel
Forward propagation (or forward pass) through the model.
forward(Tensor) - Method in class smile.deep.activation.GELU
 
forward(Tensor) - Method in class smile.deep.activation.GLU
 
forward(Tensor) - Method in class smile.deep.activation.HardShrink
 
forward(Tensor) - Method in class smile.deep.activation.LeakyReLU
 
forward(Tensor) - Method in class smile.deep.activation.LogSigmoid
 
forward(Tensor) - Method in class smile.deep.activation.LogSoftmax
 
forward(Tensor) - Method in class smile.deep.activation.ReLU
 
forward(Tensor) - Method in class smile.deep.activation.Sigmoid
 
forward(Tensor) - Method in class smile.deep.activation.SiLU
 
forward(Tensor) - Method in class smile.deep.activation.Softmax
 
forward(Tensor) - Method in class smile.deep.activation.SoftShrink
 
forward(Tensor) - Method in class smile.deep.activation.Tanh
 
forward(Tensor) - Method in class smile.deep.activation.TanhShrink
 
forward(Tensor) - Method in class smile.deep.layer.AdaptiveAvgPool2dLayer
 
forward(Tensor) - Method in class smile.deep.layer.AvgPool2dLayer
 
forward(Tensor) - Method in class smile.deep.layer.BatchNorm1dLayer
 
forward(Tensor) - Method in class smile.deep.layer.BatchNorm2dLayer
 
forward(Tensor) - Method in class smile.deep.layer.Conv2dLayer
 
forward(Tensor) - Method in class smile.deep.layer.DropoutLayer
 
forward(Tensor) - Method in class smile.deep.layer.EmbeddingLayer
 
forward(Tensor) - Method in class smile.deep.layer.GroupNormLayer
 
forward(Tensor) - Method in interface smile.deep.layer.Layer
Forward propagation (or forward pass) through the layer.
forward(Tensor) - Method in class smile.deep.layer.LinearLayer
 
forward(Tensor) - Method in class smile.deep.layer.MaxPool2dLayer
 
forward(Tensor) - Method in class smile.deep.layer.RMSNormLayer
 
forward(Tensor) - Method in class smile.deep.layer.SequentialBlock
 
forward(Tensor) - Method in class smile.deep.Model
Forward propagation (or forward pass) through the model.
forward(Tensor) - Method in class smile.llm.llama.FeedForward
Feed forward.
forward(Tensor) - Method in class smile.llm.llama.Transformer
 
forward(Tensor) - Method in class smile.llm.PositionalEncoding
 
forward(Tensor) - Method in class smile.vision.EfficientNet
 
forward(Tensor) - Method in class smile.vision.layer.Conv2dNormActivation
 
forward(Tensor) - Method in class smile.vision.layer.FusedMBConv
 
forward(Tensor) - Method in class smile.vision.layer.MBConv
 
forward(Tensor) - Method in class smile.vision.layer.SqueezeExcitation
 
forward(Tensor) - Method in class smile.vision.layer.StochasticDepth
 
forward(Tensor, int) - Method in class smile.llm.llama.Transformer
Forward pass through the model.
forward(Tensor, int, Tensor, Tensor) - Method in class smile.llm.llama.Attention
Forward pass through the attention module.
forward(Tensor, int, Tensor, Tensor) - Method in class smile.llm.llama.TransformerBlock
Forward pass through the block.
FPGrowth - Class in smile.association
Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form.
FPTree - Class in smile.association
FP-tree data structure used in FP-growth (frequent pattern growth) algorithm for frequent item set mining.
frame(Integer, Integer) - Method in class smile.plot.vega.ImputeTransform
Sets the frame to control the window over which the specified method is applied.
frame(Integer, Integer) - Method in class smile.plot.vega.WindowTransform
Sets the frame specification indicating how the sliding window should proceed.
frame(DataFrame) - Method in class smile.data.formula.Formula
Returns a data frame of predictors and optionally response variable (if input data frame has the related variable(s)).
from(String, int, int) - Static method in record class smile.llm.llama.ModelArgs
Loads the model hyperparameters from a JSON file.
from(Path) - Static method in interface smile.data.BinarySparseDataset
Parse a binary sparse dataset from a file, of which each line is a data item which are the indices of nonzero elements.
from(Path) - Static method in interface smile.data.SparseDataset
Parses spare dataset in coordinate triple tuple list format.
from(Path, int) - Static method in interface smile.data.SparseDataset
Reads spare dataset in coordinate triple tuple list format.
FScore - Class in smile.validation.metric
The F-score (or F-measure) considers both the precision and the recall of the test to compute the score.
FScore() - Constructor for class smile.validation.metric.FScore
Constructor of F1 score.
FScore(double, Averaging) - Constructor for class smile.validation.metric.FScore
Constructor of general F-score.
ftest() - Method in class smile.regression.LinearModel
Returns the F-statistic of goodness-of-fit.
FTest - Record Class in smile.stat.hypothesis
F test of the hypothesis that two independent samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.
FTest(double, int, int, double) - Constructor for record class smile.stat.hypothesis.FTest
Creates an instance of a FTest record class.
full(double, long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with the given value.
full(long, long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with the given value.
Function - Interface in smile.math
An interface representing a univariate real function.
function_call - Enum constant in enum class smile.llm.FinishReason
The model decided to call a function.
FusedMBConv - Class in smile.vision.layer
Fused-MBConv replaces the depthwise-conv3×3 and expansion-conv1×1 in MBConv with single regular conv3×3.
FusedMBConv(MBConvConfig, double, IntFunction<Layer>) - Constructor for class smile.vision.layer.FusedMBConv
Constructor.
FusedMBConv(double, int, int, int, int, int) - Static method in record class smile.vision.layer.MBConvConfig
Returns the config for Fused-MBConv block.
FW - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Foreign word.

G

g(double) - Method in class smile.ica.Exp
 
g(double) - Method in class smile.ica.Kurtosis
 
g(double) - Method in class smile.ica.LogCosh
 
g(double) - Method in interface smile.math.DifferentiableFunction
Computes the gradient/derivative at x.
g(double[], double[]) - Method in interface smile.base.mlp.ActivationFunction
The gradient function.
g(double[], double[]) - Method in interface smile.math.DifferentiableMultivariateFunction
Computes the value and gradient at x.
g(Cost, double[], double[]) - Method in enum class smile.base.mlp.OutputFunction
The gradient function.
g2(double) - Method in class smile.ica.Exp
 
g2(double) - Method in class smile.ica.Kurtosis
 
g2(double) - Method in class smile.ica.LogCosh
 
g2(double) - Method in interface smile.math.DifferentiableFunction
Compute the second-order derivative at x.
GAFE - Class in smile.feature.selection
Genetic algorithm based feature selection.
GAFE() - Constructor for class smile.feature.selection.GAFE
Constructor.
GAFE(Selection, int, Crossover, double, double) - Constructor for class smile.feature.selection.GAFE
Constructor.
gamma(double) - Static method in class smile.math.special.Gamma
Gamma function.
Gamma - Class in smile.math.special
The gamma, digamma, and incomplete gamma functions.
GammaDistribution - Class in smile.stat.distribution
The Gamma distribution is a continuous probability distributions with a scale parameter θ and a shape parameter k.
GammaDistribution(double, double) - Constructor for class smile.stat.distribution.GammaDistribution
Constructor.
gather(int, Tensor) - Method in class smile.deep.tensor.Tensor
Gathers values along an axis specified by dim.
Gaussian - Class in smile.math.kernel
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
Gaussian(double, double, double) - Constructor for class smile.math.kernel.Gaussian
Constructor.
Gaussian(double, double) - Static method in interface smile.vq.Neighborhood
Returns Gaussian neighborhood function.
GaussianDistribution - Class in smile.stat.distribution
The normal distribution or Gaussian distribution is a continuous probability distribution that describes data that clusters around a mean.
GaussianDistribution(double, double) - Constructor for class smile.stat.distribution.GaussianDistribution
Constructor
GaussianKernel - Class in smile.math.kernel
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
GaussianKernel(double) - Constructor for class smile.math.kernel.GaussianKernel
Constructor.
GaussianKernel(double, double, double) - Constructor for class smile.math.kernel.GaussianKernel
Constructor.
GaussianMixture - Class in smile.stat.distribution
Finite univariate Gaussian mixture.
GaussianMixture(Mixture.Component...) - Constructor for class smile.stat.distribution.GaussianMixture
Constructor.
GaussianProcessRegression<T> - Class in smile.regression
Gaussian Process for Regression.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double, Matrix.Cholesky, double) - Constructor for class smile.regression.GaussianProcessRegression
Constructor.
GaussianProcessRegression.JointPrediction - Class in smile.regression
The joint prediction of multiple data points.
GaussianRadialBasis - Class in smile.math.rbf
Gaussian RBF.
GaussianRadialBasis() - Constructor for class smile.math.rbf.GaussianRadialBasis
Constructor.
GaussianRadialBasis(double) - Constructor for class smile.math.rbf.GaussianRadialBasis
Constructor.
GaussianVariogram - Class in smile.interpolation.variogram
Gaussian variogram.
GaussianVariogram(double, double) - Constructor for class smile.interpolation.variogram.GaussianVariogram
Constructor.
GaussianVariogram(double, double, double) - Constructor for class smile.interpolation.variogram.GaussianVariogram
Constructor.
gbmv(Layout, Transpose, int, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a band matrix.
gbmv(Layout, Transpose, int, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbmv(Layout, Transpose, int, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a band matrix.
gbmv(Layout, Transpose, int, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbmv(Layout, Transpose, int, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a band matrix.
gbmv(Layout, Transpose, int, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbmv(Layout, Transpose, int, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a band matrix.
gbmv(Layout, Transpose, int, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbsv(Layout, int, int, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gbsv(Layout, int, int, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbsv(Layout, int, int, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gbsv(Layout, int, int, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbsv(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gbsv(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbsv(Layout, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gbsv(Layout, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrf(Layout, int, int, int, int, double[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
gbtrf(Layout, int, int, int, int, double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrf(Layout, int, int, int, int, float[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
gbtrf(Layout, int, int, int, int, float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrf(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
gbtrf(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrf(Layout, int, int, int, int, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
gbtrf(Layout, int, int, int, int, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrs(Layout, Transpose, int, int, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
gbtrs(Layout, Transpose, int, int, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrs(Layout, Transpose, int, int, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
gbtrs(Layout, Transpose, int, int, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrs(Layout, Transpose, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
gbtrs(Layout, Transpose, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gbtrs(Layout, Transpose, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
gbtrs(Layout, Transpose, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ge(double) - Method in class smile.deep.tensor.Tensor
Computes element-wise greater-than-or-equal-to comparison.
ge(int) - Method in class smile.deep.tensor.Tensor
Computes element-wise greater-than-or-equal-to comparison.
ge(Tensor) - Method in class smile.deep.tensor.Tensor
Computes element-wise greater-than-or-equal-to comparison.
geev(Layout, EVDJob, EVDJob, int, double[], int, double[], double[], double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
geev(Layout, EVDJob, EVDJob, int, double[], int, double[], double[], double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
geev(Layout, EVDJob, EVDJob, int, float[], int, float[], float[], float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
geev(Layout, EVDJob, EVDJob, int, float[], int, float[], float[], float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
geev(Layout, EVDJob, EVDJob, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
geev(Layout, EVDJob, EVDJob, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
geev(Layout, EVDJob, EVDJob, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
geev(Layout, EVDJob, EVDJob, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
geev(Layout, EVDJob, EVDJob, int, DoublePointer, int, DoublePointer, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
geev(Layout, EVDJob, EVDJob, int, DoublePointer, int, DoublePointer, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gels(Layout, Transpose, int, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
gels(Layout, Transpose, int, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gels(Layout, Transpose, int, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
gels(Layout, Transpose, int, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gels(Layout, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
gels(Layout, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gels(Layout, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
gels(Layout, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsd(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
gelsd(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsd(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
gelsd(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsd(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
gelsd(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsd(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
gelsd(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelss(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
gelss(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelss(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
gelss(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelss(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
gelss(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelss(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
gelss(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsy(Layout, int, int, int, double[], int, double[], int, int[], double, int[]) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
gelsy(Layout, int, int, int, double[], int, double[], int, int[], double, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsy(Layout, int, int, int, float[], int, float[], int, int[], float, int[]) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
gelsy(Layout, int, int, int, float[], int, float[], int, int[], float, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsy(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, IntBuffer, double, IntBuffer) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
gelsy(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, IntBuffer, double, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelsy(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, IntBuffer, float, IntBuffer) - Method in interface smile.math.blas.LAPACK
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
gelsy(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, IntBuffer, float, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gelu(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with GELU activation function.
gelu(int, int, double) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with GELU activation function.
GELU - Class in smile.deep.activation
Gaussian Error Linear Unit activation function.
GELU(boolean) - Constructor for class smile.deep.activation.GELU
Constructor.
gemm(Layout, Transpose, Transpose, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation.
gemm(Layout, Transpose, Transpose, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemm(Layout, Transpose, Transpose, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation.
gemm(Layout, Transpose, Transpose, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemm(Layout, Transpose, Transpose, int, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation.
gemm(Layout, Transpose, Transpose, int, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemm(Layout, Transpose, Transpose, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation.
gemm(Layout, Transpose, Transpose, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemm(Layout, Transpose, Transpose, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation.
gemm(Layout, Transpose, Transpose, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemv(Layout, Transpose, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation.
gemv(Layout, Transpose, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemv(Layout, Transpose, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation.
gemv(Layout, Transpose, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemv(Layout, Transpose, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation.
gemv(Layout, Transpose, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemv(Layout, Transpose, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation.
gemv(Layout, Transpose, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gemv(Layout, Transpose, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation.
gemv(Layout, Transpose, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
generate(int[][], int, double, double, boolean, Long, SubmissionPublisher<String>) - Method in class smile.llm.llama.Llama
Generates text sequences based on provided prompts.
generateSeed() - Static method in class smile.math.MathEx
Returns a random number to seed other random number generators.
generateSeed(int) - Static method in class smile.math.MathEx
Returns the given number of random bytes to seed other random number generators.
GeneticAlgorithm<T> - Class in smile.gap
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.
GeneticAlgorithm(T[]) - Constructor for class smile.gap.GeneticAlgorithm
Constructor.
GeneticAlgorithm(T[], Selection, int) - Constructor for class smile.gap.GeneticAlgorithm
Constructor.
GeometricDistribution - Class in smile.stat.distribution
The geometric distribution is a discrete probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set {1, 2, 3, …}.
GeometricDistribution(double) - Constructor for class smile.stat.distribution.GeometricDistribution
Constructor.
geqrf(Layout, int, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
Computes a QR factorization of a general M-by-N matrix A.
geqrf(Layout, int, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
geqrf(Layout, int, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
Computes a QR factorization of a general M-by-N matrix A.
geqrf(Layout, int, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
geqrf(Layout, int, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Computes a QR factorization of a general M-by-N matrix A.
geqrf(Layout, int, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
geqrf(Layout, int, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Computes a QR factorization of a general M-by-N matrix A.
geqrf(Layout, int, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
geqrf(Layout, int, int, DoublePointer, int, DoublePointer) - Method in interface smile.math.blas.LAPACK
Computes a QR factorization of a general M-by-N matrix A.
geqrf(Layout, int, int, DoublePointer, int, DoublePointer) - Method in class smile.math.blas.openblas.OpenBLAS
 
ger(Layout, int, int, double, double[], int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation.
ger(Layout, int, int, double, double[], int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ger(Layout, int, int, double, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation.
ger(Layout, int, int, double, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ger(Layout, int, int, double, DoublePointer, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation.
ger(Layout, int, int, double, DoublePointer, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ger(Layout, int, int, float, float[], int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation.
ger(Layout, int, int, float, float[], int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ger(Layout, int, int, float, FloatBuffer, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation.
ger(Layout, int, int, float, FloatBuffer, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesdd(Layout, SVDJob, int, int, double[], int, double[], double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesdd(Layout, SVDJob, int, int, double[], int, double[], double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesdd(Layout, SVDJob, int, int, float[], int, float[], float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesdd(Layout, SVDJob, int, int, float[], int, float[], float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesdd(Layout, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesdd(Layout, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesdd(Layout, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesdd(Layout, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesdd(Layout, SVDJob, int, int, DoublePointer, int, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesdd(Layout, SVDJob, int, int, DoublePointer, int, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesv(Layout, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gesv(Layout, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesv(Layout, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gesv(Layout, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesv(Layout, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gesv(Layout, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesv(Layout, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gesv(Layout, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesv(Layout, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
gesv(Layout, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesvd(Layout, SVDJob, SVDJob, int, int, double[], int, double[], double[], int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesvd(Layout, SVDJob, SVDJob, int, int, double[], int, double[], double[], int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesvd(Layout, SVDJob, SVDJob, int, int, float[], int, float[], float[], int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesvd(Layout, SVDJob, SVDJob, int, int, float[], int, float[], float[], int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesvd(Layout, SVDJob, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesvd(Layout, SVDJob, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gesvd(Layout, SVDJob, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
gesvd(Layout, SVDJob, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
get(double[]) - Method in class smile.neighbor.lsh.Hash
Returns the bucket entry for the given point.
get(int) - Method in interface smile.data.DataFrame
Returns the row at the specified index.
get(int) - Method in interface smile.data.Dataset
Returns the instance at the specified index.
get(int) - Method in class smile.data.IndexDataFrame
 
get(int) - Method in interface smile.data.Tuple
Returns the value at position i.
get(int) - Method in interface smile.data.vector.BaseVector
Returns the value at position i, which may be null.
get(int) - Method in class smile.math.Complex.Array
Returns the i-th element.
get(int) - Method in class smile.math.matrix.fp32.SparseMatrix
Returns the element at the storage index.
get(int) - Method in class smile.math.matrix.SparseMatrix
Returns the element at the storage index.
get(int) - Method in class smile.neighbor.lsh.Hash
Returns the bucket entry for the given hash value.
get(int) - Method in class smile.sort.DoubleHeapSelect
Returns the i-th smallest value seen so far.
get(int) - Method in class smile.sort.FloatHeapSelect
Returns the i-th smallest value seen so far.
get(int) - Method in class smile.sort.HeapSelect
Returns the i-th smallest value seen so far.
get(int) - Method in class smile.sort.IntHeapSelect
Returns the i-th smallest value seen so far.
get(int) - Method in class smile.util.DoubleArrayList
Returns the value at the specified position in this list.
get(int) - Method in class smile.util.IntArrayList
Returns the value at the specified position in this list.
get(int) - Method in class smile.util.IntDoubleHashMap
Returns the value to which the specified key is mapped, or Double.NaN if this map contains no mapping for the key.
get(int) - Method in class smile.util.SparseArray
Returns the value of i-th entry.
get(int...) - Method in interface smile.data.vector.BaseVector
Returns a new vector with selected entries.
get(int...) - Method in interface smile.data.vector.BooleanVector
 
get(int...) - Method in interface smile.data.vector.ByteVector
 
get(int...) - Method in interface smile.data.vector.CharVector
 
get(int...) - Method in interface smile.data.vector.DoubleVector
 
get(int...) - Method in interface smile.data.vector.FloatVector
 
get(int...) - Method in interface smile.data.vector.IntVector
 
get(int...) - Method in interface smile.data.vector.LongVector
 
get(int...) - Method in interface smile.data.vector.ShortVector
 
get(int...) - Method in interface smile.data.vector.StringVector
 
get(int...) - Method in interface smile.data.vector.Vector
 
get(int...) - Method in class smile.deep.tensor.Tensor
Returns a portion of tensor given the indices.
get(int[], int[]) - Method in class smile.math.matrix.BigMatrix
Returns the matrix of selected rows and columns.
get(int[], int[]) - Method in class smile.math.matrix.fp32.Matrix
Returns the matrix of selected rows and columns.
get(int[], int[]) - Method in class smile.math.matrix.Matrix
Returns the matrix of selected rows and columns.
get(int, int) - Method in interface smile.data.BinarySparseDataset
Returns the binary value at entry (i, j) by binary search.
get(int, int) - Method in interface smile.data.DataFrame
Returns the cell at (i, j).
get(int, int) - Method in class smile.data.IndexDataFrame
 
get(int, int) - Method in interface smile.data.SparseDataset
Returns the value at entry (i, j).
get(int, int) - Method in class smile.math.matrix.BandMatrix
 
get(int, int) - Method in class smile.math.matrix.BigMatrix
 
get(int, int) - Method in class smile.math.matrix.fp32.BandMatrix
 
get(int, int) - Method in class smile.math.matrix.fp32.IMatrix
Returns A[i,j].
get(int, int) - Method in class smile.math.matrix.fp32.Matrix
 
get(int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
 
get(int, int) - Method in class smile.math.matrix.fp32.SymmMatrix
 
get(int, int) - Method in class smile.math.matrix.IMatrix
Returns A[i,j].
get(int, int) - Method in class smile.math.matrix.Matrix
 
get(int, int) - Method in class smile.math.matrix.SparseMatrix
 
get(int, int) - Method in class smile.math.matrix.SymmMatrix
 
get(int, int) - Method in interface smile.plot.swing.Hexmap.Tooltip
Gets the tooltip of cell at (i, j).
get(int, int) - Method in class smile.util.Array2D
Returns A[i, j].
get(int, int) - Method in class smile.util.IntArray2D
Returns A[i, j].
get(int, String) - Method in interface smile.data.DataFrame
Returns the cell at (i, j).
get(long...) - Method in class smile.deep.tensor.Tensor
Returns a portion of tensor given the indices.
get(String) - Method in interface smile.data.Tuple
Returns the value by field name.
get(String) - Method in class smile.hash.PerfectHash
Returns the index of a keyword.
get(String) - Method in class smile.hash.PerfectMap
Returns the value associated with the key.
get(String) - Method in class smile.nlp.embedding.Word2Vec
Returns the embedding vector of a word.
get(String) - Static method in class smile.nlp.pos.EnglishPOSLexicon
Returns the part-of-speech tags for given word, or null if the word does not exist in the dictionary.
get(K) - Method in class smile.nlp.Trie
Returns the node of a given key.
get(K[]) - Method in class smile.nlp.Trie
Returns the associated value of a given key.
get(Index...) - Method in class smile.deep.tensor.Tensor
Returns a portion of tensor given the indices.
get(Tensor) - Method in class smile.deep.tensor.Tensor
Returns a portion of tensor given the indices.
getAbbreviation(String) - Method in interface smile.nlp.dictionary.Abbreviations
Returns the abbreviation for a word.
getAnchor() - Method in interface smile.nlp.AnchorText
Returns the anchor text if any.
getAnchor() - Method in class smile.nlp.SimpleText
Returns the anchor text if any.
getArray(int) - Method in interface smile.data.Tuple
Returns the value at position i of array type.
getArray(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) of array type.
getArray(int, String) - Method in interface smile.data.DataFrame
Returns the field value of array type.
getArray(String) - Method in interface smile.data.Tuple
Returns the field value of array type.
getAs(int) - Method in interface smile.data.Tuple
Returns the value at position i.
getAs(String) - Method in interface smile.data.Tuple
Returns the value of a given fieldName.
getAxis(int) - Method in class smile.plot.swing.Canvas
Returns the i-th axis.
getAxisLabel(int) - Method in class smile.plot.swing.Canvas
Returns the label/legend of an axis.
getAxisLabels() - Method in class smile.plot.swing.Canvas
Returns the labels/legends of axes.
getBoolean(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive boolean.
getBoolean(int) - Method in interface smile.data.vector.BaseVector
Returns the boolean value at position i.
getBoolean(int) - Method in interface smile.data.vector.ByteVector
 
getBoolean(int) - Method in interface smile.data.vector.CharVector
 
getBoolean(int) - Method in interface smile.data.vector.DoubleVector
 
getBoolean(int) - Method in interface smile.data.vector.FloatVector
 
getBoolean(int) - Method in interface smile.data.vector.IntVector
 
getBoolean(int) - Method in interface smile.data.vector.LongVector
 
getBoolean(int) - Method in interface smile.data.vector.ShortVector
 
getBoolean(int) - Method in interface smile.data.vector.StringVector
 
getBoolean(int) - Method in interface smile.data.vector.Vector
 
getBoolean(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive boolean.
getBoolean(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive boolean.
getBoolean(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive boolean.
getByte(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive byte.
getByte(int) - Method in interface smile.data.vector.BaseVector
Returns the byte value at position i.
getByte(int) - Method in interface smile.data.vector.BooleanVector
 
getByte(int) - Method in interface smile.data.vector.CharVector
 
getByte(int) - Method in interface smile.data.vector.DoubleVector
 
getByte(int) - Method in interface smile.data.vector.FloatVector
 
getByte(int) - Method in interface smile.data.vector.IntVector
 
getByte(int) - Method in interface smile.data.vector.LongVector
 
getByte(int) - Method in interface smile.data.vector.ShortVector
 
getByte(int) - Method in interface smile.data.vector.StringVector
 
getByte(int) - Method in interface smile.data.vector.Vector
 
getByte(int...) - Method in class smile.deep.tensor.Tensor
Returns the byte value of element at given index.
getByte(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive byte.
getByte(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive byte.
getByte(long...) - Method in class smile.deep.tensor.Tensor
Returns the byte value of element at given index.
getByte(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive byte.
getCellEditor(int, int) - Method in class smile.swing.Table
 
getCellEditorValue() - Method in class smile.swing.table.ButtonCellRenderer
 
getCellEditorValue() - Method in class smile.swing.table.ColorCellEditor
 
getCellEditorValue() - Method in class smile.swing.table.DateCellEditor
 
getCellEditorValue() - Method in class smile.swing.table.DoubleArrayCellEditor
 
getCellEditorValue() - Method in class smile.swing.table.DoubleCellEditor
 
getCellEditorValue() - Method in class smile.swing.table.FontCellEditor
 
getCellEditorValue() - Method in class smile.swing.table.IntegerArrayCellEditor
 
getCellEditorValue() - Method in class smile.swing.table.IntegerCellEditor
 
getCellRenderer(int, int) - Method in class smile.swing.Table
 
getChar(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive byte.
getChar(int) - Method in interface smile.data.vector.BaseVector
Returns the character value at position i.
getChar(int) - Method in interface smile.data.vector.BooleanVector
 
getChar(int) - Method in interface smile.data.vector.ByteVector
 
getChar(int) - Method in interface smile.data.vector.DoubleVector
 
getChar(int) - Method in interface smile.data.vector.FloatVector
 
getChar(int) - Method in interface smile.data.vector.IntVector
 
getChar(int) - Method in interface smile.data.vector.LongVector
 
getChar(int) - Method in interface smile.data.vector.ShortVector
 
getChar(int) - Method in interface smile.data.vector.StringVector
 
getChar(int) - Method in interface smile.data.vector.Vector
 
getChar(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive byte.
getChar(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive byte.
getChar(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive byte.
getChild(K) - Method in class smile.nlp.Trie.Node
Returns the child with the key.
getChild(K[], int) - Method in class smile.nlp.Trie.Node
Returns the value matching the key sequence.
getClipNorm() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the gradient clipping norm.
getClipValue() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the gradient clipping value.
getColor() - Method in class smile.plot.swing.Graphics
Get the current color.
getComponentType() - Method in class smile.data.type.ArrayType
Returns the type of array elements.
getConcept(String) - Method in class smile.taxonomy.Taxonomy
Returns the concept node which synset contains the keyword.
getConcepts() - Method in class smile.taxonomy.Taxonomy
Returns all named concepts in the taxonomy.
getCoordinateSpace() - Method in class smile.plot.swing.Base
Returns the coordinates.
getDate(int) - Method in interface smile.data.Tuple
Returns the value at position i of date type as java.time.LocalDate.
getDate(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) of date type as java.time.LocalDate.
getDate(int, String) - Method in interface smile.data.DataFrame
Returns the field value of date type as java.time.LocalDate.
getDate(String) - Method in interface smile.data.Tuple
Returns the field value of date type as java.time.LocalDate.
getDateTime(int) - Method in interface smile.data.Tuple
Returns the value at position i of date type as java.time.LocalDateTime.
getDateTime(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as java.time.LocalDateTime.
getDateTime(int, String) - Method in interface smile.data.DataFrame
Returns the field value as java.time.LocalDateTime.
getDateTime(String) - Method in interface smile.data.Tuple
Returns the field value of date type as java.time.LocalDateTime.
getDecimal(int) - Method in interface smile.data.Tuple
Returns the value at position i of decimal type as java.math.BigDecimal.
getDecimal(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) of decimal type as java.math.BigDecimal.
getDecimal(int, String) - Method in interface smile.data.DataFrame
Returns the field value of decimal type as java.math.BigDecimal.
getDecimal(String) - Method in interface smile.data.Tuple
Returns the field value of decimal type as java.math.BigDecimal.
getDefault() - Static method in class smile.nlp.pos.HMMPOSTagger
Returns the default English POS tagger.
getDegree(int) - Method in class smile.graph.Graph
Returns the degree of the specified vertex.
getDescription() - Method in class smile.swing.FileChooser.SimpleFileFilter
Returns the human-readable description of this filter.
getDimension() - Method in class smile.plot.swing.Base
Returns the dimensionality of coordinates.
getDistance(int, int) - Method in class smile.graph.Graph
Returns the distance between two vertices.
getDouble(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive double.
getDouble(int) - Method in interface smile.data.vector.BaseVector
Returns the double value at position i.
getDouble(int) - Method in interface smile.data.vector.BooleanVector
 
getDouble(int) - Method in interface smile.data.vector.ByteVector
 
getDouble(int) - Method in interface smile.data.vector.CharVector
 
getDouble(int) - Method in interface smile.data.vector.FloatVector
 
getDouble(int) - Method in interface smile.data.vector.IntVector
 
getDouble(int) - Method in interface smile.data.vector.LongVector
 
getDouble(int) - Method in interface smile.data.vector.ShortVector
 
getDouble(int) - Method in interface smile.data.vector.StringVector
 
getDouble(int) - Method in interface smile.data.vector.Vector
 
getDouble(int...) - Method in class smile.deep.tensor.Tensor
Returns the double value of element at given index.
getDouble(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive double.
getDouble(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive double.
getDouble(long...) - Method in class smile.deep.tensor.Tensor
Returns the double value of element at given index.
getDouble(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive double.
getEdges(int) - Method in class smile.graph.AdjacencyList
 
getEdges(int) - Method in class smile.graph.AdjacencyMatrix
 
getEdges(int) - Method in class smile.graph.Graph
Returns the edges from the specified vertex.
getExtension(File) - Static method in class smile.swing.FileChooser
Returns the file name extension in lower case.
getExtensionLevel() - Method in class smile.anomaly.IsolationForest
Returns the extension level.
getFloat(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive float.
getFloat(int) - Method in interface smile.data.vector.BaseVector
Returns the float value at position i.
getFloat(int) - Method in interface smile.data.vector.BooleanVector
 
getFloat(int) - Method in interface smile.data.vector.ByteVector
 
getFloat(int) - Method in interface smile.data.vector.CharVector
 
getFloat(int) - Method in interface smile.data.vector.DoubleVector
 
getFloat(int) - Method in interface smile.data.vector.IntVector
 
getFloat(int) - Method in interface smile.data.vector.LongVector
 
getFloat(int) - Method in interface smile.data.vector.ShortVector
 
getFloat(int) - Method in interface smile.data.vector.StringVector
 
getFloat(int) - Method in interface smile.data.vector.Vector
 
getFloat(int...) - Method in class smile.deep.tensor.Tensor
Returns the float value of element at given index.
getFloat(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive float.
getFloat(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive float.
getFloat(long...) - Method in class smile.deep.tensor.Tensor
Returns the float value of element at given index.
getFloat(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive float.
getFocusBorder() - Method in class smile.swing.table.ButtonCellRenderer
Get foreground color of the button when the cell has focus
getFont() - Method in class smile.plot.swing.Graphics
Get the current font.
getFull(String) - Method in interface smile.nlp.dictionary.Abbreviations
Returns the full word of an abbreviation.
getGraphics() - Method in class smile.plot.swing.Graphics
Returns the Java2D graphics object.
getHeight() - Method in class smile.plot.swing.Dendrogram
Returns the height of tree.
getIcon(JTable, int) - Method in class smile.swing.table.DefaultTableHeaderCellRenderer
Overloaded to return an icon suitable to the primary sorted column, or null if the column is not the primary sort key.
getIcon(JTable, int) - Method in class smile.swing.table.MultiColumnSortTableHeaderCellRenderer
Overridden to return an icon suitable to a sorted column, or null if the column is unsorted.
getIconHeight() - Method in record class smile.swing.AlphaIcon
Gets the height of the bounding rectangle of this AlphaIcon.
getIconWidth() - Method in record class smile.swing.AlphaIcon
Gets the width of the bounding rectangle of this AlphaIcon.
getInDegree(int) - Method in class smile.graph.AdjacencyList
 
getInDegree(int) - Method in class smile.graph.AdjacencyMatrix
 
getInDegree(int) - Method in class smile.graph.Graph
Returns the in-degree of the specified vertex.
getInitialStateProbabilities() - Method in class smile.sequence.HMM
Returns the initial state probabilities.
getInputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of input vector (not including bias value).
getInstance() - Static method in interface smile.math.blas.BLAS
Creates an instance.
getInstance() - Static method in interface smile.math.blas.LAPACK
Creates an instance.
getInstance() - Static method in class smile.nlp.dictionary.EnglishPunctuations
Returns the singleton instance.
getInstance() - Static method in class smile.nlp.normalizer.SimpleNormalizer
Returns the singleton instance.
getInstance() - Static method in class smile.nlp.tokenizer.PennTreebankTokenizer
Returns the singleton instance.
getInstance() - Static method in class smile.nlp.tokenizer.SimpleParagraphSplitter
Returns the singleton instance.
getInstance() - Static method in class smile.nlp.tokenizer.SimpleSentenceSplitter
Returns the singleton instance.
getInstance() - Static method in class smile.stat.distribution.GaussianDistribution
Returns the standard normal distribution.
getInstance() - Static method in class smile.swing.FileChooser
Returns the shared file chooser instance.
getInstance() - Static method in class smile.swing.FontChooser
Returns the shared font chooser instance.
getInstance() - Static method in class smile.swing.table.DoubleCellEditor
Returns the default instance.
getInt(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive int.
getInt(int) - Method in interface smile.data.vector.BaseVector
Returns the integer value at position i.
getInt(int) - Method in interface smile.data.vector.BooleanVector
 
getInt(int) - Method in interface smile.data.vector.ByteVector
 
getInt(int) - Method in interface smile.data.vector.CharVector
 
getInt(int) - Method in interface smile.data.vector.DoubleVector
 
getInt(int) - Method in interface smile.data.vector.FloatVector
 
getInt(int) - Method in interface smile.data.vector.LongVector
 
getInt(int) - Method in interface smile.data.vector.ShortVector
 
getInt(int) - Method in interface smile.data.vector.StringVector
 
getInt(int) - Method in interface smile.data.vector.Vector
 
getInt(int...) - Method in class smile.deep.tensor.Tensor
Returns the int value of element at given index.
getInt(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive int.
getInt(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive int.
getInt(long...) - Method in class smile.deep.tensor.Tensor
Returns the int value of element at given index.
getInt(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive int.
getKey() - Method in class smile.nlp.Trie.Node
Returns the key.
getLabel() - Method in class smile.plot.swing.Axis
Returns the label of the axis.
getLearningRate() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the learning rate.
getLearningRate() - Method in class smile.classification.LogisticRegression
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.classification.Maxent
Returns the learning rate of stochastic gradient descent.
getLearningRate() - Method in class smile.classification.SparseLogisticRegression
Returns the learning rate of stochastic gradient descent.
getLocalSearchSteps() - Method in class smile.gap.GeneticAlgorithm
Gets the number of iterations of local search in Lamarckian algorithm.
getLong(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive long.
getLong(int) - Method in interface smile.data.vector.BaseVector
Returns the long value at position i.
getLong(int) - Method in interface smile.data.vector.BooleanVector
 
getLong(int) - Method in interface smile.data.vector.ByteVector
 
getLong(int) - Method in interface smile.data.vector.CharVector
 
getLong(int) - Method in interface smile.data.vector.DoubleVector
 
getLong(int) - Method in interface smile.data.vector.FloatVector
 
getLong(int) - Method in interface smile.data.vector.IntVector
 
getLong(int) - Method in interface smile.data.vector.ShortVector
 
getLong(int) - Method in interface smile.data.vector.StringVector
 
getLong(int) - Method in interface smile.data.vector.Vector
 
getLong(int...) - Method in class smile.deep.tensor.Tensor
Returns the long value of element at given index.
getLong(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive long.
getLong(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive long.
getLong(long...) - Method in class smile.deep.tensor.Tensor
Returns the long value of element at given index.
getLong(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive long.
getLowerBound() - Method in class smile.plot.swing.BarPlot
 
getLowerBound() - Method in class smile.plot.swing.BoxPlot
 
getLowerBound() - Method in class smile.plot.swing.Contour
 
getLowerBound() - Method in class smile.plot.swing.Dendrogram
 
getLowerBound() - Method in class smile.plot.swing.Graphics
Returns the lower bounds of coordinate space.
getLowerBound() - Method in class smile.plot.swing.Grid
 
getLowerBound() - Method in class smile.plot.swing.Heatmap
 
getLowerBound() - Method in class smile.plot.swing.Hexmap
 
getLowerBound() - Method in class smile.plot.swing.Histogram3D
 
getLowerBound() - Method in class smile.plot.swing.LinePlot
 
getLowerBound() - Method in class smile.plot.swing.Plot
Returns the lower bound of data.
getLowerBound() - Method in class smile.plot.swing.QQPlot
 
getLowerBound() - Method in class smile.plot.swing.ScatterPlot
 
getLowerBound() - Method in class smile.plot.swing.ScreePlot
 
getLowerBound() - Method in class smile.plot.swing.SparseMatrixPlot
 
getLowerBound() - Method in class smile.plot.swing.StaircasePlot
 
getLowerBound() - Method in class smile.plot.swing.Surface
 
getLowerBound() - Method in class smile.plot.swing.TextPlot
 
getLowerBound() - Method in class smile.plot.swing.Wireframe
 
getLowerBounds() - Method in class smile.plot.swing.Base
Returns the lower bounds.
getLowerBounds() - Method in class smile.plot.swing.Canvas
Returns the lower bounds.
getMargin() - Method in class smile.plot.swing.Canvas
Returns the size of margin, which is not used as plot area.
getMessage(String) - Method in class smile.swing.FontChooser
 
getMnemonic() - Method in class smile.swing.table.ButtonCellRenderer
 
getMomentum() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the momentum factor.
getNumberFormat() - Method in class smile.swing.table.NumberCellRenderer
Returns the number format used for rendering.
getNumThreads() - Static method in class smile.deep.tensor.Device
Returns the number of threads used for intraop parallelism on CPU.
getObjectClass() - Method in class smile.data.type.ObjectType
Returns the class of objects.
getOutDegree(int) - Method in class smile.graph.AdjacencyList
 
getOutDegree(int) - Method in class smile.graph.AdjacencyMatrix
 
getOutDegree(int) - Method in class smile.graph.Graph
Returns the out-degree of the specified vertex.
getOutputSize() - Method in class smile.base.mlp.Layer
Returns the dimension of output vector.
getPage() - Method in class smile.swing.table.PageTableModel
Returns the current page.
getPageCount() - Method in class smile.swing.table.PageTableModel
Returns the number of pages.
getPageSize() - Method in class smile.swing.table.PageTableModel
Returns the page size.
getPaint() - Method in class smile.plot.swing.Graphics
Get the current paint object.
getPathDistance(int[]) - Method in class smile.graph.Graph
Returns the distance of path.
getPathFromRoot() - Method in class smile.taxonomy.Concept
Returns the path from root to this node.
getPathToRoot() - Method in class smile.taxonomy.Concept
Returns the path from this node to the root.
getPrecisionDigits() - Method in class smile.plot.swing.Base
Returns the precision unit digits of axes.
getPrecisionUnit() - Method in class smile.plot.swing.Base
Returns the precision units of axes.
getPrinter() - Static method in class smile.swing.Printer
Returns the printer controller object.
getProbeSequence(double[], double, int) - Method in class smile.neighbor.lsh.PosterioriModel
Generate query-directed probes.
getProjection() - Method in class smile.classification.FLD
Returns the projection matrix W.
getProjection() - Method in class smile.plot.swing.Graphics
Returns the projection object.
getProjection(double) - Method in class smile.feature.extraction.PCA
Returns the projection with top principal components that contain (more than) the given percentage of variance.
getProjection(int) - Method in class smile.feature.extraction.PCA
Returns the projection with given number of principal components.
getPropertyChangeListeners() - Method in class smile.plot.swing.Canvas
Returns an array of all the listeners that were added to the PropertyChangeSupport object with addPropertyChangeListener().
getReadableImageFilter() - Static method in class smile.swing.FileChooser.SimpleFileFilter
Returns the filter for readable images.
getRealRow(int) - Method in class smile.swing.table.PageTableModel
Returns the row number of data given the row number of current page.
getRealRowCount() - Method in class smile.swing.table.PageTableModel
The subclass should implement this method to return the real number of rows in the model.
getRequireGrad() - Method in class smile.deep.tensor.Tensor
Returns true if autograd should record operations on this tensor.
getrf(Layout, int, int, double[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf(Layout, int, int, double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf(Layout, int, int, float[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf(Layout, int, int, float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf(Layout, int, int, DoublePointer, int, IntPointer) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf(Layout, int, int, DoublePointer, int, IntPointer) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf2(Layout, int, int, double[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf2(Layout, int, int, double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf2(Layout, int, int, float[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf2(Layout, int, int, float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf2(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf2(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrf2(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
getrf2(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
getRoot() - Method in class smile.taxonomy.Taxonomy
Returns the root node of taxonomy tree.
getRowCount() - Method in class smile.swing.table.PageTableModel
 
getRowCount() - Method in class smile.swing.Table.RowHeader
Delegate method to main table
getRowHeader() - Method in class smile.swing.Table
Returns a row header for this table.
getRowHeight(int) - Method in class smile.swing.Table.RowHeader
 
getrs(Layout, Transpose, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
getrs(Layout, Transpose, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrs(Layout, Transpose, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
getrs(Layout, Transpose, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrs(Layout, Transpose, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
getrs(Layout, Transpose, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrs(Layout, Transpose, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
getrs(Layout, Transpose, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
getrs(Layout, Transpose, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
getrs(Layout, Transpose, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
getScale(int) - Method in interface smile.data.Tuple
Returns the value at position i of NominalScale or OrdinalScale.
getScale(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) of NominalScale or OrdinalScale.
getScale(int, String) - Method in interface smile.data.DataFrame
Returns the field value of NominalScale or OrdinalScale.
getScale(String) - Method in interface smile.data.Tuple
Returns the field value of NominalScale or OrdinalScale.
getScrollableTracksViewportWidth() - Method in class smile.swing.Table
 
getSelectedFont() - Method in class smile.swing.FontChooser
Get the selected font.
getSelectedFontFamily() - Method in class smile.swing.FontChooser
Get the family name of the selected font.
getSelectedFontSize() - Method in class smile.swing.FontChooser
Get the size of the selected font.
getSelectedFontStyle() - Method in class smile.swing.FontChooser
Get the style of the selected font.
getShapes() - Method in class smile.plot.swing.Canvas
Returns the list of shapes in the canvas.
getShort(int) - Method in interface smile.data.Tuple
Returns the value at position i as a primitive short.
getShort(int) - Method in interface smile.data.vector.BaseVector
Returns the short value at position i.
getShort(int) - Method in interface smile.data.vector.BooleanVector
 
getShort(int) - Method in interface smile.data.vector.ByteVector
 
getShort(int) - Method in interface smile.data.vector.CharVector
 
getShort(int) - Method in interface smile.data.vector.DoubleVector
 
getShort(int) - Method in interface smile.data.vector.FloatVector
 
getShort(int) - Method in interface smile.data.vector.IntVector
 
getShort(int) - Method in interface smile.data.vector.LongVector
 
getShort(int) - Method in interface smile.data.vector.StringVector
 
getShort(int) - Method in interface smile.data.vector.Vector
 
getShort(int...) - Method in class smile.deep.tensor.Tensor
Returns the short value of element at given index.
getShort(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a primitive short.
getShort(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a primitive short.
getShort(long...) - Method in class smile.deep.tensor.Tensor
Returns the short value of element at given index.
getShort(String) - Method in interface smile.data.Tuple
Returns the field value as a primitive short.
getSortKey(JTable, int) - Method in class smile.swing.table.DefaultTableHeaderCellRenderer
Returns the current sort key, or null if the column is unsorted.
getStateTransitionProbabilities() - Method in class smile.sequence.HMM
Returns the state transition probabilities.
getString(int) - Method in interface smile.data.Tuple
Returns the value at position i as a String object.
getString(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) as a String object.
getString(int, String) - Method in interface smile.data.DataFrame
Returns the field value as a String object.
getString(String) - Method in interface smile.data.Tuple
Returns the field value as a String object.
getStroke() - Method in class smile.plot.swing.Graphics
Get the current stroke.
getStruct(int) - Method in interface smile.data.Tuple
Returns the value at position i of struct type.
getStruct(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) of struct type.
getStruct(int, String) - Method in interface smile.data.DataFrame
Returns the field value of struct type.
getStruct(String) - Method in interface smile.data.Tuple
Returns the field value of struct type.
getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
Returns the symbol emission probabilities.
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.ButtonCellRenderer
 
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.ColorCellEditor
 
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.DateCellEditor
 
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.DoubleArrayCellEditor
 
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.DoubleCellEditor
 
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.FontCellEditor
 
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.IntegerArrayCellEditor
 
getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.IntegerCellEditor
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class smile.swing.table.ButtonCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class smile.swing.table.ColorCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class smile.swing.table.DefaultTableHeaderCellRenderer
Returns the default table header cell renderer.
getTestData(String...) - Static method in interface smile.util.Paths
Get the file path of a test sample dataset.
getTestDataLines(String...) - Static method in interface smile.util.Paths
Returns the reader of a test data.
getTestDataReader(String...) - Static method in interface smile.util.Paths
Returns the reader of a test data.
getTime(int) - Method in interface smile.data.Tuple
Returns the value at position i of date type as java.time.LocalTime.
getTime(int, int) - Method in interface smile.data.DataFrame
Returns the value at position (i, j) of date type as java.time.LocalTime.
getTime(int, String) - Method in interface smile.data.DataFrame
Returns the field value of date type as java.time.LocalTime.
getTime(String) - Method in interface smile.data.Tuple
Returns the field value of date type as java.time.LocalTime.
getTitle() - Method in class smile.plot.swing.Canvas
Returns the main title of canvas.
getTitleColor() - Method in class smile.plot.swing.Canvas
Returns the color for title.
getTitleFont() - Method in class smile.plot.swing.Canvas
Returns the font for title.
getToolbar() - Method in class smile.plot.swing.PlotPanel
Returns a toolbar to control the plot.
getToolbar() - Method in class smile.swing.table.PageTableModel
Returns a toolbar to control the plot.
getUpperBound() - Method in class smile.plot.swing.BarPlot
 
getUpperBound() - Method in class smile.plot.swing.BoxPlot
 
getUpperBound() - Method in class smile.plot.swing.Contour
 
getUpperBound() - Method in class smile.plot.swing.Dendrogram
 
getUpperBound() - Method in class smile.plot.swing.Graphics
Returns the upper bounds of coordinate space.
getUpperBound() - Method in class smile.plot.swing.Grid
 
getUpperBound() - Method in class smile.plot.swing.Heatmap
 
getUpperBound() - Method in class smile.plot.swing.Hexmap
 
getUpperBound() - Method in class smile.plot.swing.Histogram3D
 
getUpperBound() - Method in class smile.plot.swing.LinePlot
 
getUpperBound() - Method in class smile.plot.swing.Plot
Returns the upper bound of data.
getUpperBound() - Method in class smile.plot.swing.QQPlot
 
getUpperBound() - Method in class smile.plot.swing.ScatterPlot
 
getUpperBound() - Method in class smile.plot.swing.ScreePlot
 
getUpperBound() - Method in class smile.plot.swing.SparseMatrixPlot
 
getUpperBound() - Method in class smile.plot.swing.StaircasePlot
 
getUpperBound() - Method in class smile.plot.swing.Surface
 
getUpperBound() - Method in class smile.plot.swing.TextPlot
 
getUpperBound() - Method in class smile.plot.swing.Wireframe
 
getUpperBounds() - Method in class smile.plot.swing.Base
Returns the upper bounds.
getUpperBounds() - Method in class smile.plot.swing.Canvas
Returns the upper bounds.
getValue() - Method in class smile.nlp.Trie.Node
Returns the value.
getValue(String) - Static method in enum class smile.nlp.pos.PennTreebankPOS
Returns an enum value from a string.
getValueAt(int, int) - Method in class smile.swing.table.PageTableModel
 
getValueAt(int, int) - Method in class smile.swing.Table.RowHeader
This table does not use any data from the main TableModel, so just return a value based on the row parameter.
getValueAtRealRow(int, int) - Method in class smile.swing.table.PageTableModel
Returns the value for the cell at real row index.
getVertexCount() - Method in class smile.graph.AdjacencyList
 
getVertexCount() - Method in class smile.graph.AdjacencyMatrix
 
getVertexCount() - Method in class smile.graph.Graph
Returns the number of vertices.
getWeight(int, int) - Method in class smile.graph.AdjacencyList
 
getWeight(int, int) - Method in class smile.graph.AdjacencyMatrix
 
getWeight(int, int) - Method in class smile.graph.Graph
Returns the weight assigned to a given edge.
getWeightDecay() - Method in class smile.base.mlp.MultilayerPerceptron
Returns the weight decay factor.
getWritableImageFIlter() - Static method in class smile.swing.FileChooser.SimpleFileFilter
Returns the filter for writable images.
ggglm(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in interface smile.math.blas.LAPACK
Solves a general Gauss-Markov linear model (GLM) problem.
ggglm(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
ggglm(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in interface smile.math.blas.LAPACK
Solves a general Gauss-Markov linear model (GLM) problem.
ggglm(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
ggglm(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Solves a general Gauss-Markov linear model (GLM) problem.
ggglm(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
ggglm(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Solves a general Gauss-Markov linear model (GLM) problem.
ggglm(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gglse(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in interface smile.math.blas.LAPACK
Solves a linear equality-constrained least squares (LSE) problem.
gglse(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gglse(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in interface smile.math.blas.LAPACK
Solves a linear equality-constrained least squares (LSE) problem.
gglse(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
gglse(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Solves a linear equality-constrained least squares (LSE) problem.
gglse(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
gglse(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Solves a linear equality-constrained least squares (LSE) problem.
gglse(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
GHA - Class in smile.feature.extraction
Generalized Hebbian Algorithm.
GHA(double[][], TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
Constructor.
GHA(int, int, TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
Constructor.
GINI - Enum constant in enum class smile.base.cart.SplitRule
Used by the CART algorithm, Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it were randomly labeled according to the distribution of labels in the subset.
GLM - Class in smile.glm
Generalized linear models.
GLM(Formula, String[], Model, double[], double, double, double, double[], double[], double[][]) - Constructor for class smile.glm.GLM
Constructor.
GloVe - Class in smile.nlp.embedding
Global Vectors for Word Representation.
GloVe() - Constructor for class smile.nlp.embedding.GloVe
 
GLU - Class in smile.deep.activation
Gated Linear Unit activation function.
GLU() - Constructor for class smile.deep.activation.GLU
Constructor.
GMeans - Class in smile.clustering
G-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters by normality test.
GMeans(double, double[][], int[]) - Constructor for class smile.clustering.GMeans
Constructor.
GOLD - Static variable in interface smile.plot.swing.Palette
 
GoodTuring - Class in smile.stat
Good–Turing frequency estimation.
GOOGLE - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
The stop words list used by Google.
gradient() - Method in class smile.base.mlp.Layer
Returns the output gradient vector.
gradientLength(double) - Method in class smile.plot.vega.Legend
Sets the length in pixels of the primary axis of a color gradient.
gradientOpacity(double) - Method in class smile.plot.vega.Legend
Sets the opacity of the color gradient.
gradientStrokeColor(String) - Method in class smile.plot.vega.Legend
Sets the color of the gradient stroke.
gradientStrokeWidth(double) - Method in class smile.plot.vega.Legend
Sets the width of the gradient stroke.
gradientThickness(double) - Method in class smile.plot.vega.Legend
Sets the thickness in pixels of the color gradient.
GradientTreeBoost - Class in smile.classification
Gradient boosting for classification.
GradientTreeBoost - Class in smile.regression
Gradient boosting for regression.
GradientTreeBoost(Formula, RegressionTree[][], double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost(Formula, RegressionTree[][], double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of multi-class.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.regression.GradientTreeBoost
Constructor.
GradientTreeBoost(Formula, RegressionTree[], double, double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
Constructor of binary class.
graph(boolean) - Method in record class smile.graph.NearestNeighborGraph
Returns the nearest neighbor graph.
Graph - Class in smile.graph
A graph is an abstract representation of a set of objects where some pairs of the objects are connected by links.
Graph(boolean) - Constructor for class smile.graph.Graph
Constructor.
Graph.Edge - Record Class in smile.graph
Graph edge.
Graphics - Class in smile.plot.swing
Graphics provides methods to draw graphical primitives in logical/mathematical coordinates.
Graphics(Projection) - Constructor for class smile.plot.swing.Graphics
Constructor.
GRASS_GREEN - Static variable in interface smile.plot.swing.Palette
 
GREEN - Static variable in interface smile.plot.swing.Palette
 
grid() - Method in class smile.hpo.Hyperparameters
Generates a stream of hyperparameters for grid search.
grid(boolean) - Method in class smile.plot.vega.Axis
Sets if gridlines should be included as part of the axis.
Grid - Class in smile.plot.swing
A 2D grid plot.
Grid(double[][][], Color) - Constructor for class smile.plot.swing.Grid
Constructor.
gridAlign(String) - Method in class smile.plot.vega.Legend
Sets the alignment to apply to symbol legends rows and columns.
gridCap(String) - Method in class smile.plot.vega.Axis
Sets the stroke cap for gridlines' ending style.
gridColor(String) - Method in class smile.plot.vega.Axis
Sets the color of gridlines.
gridDash(double, double) - Method in class smile.plot.vega.Axis
Sets the alternating [stroke, space] lengths for dashed gridlines.
gridOpacity(double) - Method in class smile.plot.vega.Axis
Sets the stroke opacity of grid.
gridWidth(double) - Method in class smile.plot.vega.Axis
Sets the grid width.
groupby(String...) - Method in class smile.plot.vega.ImputeTransform
Sets the data fields by which to group the values.
groupby(String...) - Method in class smile.plot.vega.LoessTransform
Sets the data fields to group by.
groupby(String...) - Method in class smile.plot.vega.PivotTransform
Sets the data fields to group by.
groupby(String...) - Method in class smile.plot.vega.QuantileTransform
Sets the data fields to group by.
groupby(String...) - Method in class smile.plot.vega.RegressionTransform
Sets the data fields to group by.
groupby(String...) - Method in class smile.plot.vega.WindowTransform
Sets the data fields for partitioning the data objects into separate windows.
GroupNormLayer - Class in smile.deep.layer
Group normalization.
GroupNormLayer(int, int) - Constructor for class smile.deep.layer.GroupNormLayer
Constructor.
GroupNormLayer(int, int, double, boolean) - Constructor for class smile.deep.layer.GroupNormLayer
Constructor.
groups() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the groups record component.
GrowingNeuralGas - Class in smile.vq
Growing Neural Gas.
GrowingNeuralGas(int) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.
GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.vq.GrowingNeuralGas
Constructor.
gt(double) - Method in class smile.deep.tensor.Tensor
Computes element-wise greater-than comparison.
gt(int) - Method in class smile.deep.tensor.Tensor
Computes element-wise greater-than comparison.
gt(Tensor) - Method in class smile.deep.tensor.Tensor
Computes element-wise greater-than comparison.

H

H - Variable in class smile.neighbor.LSH
The size of hash table.
H - Variable in class smile.neighbor.lsh.NeighborHashValueModel
The hash values of query object.
HaarWavelet - Class in smile.wavelet
Haar wavelet.
HaarWavelet() - Constructor for class smile.wavelet.HaarWavelet
Constructor.
HadoopInput - Interface in smile.io
Static methods that return the InputStream/Reader of a HDFS/S3.
HammingDistance - Class in smile.math.distance
In information theory, the Hamming distance between two strings of equal length is the number of positions for which the corresponding symbols are different.
HammingDistance() - Constructor for class smile.math.distance.HammingDistance
Constructor.
hardShrink(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with hard shrink activation function.
HardShrink - Class in smile.deep.activation
Hard Shrink activation function.
HardShrink() - Constructor for class smile.deep.activation.HardShrink
Constructor.
HardShrink(double) - Constructor for class smile.deep.activation.HardShrink
Constructor.
harwell(Path) - Static method in class smile.math.matrix.fp32.SparseMatrix
Reads a sparse matrix from a Harwell-Boeing Exchange Format file.
harwell(Path) - Static method in class smile.math.matrix.SparseMatrix
Reads a sparse matrix from a Harwell-Boeing Exchange Format file.
hasEdge(int, int) - Method in class smile.graph.AdjacencyList
 
hasEdge(int, int) - Method in class smile.graph.AdjacencyMatrix
 
hasEdge(int, int) - Method in class smile.graph.Graph
Returns true if and only if this graph contains an edge going from the source vertex to the target vertex.
hash - Variable in class smile.neighbor.LSH
Hash functions.
hash(double[]) - Method in class smile.neighbor.lsh.Hash
Apply hash functions on given vector x.
hash(Hash, PrZ[]) - Method in class smile.neighbor.lsh.Probe
Returns the bucket number of the probe.
hash(T) - Method in interface smile.hash.SimHash
Return the hash code.
Hash - Class in smile.neighbor.lsh
The hash function for Euclidean spaces.
Hash(int, int, double, int) - Constructor for class smile.neighbor.lsh.Hash
Constructor.
hash128(ByteBuffer, int, int, long, long[]) - Static method in class smile.hash.MurmurHash3
128-bit MurmurHash3 for x64.
hash32(byte[], int, int, int) - Static method in class smile.hash.MurmurHash3
32-bit MurmurHash3.
hash32(String, int) - Static method in class smile.hash.MurmurHash3
32-bit MurmurHash3.
hash32(ByteBuffer, int, int, int) - Static method in interface smile.hash.MurmurHash2
32-bit MurmurHash.
hash64(ByteBuffer, int, int, long) - Static method in interface smile.hash.MurmurHash2
64-bit MurmurHash.
hashCode() - Method in record class smile.association.AssociationRule
Returns a hash code value for this object.
hashCode() - Method in record class smile.association.ItemSet
Returns a hash code value for this object.
hashCode() - Method in record class smile.data.formula.Intercept
Returns a hash code value for this object.
hashCode() - Method in record class smile.data.formula.Variable
Returns a hash code value for this object.
hashCode() - Method in record class smile.data.SampleInstance
Returns a hash code value for this object.
hashCode() - Method in record class smile.deep.SampleBatch
Returns a hash code value for this object.
hashCode() - Method in record class smile.feature.selection.InformationValue
Returns a hash code value for this object.
hashCode() - Method in record class smile.feature.selection.SignalNoiseRatio
Returns a hash code value for this object.
hashCode() - Method in record class smile.feature.selection.SumSquaresRatio
Returns a hash code value for this object.
hashCode() - Method in record class smile.graph.Graph.Edge
Returns a hash code value for this object.
hashCode() - Method in record class smile.graph.NearestNeighborGraph
Returns a hash code value for this object.
hashCode() - Method in record class smile.llm.CompletionPrediction
Returns a hash code value for this object.
hashCode() - Method in record class smile.llm.llama.ModelArgs
Returns a hash code value for this object.
hashCode() - Method in record class smile.llm.Message
Returns a hash code value for this object.
hashCode() - Method in record class smile.manifold.IsotonicMDS
Returns a hash code value for this object.
hashCode() - Method in record class smile.manifold.MDS
Returns a hash code value for this object.
hashCode() - Method in class smile.math.Complex
 
hashCode() - Method in record class smile.neighbor.lsh.PrH
Returns a hash code value for this object.
hashCode() - Method in record class smile.neighbor.lsh.PrZ
Returns a hash code value for this object.
hashCode() - Method in record class smile.neighbor.Neighbor
Returns a hash code value for this object.
hashCode() - Method in class smile.nlp.Bigram
 
hashCode() - Method in class smile.nlp.NGram
 
hashCode() - Method in class smile.nlp.SimpleText
 
hashCode() - Method in record class smile.plot.vega.SortField
Returns a hash code value for this object.
hashCode() - Method in record class smile.plot.vega.WindowTransformField
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.distribution.DiscreteMixture.Component
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.distribution.Mixture.Component
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.distribution.MultivariateMixture.Component
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.hypothesis.ChiSqTest
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.hypothesis.CorTest
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.hypothesis.FTest
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.hypothesis.KSTest
Returns a hash code value for this object.
hashCode() - Method in record class smile.stat.hypothesis.TTest
Returns a hash code value for this object.
hashCode() - Method in record class smile.swing.AlphaIcon
Returns a hash code value for this object.
hashCode() - Method in record class smile.util.Bytes
Returns a hash code value for this object.
hashCode() - Method in record class smile.util.IntPair
Returns a hash code value for this object.
hashCode() - Method in record class smile.util.SparseArray.Entry
Returns a hash code value for this object.
hashCode() - Method in record class smile.util.Tuple2
Returns a hash code value for this object.
hashCode() - Method in record class smile.validation.Bag
Returns a hash code value for this object.
hashCode() - Method in record class smile.validation.ClassificationMetrics
Returns a hash code value for this object.
hashCode() - Method in record class smile.validation.metric.ConfusionMatrix
Returns a hash code value for this object.
hashCode() - Method in record class smile.validation.RegressionMetrics
Returns a hash code value for this object.
hashCode() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns a hash code value for this object.
hashCode() - Method in record class smile.vision.layer.MBConvConfig
Returns a hash code value for this object.
HashEncoder - Class in smile.feature.extraction
Feature hashing, also known as the hashing trick, is a fast and space-efficient way of vectorizing features, i.e.
HashEncoder(Function<String, String[]>, int) - Constructor for class smile.feature.extraction.HashEncoder
Constructor.
HashEncoder(Function<String, String[]>, int, boolean) - Constructor for class smile.feature.extraction.HashEncoder
Constructor.
HashValueParzenModel - Class in smile.neighbor.lsh
Hash value Parzen model for multi-probe hash.
HashValueParzenModel(MultiProbeHash, MultiProbeSample[], double) - Constructor for class smile.neighbor.lsh.HashValueParzenModel
Constructor.
hasMissing(Tuple) - Static method in class smile.feature.imputation.SimpleImputer
Return true if the tuple x has missing values.
hasNull() - Method in interface smile.data.Tuple
Returns true if the tuple has null/missing values.
header(String) - Method in class smile.plot.vega.FacetField
Sets the header of facet.
Headless - Class in smile.plot.swing
Aids in creating swing components in a "headless" environment.
Headless(JComponent, int, int) - Constructor for class smile.plot.swing.Headless
 
heapify() - Method in class smile.sort.HeapSelect
In case of avoiding creating new objects frequently, one may check and update the peek object directly and call this method to sort the internal array in heap order.
HeapSelect<T> - Class in smile.sort
This class tracks the smallest values seen thus far in a stream of values.
HeapSelect(Class<?>, int) - Constructor for class smile.sort.HeapSelect
Constructor.
HeapSelect(T[]) - Constructor for class smile.sort.HeapSelect
Constructor.
HeapSort - Interface in smile.sort
Heapsort is a comparison-based sorting algorithm, and is part of the selection sort family.
heat(int) - Static method in interface smile.plot.swing.Palette
Generate heat color palette.
heat(int, float) - Static method in interface smile.plot.swing.Palette
Generate heat color palette.
Heatmap - Class in smile.plot.swing
A heat map is a graphical representation of data where the values taken by a variable in a two-dimensional map are represented as colors.
Heatmap(double[], double[], double[][], Color[]) - Constructor for class smile.plot.swing.Heatmap
Constructor.
Heatmap(String[], String[], double[][], Color[]) - Constructor for class smile.plot.swing.Heatmap
Constructor.
height - Variable in class smile.plot.swing.Projection
The height of canvas in Java2D coordinate space.
height() - Method in class smile.clustering.HierarchicalClustering
Returns a set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration.
height(double) - Method in class smile.plot.vega.Mark
Sets the height of the marks.
height(int) - Method in class smile.plot.vega.Layer
 
height(int) - Method in class smile.plot.vega.View
Sets the height of a plot with a continuous y-field, or the fixed height of a plot a discrete y-field or no y-field.
height(String) - Method in class smile.plot.vega.Layer
 
height(String) - Method in class smile.plot.vega.View
To enable responsive sizing on height.
heightStep(int) - Method in class smile.plot.vega.Layer
 
heightStep(int) - Method in class smile.plot.vega.View
For a discrete y-field, sets the height per discrete step.
heldKarp() - Method in class smile.graph.Graph
Returns the optimal TSP tour with Held-Karp algorithm.
HellingerKernel - Class in smile.math.kernel
The Hellinger kernel.
HellingerKernel() - Constructor for class smile.math.kernel.HellingerKernel
Constructor.
Hexmap - Class in smile.plot.swing
Hexmap is a variant of heat map by replacing rectangle cells with hexagon cells.
Hexmap(double[][], Color[], Hexmap.Tooltip) - Constructor for class smile.plot.swing.Hexmap
Constructor.
Hexmap.Tooltip - Interface in smile.plot.swing
The lambda interface to retrieve the tooltip of cell.
HHMM - Static variable in class smile.swing.table.DateCellEditor
 
HHMM - Static variable in class smile.swing.table.DateCellRenderer
 
HHMMSS - Static variable in class smile.swing.table.DateCellEditor
 
HHMMSS - Static variable in class smile.swing.table.DateCellRenderer
 
hi() - Method in class smile.math.kernel.BinarySparseGaussianKernel
 
hi() - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
 
hi() - Method in class smile.math.kernel.BinarySparseLaplacianKernel
 
hi() - Method in class smile.math.kernel.BinarySparseLinearKernel
 
hi() - Method in class smile.math.kernel.BinarySparseMaternKernel
 
hi() - Method in class smile.math.kernel.BinarySparsePolynomialKernel
 
hi() - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
 
hi() - Method in class smile.math.kernel.GaussianKernel
 
hi() - Method in class smile.math.kernel.HellingerKernel
 
hi() - Method in class smile.math.kernel.HyperbolicTangentKernel
 
hi() - Method in class smile.math.kernel.LaplacianKernel
 
hi() - Method in class smile.math.kernel.LinearKernel
 
hi() - Method in class smile.math.kernel.MaternKernel
 
hi() - Method in interface smile.math.kernel.MercerKernel
Returns the upper bound of hyperparameters (in hyperparameter tuning).
hi() - Method in class smile.math.kernel.PearsonKernel
 
hi() - Method in class smile.math.kernel.PolynomialKernel
 
hi() - Method in class smile.math.kernel.ProductKernel
 
hi() - Method in class smile.math.kernel.SparseGaussianKernel
 
hi() - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
 
hi() - Method in class smile.math.kernel.SparseLaplacianKernel
 
hi() - Method in class smile.math.kernel.SparseLinearKernel
 
hi() - Method in class smile.math.kernel.SparseMaternKernel
 
hi() - Method in class smile.math.kernel.SparsePolynomialKernel
 
hi() - Method in class smile.math.kernel.SparseThinPlateSplineKernel
 
hi() - Method in class smile.math.kernel.SumKernel
 
hi() - Method in class smile.math.kernel.ThinPlateSplineKernel
 
HiddenLayer - Class in smile.base.mlp
A hidden layer in the neural network.
HiddenLayer(int, int, double, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayer
Constructor.
HiddenLayerBuilder - Class in smile.base.mlp
The builder of hidden layers.
HiddenLayerBuilder(int, double, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayerBuilder
Constructor.
HierarchicalClustering - Class in smile.clustering
Agglomerative Hierarchical Clustering.
HierarchicalClustering(int[][], double[]) - Constructor for class smile.clustering.HierarchicalClustering
Constructor.
hingeEmbedding() - Static method in interface smile.deep.Loss
Hinge Embedding Loss Function.
Histogram - Class in smile.plot.swing
A histogram is a graphical display of tabulated frequencies, shown as bars.
Histogram - Interface in smile.math
Histogram utilities.
Histogram() - Constructor for class smile.plot.swing.Histogram
 
Histogram3D - Class in smile.plot.swing
A histogram is a graphical display of tabulated frequencies, shown as bars.
Histogram3D(double[][], int, int, boolean, Color[]) - Constructor for class smile.plot.swing.Histogram3D
Constructor.
HMM - Class in smile.sequence
First-order Hidden Markov Model.
HMM(double[], Matrix, Matrix) - Constructor for class smile.sequence.HMM
Constructor.
HMMLabeler<T> - Class in smile.sequence
First-order Hidden Markov Model sequence labeler.
HMMLabeler(HMM, ToIntFunction<T>) - Constructor for class smile.sequence.HMMLabeler
Constructor.
HMMPOSTagger - Class in smile.nlp.pos
Part-of-speech tagging with hidden Markov model.
HMMPOSTagger() - Constructor for class smile.nlp.pos.HMMPOSTagger
Constructor.
home - Static variable in interface smile.util.Paths
Smile home directory.
horizontal(VegaLite...) - Static method in class smile.plot.vega.Concat
Returns a horizontal concatenation of views.
HOUR - Enum constant in enum class smile.data.formula.DateFeature
The hours represented by an integer from 0 to 23.
hstack(Tensor...) - Static method in class smile.deep.tensor.Tensor
Stacks tensors in sequence horizontally (column wise).
hsv(float, float, float, float) - Static method in interface smile.plot.swing.Palette
Generate a color based on HSV model.
html() - Method in class smile.plot.vega.VegaLite
Returns the HTML of plot specification with Vega Embed.
html(String) - Method in class smile.plot.vega.VegaLite
Returns the HTML of plot specification with Vega Embed.
htmlEscape(String) - Static method in interface smile.util.Strings
Turn special characters into HTML character references.
htmlEscape(String, String) - Static method in interface smile.util.Strings
Turn special characters into HTML character references.
huber(double) - Static method in interface smile.base.cart.Loss
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
Huber - Enum constant in enum class smile.base.cart.Loss.Type
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
HyperbolicTangent - Class in smile.math.kernel
The hyperbolic tangent kernel.
HyperbolicTangent(double, double, double[], double[]) - Constructor for class smile.math.kernel.HyperbolicTangent
Constructor.
HyperbolicTangentKernel - Class in smile.math.kernel
The hyperbolic tangent kernel.
HyperbolicTangentKernel() - Constructor for class smile.math.kernel.HyperbolicTangentKernel
Constructor with scale 1.0 and offset 0.0.
HyperbolicTangentKernel(double, double) - Constructor for class smile.math.kernel.HyperbolicTangentKernel
Constructor.
HyperbolicTangentKernel(double, double, double[], double[]) - Constructor for class smile.math.kernel.HyperbolicTangentKernel
Constructor.
HyperGeometricDistribution - Class in smile.stat.distribution
The hypergeometric distribution is a discrete probability distribution that describes the number of successes in a sequence of n draws from a finite population without replacement, just as the binomial distribution describes the number of successes for draws with replacement.
HyperGeometricDistribution(int, int, int) - Constructor for class smile.stat.distribution.HyperGeometricDistribution
Constructor.
hyperparameters() - Method in class smile.math.kernel.BinarySparseGaussianKernel
 
hyperparameters() - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
 
hyperparameters() - Method in class smile.math.kernel.BinarySparseLaplacianKernel
 
hyperparameters() - Method in class smile.math.kernel.BinarySparseLinearKernel
 
hyperparameters() - Method in class smile.math.kernel.BinarySparseMaternKernel
 
hyperparameters() - Method in class smile.math.kernel.BinarySparsePolynomialKernel
 
hyperparameters() - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
 
hyperparameters() - Method in class smile.math.kernel.GaussianKernel
 
hyperparameters() - Method in class smile.math.kernel.HellingerKernel
 
hyperparameters() - Method in class smile.math.kernel.HyperbolicTangentKernel
 
hyperparameters() - Method in class smile.math.kernel.LaplacianKernel
 
hyperparameters() - Method in class smile.math.kernel.LinearKernel
 
hyperparameters() - Method in class smile.math.kernel.MaternKernel
 
hyperparameters() - Method in interface smile.math.kernel.MercerKernel
Returns the hyperparameters of kernel.
hyperparameters() - Method in class smile.math.kernel.PearsonKernel
 
hyperparameters() - Method in class smile.math.kernel.PolynomialKernel
 
hyperparameters() - Method in class smile.math.kernel.ProductKernel
 
hyperparameters() - Method in class smile.math.kernel.SparseGaussianKernel
 
hyperparameters() - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
 
hyperparameters() - Method in class smile.math.kernel.SparseLaplacianKernel
 
hyperparameters() - Method in class smile.math.kernel.SparseLinearKernel
 
hyperparameters() - Method in class smile.math.kernel.SparseMaternKernel
 
hyperparameters() - Method in class smile.math.kernel.SparsePolynomialKernel
 
hyperparameters() - Method in class smile.math.kernel.SparseThinPlateSplineKernel
 
hyperparameters() - Method in class smile.math.kernel.SumKernel
 
hyperparameters() - Method in class smile.math.kernel.ThinPlateSplineKernel
 
Hyperparameters - Class in smile.hpo
Hyperparameter configuration.
Hyperparameters() - Constructor for class smile.hpo.Hyperparameters
Constructor.
Hypothesis - Interface in smile.stat
Hypothesis test functions.
Hypothesis.chisq - Interface in smile.stat
Chi-square test.
Hypothesis.cor - Interface in smile.stat
Correlation test.
Hypothesis.F - Interface in smile.stat
F-test.
Hypothesis.KS - Interface in smile.stat
The Kolmogorov-Smirnov test (K-S test).
Hypothesis.t - Interface in smile.stat
t-test.

I

i - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
The row index.
i - Variable in class smile.math.matrix.SparseMatrix.Entry
The row index.
iamax(double[]) - Method in interface smile.math.blas.BLAS
Searches a vector for the first occurrence of the maximum absolute value.
iamax(float[]) - Method in interface smile.math.blas.BLAS
Searches a vector for the first occurrence of the maximum absolute value.
iamax(int, double[], int) - Method in interface smile.math.blas.BLAS
Searches a vector for the first occurrence of the maximum absolute value.
iamax(int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
iamax(int, float[], int) - Method in interface smile.math.blas.BLAS
Searches a vector for the first occurrence of the maximum absolute value.
iamax(int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ICA - Class in smile.ica
Independent Component Analysis (ICA) is a computational method for separating a multivariate signal into additive components.
icon() - Method in record class smile.swing.AlphaIcon
Returns the value of the icon record component.
id - Variable in class smile.nlp.Text
The id of document in the corpus.
id() - Method in class smile.data.type.ArrayType
 
id() - Method in class smile.data.type.BooleanType
 
id() - Method in class smile.data.type.ByteType
 
id() - Method in class smile.data.type.CharType
 
id() - Method in interface smile.data.type.DataType
Returns the type ID enum.
id() - Method in class smile.data.type.DateTimeType
 
id() - Method in class smile.data.type.DateType
 
id() - Method in class smile.data.type.DecimalType
 
id() - Method in class smile.data.type.DoubleType
 
id() - Method in class smile.data.type.FloatType
 
id() - Method in class smile.data.type.IntegerType
 
id() - Method in class smile.data.type.LongType
 
id() - Method in class smile.data.type.ObjectType
 
id() - Method in class smile.data.type.ShortType
 
id() - Method in class smile.data.type.StringType
 
id() - Method in class smile.data.type.StructType
 
id() - Method in class smile.data.type.TimeType
 
iframe() - Method in class smile.plot.vega.VegaLite
Returns the HTML wrapped in an iframe to render in notebooks.
iframe(String) - Method in class smile.plot.vega.VegaLite
Returns the HTML wrapped in an iframe to render in notebooks.
ignorePeers(boolean) - Method in class smile.plot.vega.WindowTransform
Sets if the sliding window frame should ignore peer values (data that are considered identical by the sort criteria).
im - Variable in class smile.math.Complex
The imaginary part.
ImageDataset - Class in smile.vision
Each of these directories should contain one subdirectory for each class in the dataset.
ImageDataset(int, String, Transform, ToIntFunction<String>) - Constructor for class smile.vision.ImageDataset
Constructor.
ImageNet - Interface in smile.vision
ImageNet class labels.
IMatrix - Class in smile.math.matrix.fp32
Matrix base class.
IMatrix - Class in smile.math.matrix
Matrix base class.
IMatrix() - Constructor for class smile.math.matrix.fp32.IMatrix
 
IMatrix() - Constructor for class smile.math.matrix.IMatrix
 
IMatrix.Preconditioner - Interface in smile.math.matrix.fp32
The preconditioner matrix.
IMatrix.Preconditioner - Interface in smile.math.matrix
The preconditioner matrix.
importance - Variable in class smile.base.cart.CART
Variable importance.
importance() - Method in class smile.base.cart.CART
Returns the variable importance.
importance() - Method in class smile.classification.AdaBoost
Returns the variable importance.
importance() - Method in class smile.classification.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.classification.RandomForest
Returns the variable importance.
importance() - Method in class smile.regression.GradientTreeBoost
Returns the variable importance.
importance() - Method in class smile.regression.RandomForest
Returns the variable importance.
impurity() - Method in class smile.base.cart.RegressionNode
Returns the residual sum of squares.
impurity(LeafNode) - Method in class smile.base.cart.CART
Returns the impurity of node.
impurity(LeafNode) - Method in class smile.classification.DecisionTree
 
impurity(LeafNode) - Method in class smile.regression.RegressionTree
 
impurity(SplitRule) - Method in class smile.base.cart.DecisionNode
Returns the impurity of node.
impurity(SplitRule, int, int[]) - Static method in class smile.base.cart.DecisionNode
Returns the impurity of samples.
impute(double[][]) - Static method in class smile.feature.imputation.SimpleImputer
Impute the missing values with column averages.
impute(double[][], int, int) - Static method in interface smile.feature.imputation.SVDImputer
Impute missing values in the dataset.
impute(String, String) - Method in class smile.plot.vega.Transform
Adds an impute transform.
ImputeTransform - Class in smile.plot.vega
The impute transform groups data and determines missing values of the key field within each group.
in() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the in record component.
IN - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Preposition or subordinating conjunction.
increment() - Method in class smile.util.MutableInt
Increment by one.
increment(int) - Method in class smile.util.MutableInt
Increment.
index - Variable in class smile.base.cart.CART
An index of samples to their original locations in training dataset.
index - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
The index to the matrix storage.
index - Variable in class smile.math.matrix.SparseMatrix.Entry
The index to the matrix storage.
index - Variable in class smile.util.IntSet
Map of values to index.
index() - Method in class smile.deep.tensor.Device
Returns the device index or ordinal, which identifies the specific compute device when there is more than one of a certain type.
index() - Method in record class smile.graph.NearestNeighborGraph
Returns the value of the index record component.
index() - Method in record class smile.neighbor.Neighbor
Returns the value of the index record component.
index() - Method in record class smile.util.SparseArray.Entry
Returns the value of the index record component.
index(int, int) - Method in class smile.math.matrix.BigMatrix
Returns the linearized index of matrix element.
index(int, int) - Method in class smile.math.matrix.fp32.Matrix
Returns the linearized index of matrix element.
index(int, int) - Method in class smile.math.matrix.Matrix
Returns the linearized index of matrix element.
Index - Class in smile.deep.tensor
Indexing a tensor.
INDEX - Enum constant in enum class smile.math.blas.EigenRange
The IL-th through IU-th eigenvalues will be found.
IndexDataFrame - Class in smile.data
A data frame with a new index instead of the default [0, n) row index.
IndexDataFrame(DataFrame, int[]) - Constructor for class smile.data.IndexDataFrame
Constructor.
indexOf(int) - Method in class smile.util.IntSet
Maps the value to index.
indexOf(int[]) - Method in class smile.classification.ClassLabels
Maps the class labels to index.
indexOf(String) - Method in interface smile.data.DataFrame
Returns the index of a given column name.
indexOf(String) - Method in class smile.data.IndexDataFrame
 
indexOf(String) - Method in interface smile.data.Tuple
Returns the index of a given field name.
indexOf(String) - Method in class smile.data.type.StructType
Returns the index of a field.
indexStream() - Method in class smile.util.SparseArray
Returns the stream of the indices of nonzero entries.
infer(String) - Static method in interface smile.data.type.DataType
Infers the type of string.
inferSchema(BufferedReader, int) - Method in class smile.io.JSON
Infer the schema from the top n rows.
inferSchema(Reader, int) - Method in class smile.io.CSV
Infer the schema from the top n rows.
info - Variable in class smile.math.matrix.BandMatrix.LU
If info = 0, the LU decomposition was successful.
info - Variable in class smile.math.matrix.BigMatrix.LU
If info = 0, the LU decomposition was successful.
info - Variable in class smile.math.matrix.fp32.BandMatrix.LU
If info = 0, the LU decomposition was successful.
info - Variable in class smile.math.matrix.fp32.Matrix.LU
If info = 0, the LU decomposition was successful.
info - Variable in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
If info = 0, the LU decomposition was successful.
info - Variable in class smile.math.matrix.Matrix.LU
If info = 0, the LU decomposition was successful.
info - Variable in class smile.math.matrix.SymmMatrix.BunchKaufman
If info = 0, the LU decomposition was successful.
InformationValue - Record Class in smile.feature.selection
Information Value (IV) measures the predictive strength of a feature for a binary dependent variable.
InformationValue(String, double, double[], double[]) - Constructor for record class smile.feature.selection.InformationValue
Creates an instance of a InformationValue record class.
initHashTable(int, int, int, double, int) - Method in class smile.neighbor.LSH
Initialize the hash tables.
initHashTable(int, int, int, double, int) - Method in class smile.neighbor.MPLSH
 
innerRadius(double) - Method in class smile.plot.vega.Mark
Sets the secondary (inner) radius in pixels for arc mark.
input(int) - Static method in class smile.base.mlp.Layer
Returns an input layer.
input(int, double) - Static method in class smile.base.mlp.Layer
Returns an input layer.
Input - Interface in smile.io
Static methods that return the InputStream/Reader of a file or URL.
inputChannels() - Method in record class smile.vision.layer.MBConvConfig
Returns the value of the inputChannels record component.
InputLayer - Class in smile.base.mlp
An input layer in the neural network.
InputLayer(int) - Constructor for class smile.base.mlp.InputLayer
Constructor.
InputLayer(int, double) - Constructor for class smile.base.mlp.InputLayer
Constructor.
insert(int) - Method in class smile.util.PriorityQueue
Insert a new item into queue.
instance - Static variable in class smile.validation.metric.Accuracy
Default instance.
instance - Static variable in class smile.validation.metric.AdjustedRandIndex
Default instance.
instance - Static variable in class smile.validation.metric.AUC
Default instance.
instance - Static variable in class smile.validation.metric.Error
Default instance.
instance - Static variable in class smile.validation.metric.Fallout
Default instance.
instance - Static variable in class smile.validation.metric.FDR
Default instance.
instance - Static variable in class smile.validation.metric.LogLoss
Default instance.
instance - Static variable in class smile.validation.metric.MAD
Default instance.
instance - Static variable in class smile.validation.metric.MatthewsCorrelation
Default instance.
instance - Static variable in class smile.validation.metric.MSE
Default instance.
instance - Static variable in class smile.validation.metric.MutualInformation
Default instance.
instance - Static variable in class smile.validation.metric.Precision
Default instance.
instance - Static variable in class smile.validation.metric.R2
Default instance.
instance - Static variable in class smile.validation.metric.RandIndex
Default instance.
instance - Static variable in class smile.validation.metric.Recall
Default instance.
instance - Static variable in class smile.validation.metric.RMSE
Default instance.
instance - Static variable in class smile.validation.metric.RSS
Default instance.
instance - Static variable in class smile.validation.metric.Sensitivity
Default instance.
instance - Static variable in class smile.validation.metric.Specificity
Default instance.
Int16 - Enum constant in enum class smile.deep.tensor.ScalarType
16-bit integer.
Int32 - Enum constant in enum class smile.deep.tensor.ScalarType
32-bit integer.
Int64 - Enum constant in enum class smile.deep.tensor.ScalarType
64-bit integer.
Int8 - Enum constant in enum class smile.deep.tensor.ScalarType
8-bit integer.
intArray() - Method in class smile.deep.tensor.Tensor
Returns the integer array of tensor elements
IntArray2D - Class in smile.util
2-dimensional array of integers.
IntArray2D(int[][]) - Constructor for class smile.util.IntArray2D
Constructor.
IntArray2D(int, int) - Constructor for class smile.util.IntArray2D
Constructor of all-zero matrix.
IntArray2D(int, int, int) - Constructor for class smile.util.IntArray2D
Constructor.
IntArray2D(int, int, int[]) - Constructor for class smile.util.IntArray2D
Constructor.
IntArrayList - Class in smile.util
A resizeable, array-backed list of integer primitives.
IntArrayList() - Constructor for class smile.util.IntArrayList
Constructs an empty list.
IntArrayList(int) - Constructor for class smile.util.IntArrayList
Constructs an empty list with the specified initial capacity.
IntArrayList(int[]) - Constructor for class smile.util.IntArrayList
Constructs a list containing the values of the specified array.
IntDoubleHashMap - Class in smile.util
HashMap<int, double> for primitive types.
IntDoubleHashMap() - Constructor for class smile.util.IntDoubleHashMap
Constructs an empty HashMap with the default initial capacity (16) and the default load factor (0.75).
IntDoubleHashMap(int, float) - Constructor for class smile.util.IntDoubleHashMap
Constructor.
Integer - Enum constant in enum class smile.data.type.DataType.ID
Integer type ID.
INTEGER - Static variable in class smile.swing.table.NumberCellRenderer
 
INTEGER - Static variable in interface smile.util.Regex
Integer regular expression pattern.
INTEGER_REGEX - Static variable in interface smile.util.Regex
Integer regular expression.
IntegerArrayCellEditor - Class in smile.swing.table
Implements a cell editor that uses a formatted text field to edit int[] values.
IntegerArrayCellEditor() - Constructor for class smile.swing.table.IntegerArrayCellEditor
Constructor.
IntegerArrayCellRenderer - Class in smile.swing.table
Integer array renderer in JTable.
IntegerArrayCellRenderer() - Constructor for class smile.swing.table.IntegerArrayCellRenderer
Constructor.
IntegerArrayFormatter - Class in smile.swing.text
Text formatter for integer array values.
IntegerArrayFormatter() - Constructor for class smile.swing.text.IntegerArrayFormatter
 
IntegerArrayType - Static variable in class smile.data.type.DataTypes
Integer Array data type.
IntegerCellEditor - Class in smile.swing.table
Implements a cell editor that uses a formatted text field to edit Integer values.
IntegerCellEditor() - Constructor for class smile.swing.table.IntegerCellEditor
Constructor.
IntegerCellEditor(int, int) - Constructor for class smile.swing.table.IntegerCellEditor
Constructor.
IntegerObjectType - Static variable in class smile.data.type.DataTypes
Integer Object data type.
IntegerType - Class in smile.data.type
Integer data type.
IntegerType - Static variable in class smile.data.type.DataTypes
Integer data type.
interact(String...) - Static method in interface smile.data.formula.Terms
Factor interaction of two or more factors.
intercept() - Method in class smile.base.svm.KernelMachine
Returns the intercept.
intercept() - Method in class smile.regression.LinearModel
Returns the intercept.
intercept() - Method in class smile.timeseries.AR
Returns the intercept.
intercept() - Method in class smile.timeseries.ARMA
Returns the intercept.
intercept(double[]) - Method in interface smile.base.cart.Loss
Returns the intercept of model.
Intercept - Record Class in smile.data.formula
The flag if intercept should be included in the model.
Intercept(boolean) - Constructor for record class smile.data.formula.Intercept
Creates an instance of a Intercept record class.
InternalNode - Class in smile.base.cart
An internal node in CART.
InternalNode(int, double, double, Node, Node) - Constructor for class smile.base.cart.InternalNode
Constructor.
interpolate(double) - Method in class smile.interpolation.AbstractInterpolation
 
interpolate(double) - Method in interface smile.interpolation.Interpolation
Given a value x, return an interpolated value.
interpolate(double) - Method in class smile.interpolation.KrigingInterpolation1D
 
interpolate(double) - Method in class smile.interpolation.RBFInterpolation1D
 
interpolate(double) - Method in class smile.interpolation.ShepardInterpolation1D
 
interpolate(double...) - Method in class smile.interpolation.KrigingInterpolation
Interpolate the function at given point.
interpolate(double...) - Method in class smile.interpolation.RBFInterpolation
Interpolate the function at given point.
interpolate(double...) - Method in class smile.interpolation.ShepardInterpolation
Interpolate the function at given point.
interpolate(double[][]) - Static method in class smile.interpolation.LaplaceInterpolation
Laplace interpolation.
interpolate(double[][], double) - Static method in class smile.interpolation.LaplaceInterpolation
Laplace interpolation.
interpolate(double[][], double, int) - Static method in class smile.interpolation.LaplaceInterpolation
Laplace interpolation.
interpolate(double, double) - Method in class smile.interpolation.BicubicInterpolation
 
interpolate(double, double) - Method in class smile.interpolation.BilinearInterpolation
 
interpolate(double, double) - Method in class smile.interpolation.CubicSplineInterpolation2D
 
interpolate(double, double) - Method in interface smile.interpolation.Interpolation2D
Interpolate the data at a given 2-dimensional point.
interpolate(double, double) - Method in class smile.interpolation.KrigingInterpolation2D
 
interpolate(double, double) - Method in class smile.interpolation.RBFInterpolation2D
 
interpolate(double, double) - Method in class smile.interpolation.ShepardInterpolation2D
 
interpolate(String) - Method in class smile.plot.vega.Mark
Sets the line interpolation method to use for line and area marks.
Interpolation - Interface in smile.interpolation
In numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points.
Interpolation2D - Interface in smile.interpolation
Interpolation of 2-dimensional data.
IntervalScale - Class in smile.data.measure
The interval scale allows for the degree of difference between items, but not the ratio between them.
IntervalScale(NumberFormat) - Constructor for class smile.data.measure.IntervalScale
Constructor.
IntFunction - Class in smile.data.formula
The generic term of applying an integer function.
IntFunction - Interface in smile.math
An interface representing a univariate int function.
IntFunction(String, Term, IntFunction) - Constructor for class smile.data.formula.IntFunction
Constructor.
IntHashSet - Class in smile.util
HashSet<int> for primitive types.
IntHashSet() - Constructor for class smile.util.IntHashSet
Constructs an empty HashSet with the default initial capacity (16) and the default load factor (0.75).
IntHashSet(int, float) - Constructor for class smile.util.IntHashSet
Constructor.
IntHeapSelect - Class in smile.sort
This class tracks the smallest values seen thus far in a stream of values.
IntHeapSelect(int) - Constructor for class smile.sort.IntHeapSelect
Constructor.
IntHeapSelect(int[]) - Constructor for class smile.sort.IntHeapSelect
Constructor.
IntPair - Record Class in smile.util
A tuple of 2 integer elements.
IntPair(int, int) - Constructor for record class smile.util.IntPair
Creates an instance of a IntPair record class.
IntSet - Class in smile.util
A set of integers.
IntSet(int[]) - Constructor for class smile.util.IntSet
Constructor.
intValue() - Method in class smile.deep.tensor.Tensor
Returns the int value when the tensor holds a single value.
intVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
intVector(int) - Method in class smile.data.IndexDataFrame
 
intVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
intVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
IntVector - Interface in smile.data.vector
An immutable integer vector.
inv(double) - Method in interface smile.math.Function
Computes the value of the inverse function at x.
inv(double) - Method in class smile.math.Scaler
 
invalid(String) - Method in class smile.plot.vega.Mark
Sets how Vega-Lite should handle marks for invalid values (null and NaN).
inverf(double) - Static method in class smile.math.special.Erf
The inverse error function.
inverfc(double) - Static method in class smile.math.special.Erf
The inverse complementary error function.
inverse() - Method in class smile.math.matrix.BandMatrix.Cholesky
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.BandMatrix.LU
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.BigMatrix.Cholesky
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.BigMatrix
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.BigMatrix.LU
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.fp32.BandMatrix.LU
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.fp32.Matrix.Cholesky
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.fp32.Matrix
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.fp32.Matrix.LU
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.Matrix.Cholesky
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.Matrix
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.Matrix.LU
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
Returns the inverse of matrix.
inverse() - Method in class smile.math.matrix.SymmMatrix.Cholesky
Returns the inverse of matrix.
inverse(double[]) - Method in class smile.wavelet.Wavelet
Inverse discrete wavelet transform.
inverse(double, double) - Static method in interface smile.math.TimeFunction
Returns the inverse decay function.
inverse(double, double, double) - Static method in interface smile.math.TimeFunction
Returns the inverse decay function.
inverse(double, double, double, boolean) - Static method in interface smile.math.TimeFunction
Returns the inverse decay function.
inverseCDF() - Method in class smile.stat.distribution.GaussianDistribution
Generates a Gaussian random number with the inverse CDF method.
InverseMultiquadricRadialBasis - Class in smile.math.rbf
Inverse multiquadric RBF.
InverseMultiquadricRadialBasis() - Constructor for class smile.math.rbf.InverseMultiquadricRadialBasis
Constructor.
InverseMultiquadricRadialBasis(double) - Constructor for class smile.math.rbf.InverseMultiquadricRadialBasis
Constructor.
inverseRegularizedIncompleteBetaFunction(double, double, double) - Static method in class smile.math.special.Beta
Inverse of regularized incomplete beta function.
inverseRegularizedIncompleteGamma(double, double) - Static method in class smile.math.special.Gamma
The inverse of regularized incomplete gamma function.
inverseTransformSampling() - Method in interface smile.stat.distribution.Distribution
Use inverse transform sampling (also known as the inverse probability integral transform or inverse transformation method or Smirnov transform) to draw a sample from the given distribution.
invert(DataFrame) - Method in class smile.data.transform.InvertibleColumnTransform
 
invert(DataFrame) - Method in interface smile.data.transform.InvertibleTransform
Inverse transform a data frame.
invert(Tuple) - Method in class smile.data.transform.InvertibleColumnTransform
 
invert(Tuple) - Method in interface smile.data.transform.InvertibleTransform
Inverse transform a tuple.
InvertibleColumnTransform - Class in smile.data.transform
Invertible column-wise transformation.
InvertibleColumnTransform(String, Map<String, Function>, Map<String, Function>) - Constructor for class smile.data.transform.InvertibleColumnTransform
Constructor.
InvertibleTransform - Interface in smile.data.transform
Invertible data transformation.
invlink(double) - Method in interface smile.glm.model.Model
The inverse of link function (aka the mean function).
ipiv - Variable in class smile.math.matrix.BandMatrix.LU
The pivot vector.
ipiv - Variable in class smile.math.matrix.BigMatrix.LU
The pivot vector.
ipiv - Variable in class smile.math.matrix.fp32.BandMatrix.LU
The pivot vector.
ipiv - Variable in class smile.math.matrix.fp32.Matrix.LU
The pivot vector.
ipiv - Variable in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
The pivot vector.
ipiv - Variable in class smile.math.matrix.Matrix.LU
The pivot vector.
ipiv - Variable in class smile.math.matrix.SymmMatrix.BunchKaufman
The pivot vector.
ipython - Enum constant in enum class smile.llm.Role
Python code.
IQAgent - Class in smile.sort
Incremental quantile estimation.
IQAgent() - Constructor for class smile.sort.IQAgent
Constructor.
IQAgent(int) - Constructor for class smile.sort.IQAgent
Constructor.
isAncestorOf(Concept) - Method in class smile.taxonomy.Concept
Returns true if this concept is an ancestor of the given concept.
isAvailable() - Static method in interface smile.deep.CUDA
Returns true if CUDA is available.
isBF16Supported() - Static method in class smile.deep.tensor.Tensor
Checks if the CUDA device supports bf16.
isBoolean() - Method in class smile.data.type.BooleanType
 
isBoolean() - Method in interface smile.data.type.DataType
Returns true if the type is boolean or Boolean.
isBoolean() - Method in class smile.data.type.ObjectType
 
isByte() - Method in class smile.data.type.ByteType
 
isByte() - Method in interface smile.data.type.DataType
Returns true if the type is byte or Byte.
isByte() - Method in class smile.data.type.ObjectType
 
isCellEditable(int, int) - Method in class smile.swing.Table.RowHeader
Don't edit data in the main TableModel by mistake
isChar() - Method in class smile.data.type.CharType
 
isChar() - Method in interface smile.data.type.DataType
Returns true if the type is char or Char.
isChar() - Method in class smile.data.type.ObjectType
 
isCPU() - Method in class smile.deep.tensor.Device
Returns true if the device is CPU.
isCUDA() - Method in class smile.deep.tensor.Device
Returns true if the device is CUDA.
isDigraph() - Method in class smile.graph.Graph
Return true if the graph is directed.
isDouble() - Method in interface smile.data.type.DataType
Returns true if the type is double or Double.
isDouble() - Method in class smile.data.type.DoubleType
 
isDouble() - Method in class smile.data.type.ObjectType
 
isDouble(DataType) - Static method in interface smile.data.type.DataType
Returns true if the given type is of double, either primitive or boxed.
isEmpty() - Method in interface smile.data.DataFrame
Returns true if the data frame is empty.
isEmpty() - Method in interface smile.data.Dataset
Returns true if the dataset is empty.
isEmpty() - Method in class smile.plot.swing.Isoline
Returns true if the isoline doesn't have any points.
isEmpty() - Method in class smile.util.DoubleArrayList
Returns true if this list contains no values.
isEmpty() - Method in class smile.util.IntArrayList
Returns true if this list contains no values.
isEmpty() - Method in class smile.util.PairingHeap
 
isEmpty() - Method in class smile.util.PriorityQueue
Returns true if the queue is empty.
isEmpty() - Method in class smile.util.SparseArray
Returns true if the array is empty.
isExpandable() - Method in class smile.neighbor.lsh.Probe
Returns true if the probe is expandable.
isExtendable() - Method in class smile.neighbor.lsh.Probe
Returns true if the probe is extendable.
isFloat() - Method in interface smile.data.type.DataType
Returns true if the type is float or Float.
isFloat() - Method in class smile.data.type.FloatType
 
isFloat() - Method in class smile.data.type.ObjectType
 
isFloat(DataType) - Static method in interface smile.data.type.DataType
Returns true if the given type is of float, either primitive or boxed.
isFloating() - Method in interface smile.data.type.DataType
Returns true if the type is float or double.
isFrameVisible() - Method in class smile.plot.swing.Axis
Returns the visibility of the frame grid lines and their labels.
isGridVisible() - Method in class smile.plot.swing.Axis
Returns the visibility of the grid lines and their labels.
isin(Tensor) - Method in class smile.deep.tensor.Tensor
Tests if each element of this tensor is in other tensor.
isInplace() - Method in class smile.deep.activation.ActivationFunction
Returns true if the operation executes in-place.
isInt() - Method in interface smile.data.type.DataType
Returns true if the type is int or Integer.
isInt() - Method in class smile.data.type.IntegerType
 
isInt() - Method in class smile.data.type.ObjectType
 
isInt(double) - Static method in class smile.math.MathEx
Returns true if x is an integer.
isInt(float) - Static method in class smile.math.MathEx
Returns true if x is an integer.
isInt(DataType) - Static method in interface smile.data.type.DataType
Returns true if the given type is of int, short, byte, char, either primitive or boxed.
isIntegral() - Method in interface smile.data.type.DataType
Returns true if the type is int, long, short or byte.
isLeaf() - Method in class smile.taxonomy.Concept
Check if a node is a leaf in the taxonomy tree.
isLegendVisible() - Method in class smile.plot.swing.Canvas
Returns true if legends are visible.
isLong() - Method in interface smile.data.type.DataType
Returns true if the type is long or Long.
isLong() - Method in class smile.data.type.LongType
 
isLong() - Method in class smile.data.type.ObjectType
 
isLong(DataType) - Static method in interface smile.data.type.DataType
Returns true if the given type is of long, either primitive or boxed.
isMPS() - Method in class smile.deep.tensor.Device
Returns true if the device is MPS.
isNormalized() - Method in class smile.classification.RBFNetwork
Returns true if the model is normalized.
isNormalized() - Method in class smile.regression.RBFNetwork
Returns true if the model is normalized.
isNullAt(int) - Method in interface smile.data.Tuple
Checks whether the value at position i is null.
isNullAt(int) - Method in interface smile.data.vector.Vector
Checks if the value at position i is null.
isNullAt(int, int) - Method in interface smile.data.DataFrame
Checks whether the value at position (i, j) is null.
isNullAt(int, String) - Method in interface smile.data.DataFrame
Checks whether the field value is null.
isNullAt(String) - Method in interface smile.data.Tuple
Checks whether the field value is null.
isNullOrEmpty(String) - Static method in interface smile.util.Strings
Returns true if the string is null or empty.
isNumeric() - Method in interface smile.data.type.DataType
Returns true if the type is numeric (integral or floating).
isNumeric() - Method in class smile.data.type.StructField
Returns true if the field is of integer or floating but not nominal scale.
ISO8601 - Static variable in class smile.swing.table.DateCellEditor
 
ISO8601 - Static variable in class smile.swing.table.DateCellRenderer
 
isObject() - Method in interface smile.data.type.DataType
Returns true if the type is ObjectType.
isObject() - Method in class smile.data.type.ObjectType
 
isObject() - Method in class smile.data.type.StringType
 
IsolationForest - Class in smile.anomaly
Isolation forest is an unsupervised learning algorithm for anomaly detection that works on the principle of isolating anomalies.
IsolationForest(int, int, IsolationTree...) - Constructor for class smile.anomaly.IsolationForest
Constructor.
IsolationTree - Class in smile.anomaly
Isolation tree.
IsolationTree(List<double[]>, int, int) - Constructor for class smile.anomaly.IsolationTree
Constructor.
Isoline - Class in smile.plot.swing
Contour contains a list of segments.
Isoline(double, boolean) - Constructor for class smile.plot.swing.Isoline
Constructor.
IsoMap - Class in smile.manifold
Isometric feature mapping.
IsoMap() - Constructor for class smile.manifold.IsoMap
 
IsotonicMDS - Record Class in smile.manifold
Kruskal's non-metric MDS.
IsotonicMDS(double, double[][]) - Constructor for record class smile.manifold.IsotonicMDS
Creates an instance of a IsotonicMDS record class.
IsotonicRegressionScaling - Class in smile.classification
A method to calibrate decision function value to probability.
IsotonicRegressionScaling(double[], double[]) - Constructor for class smile.classification.IsotonicRegressionScaling
Constructor.
IsotropicKernel - Interface in smile.math.kernel
Isotropic kernel.
isPower2(int) - Static method in class smile.math.MathEx
Returns true if x is a power of 2.
isPrimitive() - Method in interface smile.data.type.DataType
Returns true if this is a primitive data type.
isProbablePrime(long, int) - Static method in class smile.math.MathEx
Returns true if n is probably prime, false if it's definitely composite.
isShiftable() - Method in class smile.neighbor.lsh.Probe
Returns true if the probe is shiftable.
isShort() - Method in interface smile.data.type.DataType
Returns true if the type is short or Short.
isShort() - Method in class smile.data.type.ObjectType
 
isShort() - Method in class smile.data.type.ShortType
 
isSingular() - Method in class smile.math.matrix.BandMatrix.LU
Returns true if the matrix is singular.
isSingular() - Method in class smile.math.matrix.BigMatrix.LU
Returns true if the matrix is singular.
isSingular() - Method in class smile.math.matrix.fp32.BandMatrix.LU
Returns true if the matrix is singular.
isSingular() - Method in class smile.math.matrix.fp32.Matrix.LU
Returns true if the matrix is singular.
isSingular() - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
Returns true if the matrix is singular.
isSingular() - Method in class smile.math.matrix.Matrix.LU
Returns true if the matrix is singular.
isSingular() - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
Returns true if the matrix is singular.
isSpecialTokenAllowed() - Method in class smile.llm.tokenizer.Tiktoken
Returns how special tokens will be encoded.
isString() - Method in interface smile.data.type.DataType
Returns true if the type is String.
isString() - Method in class smile.data.type.StringType
 
isSymmetric() - Method in class smile.math.matrix.BandMatrix
Return true if the matrix is symmetric (uplo != null).
isSymmetric() - Method in class smile.math.matrix.BigMatrix
Return true if the matrix is symmetric (uplo != null && diag == null).
isSymmetric() - Method in class smile.math.matrix.fp32.BandMatrix
Return true if the matrix is symmetric (uplo != null).
isSymmetric() - Method in class smile.math.matrix.fp32.Matrix
Return true if the matrix is symmetric (uplo != null && diag == null).
isSymmetric() - Method in class smile.math.matrix.Matrix
Return true if the matrix is symmetric (uplo != null && diag == null).
isTickVisible() - Method in class smile.plot.swing.Axis
Returns the visibility of the axis label.
isTraining() - Method in class smile.deep.layer.LayerBlock
Returns true if the layer block is in training mode.
isVariable() - Method in interface smile.data.formula.Feature
Returns true if the term represents a plain variable/column in the data frame.
isZero(double) - Static method in class smile.math.MathEx
Tests if a floating number is zero in machine precision.
isZero(double, double) - Static method in class smile.math.MathEx
Tests if a floating number is zero in given precision.
isZero(float) - Static method in class smile.math.MathEx
Tests if a floating number is zero in machine precision.
isZero(float, float) - Static method in class smile.math.MathEx
Tests if a floating number is zero in given precision.
items() - Method in record class smile.association.ItemSet
Returns the value of the items record component.
ItemSet - Record Class in smile.association
A set of items.
ItemSet(int[], int) - Constructor for record class smile.association.ItemSet
Creates an instance of a ItemSet record class.
iterator() - Method in class smile.association.ARM
 
iterator() - Method in class smile.association.FPGrowth
 
iterator() - Method in class smile.data.IndexDataFrame
 
iterator() - Method in class smile.math.matrix.fp32.SparseMatrix
Returns the iterator of nonzero entries.
iterator() - Method in class smile.math.matrix.SparseMatrix
Returns the iterator of nonzero entries.
iterator() - Method in interface smile.nlp.dictionary.Dictionary
Returns an iterator over the words in this dictionary.
iterator() - Method in enum class smile.nlp.dictionary.EnglishDictionary
 
iterator() - Method in class smile.nlp.dictionary.EnglishPunctuations
 
iterator() - Method in enum class smile.nlp.dictionary.EnglishStopWords
 
iterator() - Method in class smile.nlp.dictionary.SimpleDictionary
 
iterator() - Method in class smile.util.PairingHeap
 
iterator() - Method in class smile.util.SparseArray
 
iterator() - Method in class smile.vision.ImageDataset
 
iterator(int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
Returns the iterator of nonzero entries.
iterator(int, int) - Method in class smile.math.matrix.SparseMatrix
Returns the iterator of nonzero entries.
iv() - Method in record class smile.feature.selection.InformationValue
Returns the value of the iv record component.

J

j - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
The column index.
j - Variable in class smile.math.matrix.SparseMatrix.Entry
The column index.
JaccardDistance<T> - Class in smile.math.distance
The Jaccard index, also known as the Jaccard similarity coefficient is a statistic used for comparing the similarity and diversity of sample sets.
JaccardDistance() - Constructor for class smile.math.distance.JaccardDistance
Constructor.
Jacobi() - Method in class smile.math.matrix.fp32.IMatrix
Returns a simple Jacobi preconditioner matrix that is the trivial diagonal part of A in some cases.
Jacobi() - Method in class smile.math.matrix.IMatrix
Returns a simple Jacobi preconditioner matrix that is the trivial diagonal part of A in some cases.
JensenShannonDistance - Class in smile.math.distance
The Jensen-Shannon divergence is a popular method of measuring the similarity between two probability distributions.
JensenShannonDistance() - Constructor for class smile.math.distance.JensenShannonDistance
Constructor.
JensenShannonDivergence(double[], double[]) - Static method in class smile.math.MathEx
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
JensenShannonDivergence(double[], SparseArray) - Static method in class smile.math.MathEx
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
JensenShannonDivergence(SparseArray, double[]) - Static method in class smile.math.MathEx
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
JensenShannonDivergence(SparseArray, SparseArray) - Static method in class smile.math.MathEx
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
jet(int) - Static method in interface smile.plot.swing.Palette
Generate jet color palette.
jet(int, float) - Static method in interface smile.plot.swing.Palette
Generate jet color palette.
JJ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Adjective.
JJR - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Adjective, comparative.
JJS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Adjective, superlative.
joinAggregate(String, String, String, String...) - Method in class smile.plot.vega.Transform
The join-aggregate transform extends the input data objects with aggregate values in a new field.
joint(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / H(y1, y2).
JOINT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / H(y1, y2)
JOINT - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with max normalization.
JointPrediction(T[], double[], double[], Matrix) - Constructor for class smile.regression.GaussianProcessRegression.JointPrediction
Constructor.
json(String) - Static method in interface smile.io.Read
Reads a JSON file.
json(String, String) - Method in class smile.plot.vega.Data
Loads a JSON file.
json(String, String...) - Method in class smile.data.SQL
Creates an in-memory table from json files.
json(String, String, Map<String, String>, String...) - Method in class smile.data.SQL
Creates an in-memory table from json files.
json(String, JSON.Mode, StructType) - Static method in interface smile.io.Read
Reads a JSON file.
json(Path) - Static method in interface smile.io.Read
Reads a JSON file.
json(Path, JSON.Mode, StructType) - Static method in interface smile.io.Read
Reads a JSON file.
JSON - Class in smile.io
Reads JSON datasets.
JSON() - Constructor for class smile.io.JSON
Constructor.
JSON.Mode - Enum Class in smile.io
JSON files in single-line or multi-line mode.

K

k - Variable in class smile.classification.ClassLabels
The number of classes.
k - Variable in class smile.clustering.PartitionClustering
The number of clusters.
k - Variable in class smile.neighbor.LSH
The number of random projections per hash value.
k - Variable in class smile.stat.distribution.GammaDistribution
The shape parameter.
k - Variable in class smile.stat.distribution.WeibullDistribution
The shape parameter.
k() - Method in record class smile.graph.NearestNeighborGraph
Returns the value of the k record component.
k(double) - Method in class smile.math.kernel.BinarySparseLinearKernel
 
k(double) - Method in interface smile.math.kernel.DotProductKernel
Computes the dot product kernel function.
k(double) - Method in class smile.math.kernel.Gaussian
 
k(double) - Method in class smile.math.kernel.HyperbolicTangent
 
k(double) - Method in interface smile.math.kernel.IsotropicKernel
Computes the isotropic kernel function.
k(double) - Method in class smile.math.kernel.Laplacian
 
k(double) - Method in class smile.math.kernel.LinearKernel
 
k(double) - Method in class smile.math.kernel.Matern
 
k(double) - Method in class smile.math.kernel.Polynomial
 
k(double) - Method in class smile.math.kernel.SparseLinearKernel
 
k(double) - Method in class smile.math.kernel.ThinPlateSpline
 
k(double[], double[]) - Method in class smile.math.kernel.GaussianKernel
 
k(double[], double[]) - Method in class smile.math.kernel.HellingerKernel
 
k(double[], double[]) - Method in class smile.math.kernel.HyperbolicTangentKernel
 
k(double[], double[]) - Method in class smile.math.kernel.LaplacianKernel
 
k(double[], double[]) - Method in class smile.math.kernel.LinearKernel
 
k(double[], double[]) - Method in class smile.math.kernel.MaternKernel
 
k(double[], double[]) - Method in class smile.math.kernel.PearsonKernel
 
k(double[], double[]) - Method in class smile.math.kernel.PolynomialKernel
 
k(double[], double[]) - Method in class smile.math.kernel.ThinPlateSplineKernel
 
k(int[], int[]) - Method in class smile.math.kernel.BinarySparseGaussianKernel
 
k(int[], int[]) - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
 
k(int[], int[]) - Method in class smile.math.kernel.BinarySparseLaplacianKernel
 
k(int[], int[]) - Method in class smile.math.kernel.BinarySparseLinearKernel
 
k(int[], int[]) - Method in class smile.math.kernel.BinarySparseMaternKernel
 
k(int[], int[]) - Method in class smile.math.kernel.BinarySparsePolynomialKernel
 
k(int[], int[]) - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
 
k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseGaussianKernel
 
k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
 
k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLaplacianKernel
 
k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLinearKernel
 
k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseMaternKernel
 
k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparsePolynomialKernel
 
k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseThinPlateSplineKernel
 
k(T, T) - Method in interface smile.math.kernel.MercerKernel
Kernel function.
k(T, T) - Method in class smile.math.kernel.ProductKernel
 
k(T, T) - Method in class smile.math.kernel.SumKernel
 
K(Matrix) - Method in interface smile.math.kernel.DotProductKernel
Computes the kernel matrix.
K(Matrix) - Method in interface smile.math.kernel.IsotropicKernel
Computes the kernel matrix.
K(T[]) - Method in interface smile.math.kernel.MercerKernel
Computes the kernel matrix.
K(T[], T[]) - Method in interface smile.math.kernel.MercerKernel
Returns the kernel matrix.
KDTree<E> - Class in smile.neighbor
A KD-tree (short for k-dimensional tree) is a space-partitioning dataset structure for organizing points in a k-dimensional space.
KDTree(double[][], E[]) - Constructor for class smile.neighbor.KDTree
Constructor.
kendall(double[], double[]) - Static method in class smile.math.MathEx
The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant.
kendall(double[], double[]) - Static method in record class smile.stat.hypothesis.CorTest
Kendall rank correlation test.
kendall(float[], float[]) - Static method in class smile.math.MathEx
The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant.
kendall(int[], int[]) - Static method in class smile.math.MathEx
The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant.
kernel - Variable in class smile.regression.GaussianProcessRegression
The covariance/kernel function.
kernel() - Method in class smile.base.svm.KernelMachine
Returns the kernel function.
kernel() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the kernel record component.
kernel() - Method in record class smile.vision.layer.MBConvConfig
Returns the value of the kernel record component.
KernelDensity - Class in smile.stat.distribution
Kernel density estimation is a non-parametric way of estimating the probability density function of a random variable.
KernelDensity(double[]) - Constructor for class smile.stat.distribution.KernelDensity
Constructor.
KernelDensity(double[], double) - Constructor for class smile.stat.distribution.KernelDensity
Constructor.
KernelMachine<T> - Class in smile.base.svm
Kernel machines.
KernelMachine<T> - Class in smile.regression
The learning methods building on kernels.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.regression.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.base.svm.KernelMachine
Constructor.
KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.KernelMachine
Constructor.
KernelPCA - Class in smile.feature.extraction
Kernel PCA transform.
KernelPCA(KPCA<double[]>, String...) - Constructor for class smile.feature.extraction.KernelPCA
Constructor.
key() - Method in record class smile.neighbor.Neighbor
Returns the value of the key record component.
keys - Variable in class smile.neighbor.LSH
The object keys.
keys() - Method in class smile.neighbor.MutableLSH
Returns the keys.
keyvals(double[]) - Method in class smile.plot.vega.ImputeTransform
Sets the key values that should be considered for imputation.
keyvals(double, double, double) - Method in class smile.plot.vega.ImputeTransform
Sets the sequence of key values that should be considered for imputation.
keywords() - Method in class smile.taxonomy.Concept
Returns the concept synonym set.
kg(double) - Method in class smile.math.kernel.BinarySparseLinearKernel
 
kg(double) - Method in interface smile.math.kernel.DotProductKernel
Computes the dot product kernel function and its gradient over hyperparameters.
kg(double) - Method in class smile.math.kernel.Gaussian
 
kg(double) - Method in class smile.math.kernel.HyperbolicTangent
 
kg(double) - Method in interface smile.math.kernel.IsotropicKernel
Computes the isotropic kernel function and its gradient over hyperparameters.
kg(double) - Method in class smile.math.kernel.Laplacian
 
kg(double) - Method in class smile.math.kernel.LinearKernel
 
kg(double) - Method in class smile.math.kernel.Matern
 
kg(double) - Method in class smile.math.kernel.Polynomial
 
kg(double) - Method in class smile.math.kernel.SparseLinearKernel
 
kg(double) - Method in class smile.math.kernel.ThinPlateSpline
 
kg(double[], double[]) - Method in class smile.math.kernel.GaussianKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.HellingerKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.HyperbolicTangentKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.LaplacianKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.LinearKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.MaternKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.PearsonKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.PolynomialKernel
 
kg(double[], double[]) - Method in class smile.math.kernel.ThinPlateSplineKernel
 
kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseGaussianKernel
 
kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
 
kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseLaplacianKernel
 
kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseLinearKernel
 
kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseMaternKernel
 
kg(int[], int[]) - Method in class smile.math.kernel.BinarySparsePolynomialKernel
 
kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
 
kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseGaussianKernel
 
kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
 
kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLaplacianKernel
 
kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLinearKernel
 
kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseMaternKernel
 
kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparsePolynomialKernel
 
kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseThinPlateSplineKernel
 
kg(T, T) - Method in interface smile.math.kernel.MercerKernel
Computes the kernel and its gradient over hyperparameters.
kg(T, T) - Method in class smile.math.kernel.ProductKernel
 
kg(T, T) - Method in class smile.math.kernel.SumKernel
 
KG(Matrix) - Method in interface smile.math.kernel.IsotropicKernel
Computes the kernel and gradient matrices.
KG(T[]) - Method in interface smile.math.kernel.MercerKernel
Computes the kernel and gradient matrices.
kl() - Static method in interface smile.deep.Loss
Kullback-Leibler Divergence Loss Function.
kl() - Method in class smile.math.matrix.BandMatrix
Returns the number of subdiagonals.
kl() - Method in class smile.math.matrix.fp32.BandMatrix
Returns the number of subdiagonals.
KMeans - Class in smile.clustering
K-Means clustering.
KMeans(double, double[][], int[]) - Constructor for class smile.clustering.KMeans
Constructor.
KMedoidsImputer - Class in smile.feature.imputation
Missing value imputation by K-Medoids clustering.
KMedoidsImputer(CLARANS<Tuple>) - Constructor for class smile.feature.imputation.KMedoidsImputer
Constructor.
KModes - Class in smile.clustering
K-Modes clustering.
KModes(double, int[][], int[]) - Constructor for class smile.clustering.KModes
Constructor.
KNN<T> - Class in smile.classification
K-nearest neighbor classifier.
KNN(KNNSearch<T, T>, int[], int) - Constructor for class smile.classification.KNN
Constructor.
KNNImputer - Class in smile.feature.imputation
Missing value imputation with k-nearest neighbors.
KNNImputer(DataFrame, int, String...) - Constructor for class smile.feature.imputation.KNNImputer
Constructor with Euclidean distance on selected columns.
KNNImputer(DataFrame, int, Distance<Tuple>) - Constructor for class smile.feature.imputation.KNNImputer
Constructor.
KNNSearch<K,V> - Interface in smile.neighbor
Retrieves the top k nearest neighbors to the query.
kpca - Variable in class smile.feature.extraction.KernelPCA
Kernel PCA.
KPCA<T> - Class in smile.manifold
Kernel principal component analysis.
KPCA(T[], MercerKernel<T>, double[], double, double[][], double[], Matrix) - Constructor for class smile.manifold.KPCA
Constructor.
KrigingInterpolation - Class in smile.interpolation
Kriging interpolation for the data points irregularly distributed in space.
KrigingInterpolation(double[][], double[]) - Constructor for class smile.interpolation.KrigingInterpolation
Constructor.
KrigingInterpolation(double[][], double[], Variogram, double[]) - Constructor for class smile.interpolation.KrigingInterpolation
Constructor.
KrigingInterpolation1D - Class in smile.interpolation
Kriging interpolation for the data points irregularly distributed in space.
KrigingInterpolation1D(double[], double[]) - Constructor for class smile.interpolation.KrigingInterpolation1D
Constructor.
KrigingInterpolation1D(double[], double[], double) - Constructor for class smile.interpolation.KrigingInterpolation1D
Constructor.
KrigingInterpolation2D - Class in smile.interpolation
Kriging interpolation for the data points irregularly distributed in space.
KrigingInterpolation2D(double[], double[], double[]) - Constructor for class smile.interpolation.KrigingInterpolation2D
Constructor.
KrigingInterpolation2D(double[], double[], double[], double) - Constructor for class smile.interpolation.KrigingInterpolation2D
Constructor.
KSTest - Record Class in smile.stat.hypothesis
The Kolmogorov-Smirnov test (K-S test) is a form of minimum distance estimation used as a non-parametric test of equality of one-dimensional probability distributions.
KSTest(String, double, double) - Constructor for record class smile.stat.hypothesis.KSTest
Creates an instance of a KSTest record class.
ku() - Method in class smile.math.matrix.BandMatrix
Returns the number of superdiagonals.
ku() - Method in class smile.math.matrix.fp32.BandMatrix
Returns the number of superdiagonals.
KullbackLeiblerDivergence(double[], double[]) - Static method in class smile.math.MathEx
Kullback-Leibler divergence.
KullbackLeiblerDivergence(double[], SparseArray) - Static method in class smile.math.MathEx
Kullback-Leibler divergence.
KullbackLeiblerDivergence(SparseArray, double[]) - Static method in class smile.math.MathEx
Kullback-Leibler divergence.
KullbackLeiblerDivergence(SparseArray, SparseArray) - Static method in class smile.math.MathEx
Kullback-Leibler divergence.
Kurtosis - Class in smile.ica
The kurtosis of the probability density function of a signal.
Kurtosis() - Constructor for class smile.ica.Kurtosis
 

L

L - Variable in class smile.regression.GaussianProcessRegression
The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods.
L - Variable in class smile.stat.distribution.DiscreteExponentialFamilyMixture
The log-likelihood when the distribution is fit on a sample data.
L - Variable in class smile.stat.distribution.ExponentialFamilyMixture
The log-likelihood when the distribution is fit on a sample data.
L - Variable in class smile.stat.distribution.MultivariateExponentialFamilyMixture
The log-likelihood when the distribution is fit on a sample data.
L - Variable in class smile.vq.BIRCH
The number of CF entries in the leaf nodes.
L_INF - Enum constant in enum class smile.feature.transform.Normalizer.Norm
Normalize L-infinity vector norm.
l1() - Static method in interface smile.deep.Loss
Mean Absolute Error (L1) Loss Function.
L1 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
Normalize L1 vector norm.
L2 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
Normalize L2 vector norm.
LA - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
The largest algebraic eigenvalues.
LA - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
The largest algebraic eigenvalues.
Label - Class in smile.plot.swing
Label is a single line text.
Label(String, double[], double, double, double, Font, Color) - Constructor for class smile.plot.swing.Label
Constructor.
label2Id - Static variable in interface smile.vision.ImageNet
The map from label to class id.
label2Target - Static variable in interface smile.vision.ImageNet
The functor mapping label to class id.
labelAlign(String) - Method in class smile.plot.vega.Axis
Sets the horizontal text alignment of axis tick labels.
labelAlign(String) - Method in class smile.plot.vega.Legend
Sets the alignment of the legend label.
labelAngle(double) - Method in class smile.plot.vega.Axis
Sets the rotation angle of the axis labels.
labelBaseline(String) - Method in class smile.plot.vega.Axis
Sets the vertical text baseline of axis tick labels.
labelBaseline(String) - Method in class smile.plot.vega.Legend
Sets the position of the baseline of legend label.
labelBound(boolean) - Method in class smile.plot.vega.Axis
Sets if labels should be hidden if they exceed the axis range.
labelBound(double) - Method in class smile.plot.vega.Axis
Sets the pixel tolerance of label bounding box.
labelColor(String) - Method in class smile.plot.vega.Axis
Sets the color of the tick label.
labelColor(String) - Method in class smile.plot.vega.Legend
Sets the color of the legend label.
labelExpr(String) - Method in class smile.plot.vega.Axis
Sets the Vega expression for customizing labels.
labelExpr(String) - Method in class smile.plot.vega.Legend
Sets the Vega expression for customizing labels.
labelFlush(boolean) - Method in class smile.plot.vega.Axis
Sets if the first and last axis labels should be aligned flush with the scale range.
labelFlush(double) - Method in class smile.plot.vega.Axis
Sets the number of pixels by which to offset the first and last labels.
labelFlushOffset(double) - Method in class smile.plot.vega.Axis
Sets the number of pixels by which to offset flush-adjusted labels.
labelFont(String) - Method in class smile.plot.vega.Axis
Sets the font of the tick label.
labelFont(String) - Method in class smile.plot.vega.Legend
Sets the font of the legend label.
labelFontSize(double) - Method in class smile.plot.vega.Axis
Sets the font size of the label in pixels.
labelFontSize(double) - Method in class smile.plot.vega.Legend
Sets the font size of the label in pixels.
labelFontStyle(String) - Method in class smile.plot.vega.Axis
Sets the font style of the title.
labelFontStyle(String) - Method in class smile.plot.vega.Legend
Sets the font style of the title.
labelFontWeight(int) - Method in class smile.plot.vega.Axis
Sets the font weight of axis tick labels.
labelFontWeight(int) - Method in class smile.plot.vega.Legend
Sets the font weight of legend labels.
labelFontWeight(String) - Method in class smile.plot.vega.Axis
Sets the font weight of axis tick labels.
labelFontWeight(String) - Method in class smile.plot.vega.Legend
Sets the font weight of legend labels.
labelLimit(int) - Method in class smile.plot.vega.Axis
Sets the maximum allowed pixel width of axis tick labels.
labelLimit(int) - Method in class smile.plot.vega.Legend
Sets the maximum allowed pixel width of legend labels.
labelLineHeight(int) - Method in class smile.plot.vega.Axis
Sets the line height in pixels for multi-line label text.
labelLineHeight(String) - Method in class smile.plot.vega.Axis
Sets the line height for multi-line label text.
labelOffset(int) - Method in class smile.plot.vega.Axis
Sets the position offset in pixels to apply to labels, in addition to tickOffset.
labelOffset(int) - Method in class smile.plot.vega.Legend
Sets the position offset in pixels to apply to labels.
labelOpacity(double) - Method in class smile.plot.vega.Axis
Sets the opacity of the labels.
labelOverlap(boolean) - Method in class smile.plot.vega.Axis
Sets the strategy to use for resolving overlap of axis labels.
labelOverlap(boolean) - Method in class smile.plot.vega.Legend
Sets the strategy to use for resolving overlap of legend labels.
labelOverlap(String) - Method in class smile.plot.vega.Axis
Sets the strategy to use for resolving overlap of axis labels.
labelOverlap(String) - Method in class smile.plot.vega.Legend
Sets the strategy to use for resolving overlap of legend labels.
labelPadding(double) - Method in class smile.plot.vega.Axis
Sets the padding in pixels between labels and ticks.
labels - Static variable in interface smile.vision.ImageNet
Class labels.
labels(boolean) - Method in class smile.plot.vega.Axis
Sets if labels should be included as part of the axis.
labelSeparation(double) - Method in class smile.plot.vega.Axis
Sets the minimum separation that must be between label bounding boxes for them to be considered non-overlapping (default 0).
lad() - Static method in interface smile.base.cart.Loss
Least absolute deviation regression loss.
LamarckianChromosome<T> - Interface in smile.gap
Artificial chromosomes used in Lamarckian algorithm that is a hybrid of evolutionary computation and a local improver such as hill-climbing.
lambda - Variable in class smile.base.mlp.MultilayerPerceptron
The L2 regularization factor, which is also the weight decay factor.
lambda - Variable in class smile.stat.distribution.ExponentialDistribution
The rate parameter.
lambda - Variable in class smile.stat.distribution.PoissonDistribution
The average number of events per interval.
lambda - Variable in class smile.stat.distribution.WeibullDistribution
The scale parameter.
LancasterStemmer - Class in smile.nlp.stemmer
The Paice/Husk Lancaster stemming algorithm.
LancasterStemmer() - Constructor for class smile.nlp.stemmer.LancasterStemmer
Constructor with default rules.
LancasterStemmer(boolean) - Constructor for class smile.nlp.stemmer.LancasterStemmer
Constructor with default rules.
LancasterStemmer(InputStream) - Constructor for class smile.nlp.stemmer.LancasterStemmer
Constructor with customized rules.
LancasterStemmer(InputStream, boolean) - Constructor for class smile.nlp.stemmer.LancasterStemmer
Constructor with customized rules.
Lanczos - Class in smile.math.matrix
The Lanczos algorithm is a direct algorithm devised by Cornelius Lanczos that is an adaptation of power methods to find the most useful eigenvalues and eigenvectors of a nth order linear system with a limited number of operations, m, where m is much smaller than n.
Lanczos() - Constructor for class smile.math.matrix.Lanczos
 
lapack() - Method in enum class smile.math.blas.Diag
Returns the value for LAPACK.
lapack() - Method in enum class smile.math.blas.EigenRange
Returns the byte value for LAPACK.
lapack() - Method in enum class smile.math.blas.EVDJob
Returns the byte value for LAPACK.
lapack() - Method in enum class smile.math.blas.Layout
Returns the byte value for LAPACK.
lapack() - Method in enum class smile.math.blas.Side
Returns the byte value for LAPACK.
lapack() - Method in enum class smile.math.blas.SVDJob
Returns the byte value for LAPACK.
lapack() - Method in enum class smile.math.blas.Transpose
Returns the byte value for LAPACK.
lapack() - Method in enum class smile.math.blas.UPLO
Returns the byte value for LAPACK.
LAPACK - Interface in smile.math.blas
Linear Algebra Package.
LaplaceInterpolation - Class in smile.interpolation
Laplace's interpolation to restore missing or unmeasured values on a 2-dimensional evenly spaced regular grid.
LaplaceInterpolation() - Constructor for class smile.interpolation.LaplaceInterpolation
 
Laplacian - Class in smile.math.kernel
Laplacian kernel, also referred as exponential kernel.
Laplacian(double, double, double) - Constructor for class smile.math.kernel.Laplacian
Constructor.
LaplacianEigenmap - Class in smile.manifold
Laplacian Eigenmaps.
LaplacianEigenmap() - Constructor for class smile.manifold.LaplacianEigenmap
 
LaplacianKernel - Class in smile.math.kernel
Laplacian kernel, also referred as exponential kernel.
LaplacianKernel(double) - Constructor for class smile.math.kernel.LaplacianKernel
Constructor.
LaplacianKernel(double, double, double) - Constructor for class smile.math.kernel.LaplacianKernel
Constructor.
largest(boolean) - Method in record class smile.graph.NearestNeighborGraph
Returns the largest connected component of a nearest neighbor graph.
LASSO - Class in smile.regression
Lasso (least absolute shrinkage and selection operator) regression.
LASSO() - Constructor for class smile.regression.LASSO
 
LASVM<T> - Class in smile.base.svm
LASVM is an approximate SVM solver that uses online approximation.
LASVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
LASVM(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.LASVM
Constructor.
latin(int, int) - Static method in interface smile.stat.Sampling
Latin hypercube sampling.
lattice(int, int, double[][]) - Static method in class smile.vq.SOM
Creates a lattice of which the weight vectors are randomly selected from samples.
Layer - Class in smile.base.mlp
A layer in the neural network.
Layer - Class in smile.plot.vega
To superimpose one chart on top of another.
Layer - Interface in smile.deep.layer
A layer in the neural network.
Layer(int, int) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(int, int, double) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(Matrix, double[]) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(Matrix, double[], double) - Constructor for class smile.base.mlp.Layer
Constructor.
Layer(View...) - Constructor for class smile.plot.vega.Layer
Constructor.
LayerBlock - Class in smile.deep.layer
A block is combinations of one or more layers.
LayerBlock() - Constructor for class smile.deep.layer.LayerBlock
Constructor.
LayerBlock(String) - Constructor for class smile.deep.layer.LayerBlock
Constructor.
LayerBlock(Module) - Constructor for class smile.deep.layer.LayerBlock
Constructor.
LayerBuilder - Class in smile.base.mlp
The builder of layers.
LayerBuilder(int, double) - Constructor for class smile.base.mlp.LayerBuilder
Constructor.
layout() - Method in class smile.math.matrix.BandMatrix
Returns the matrix layout.
layout() - Method in class smile.math.matrix.BigMatrix
Returns the matrix layout.
layout() - Method in class smile.math.matrix.fp32.BandMatrix
Returns the matrix layout.
layout() - Method in class smile.math.matrix.fp32.Matrix
Returns the matrix layout.
layout() - Method in class smile.math.matrix.fp32.SymmMatrix
Returns the matrix layout.
layout() - Method in class smile.math.matrix.Matrix
Returns the matrix layout.
layout() - Method in class smile.math.matrix.SymmMatrix
Returns the matrix layout.
layout(Layout) - Method in class smile.deep.tensor.Tensor.Options
Sets strided (dense) or sparse tensor.
Layout - Enum Class in smile.deep.tensor
The memory layout of a Tensor.
Layout - Enum Class in smile.math.blas
Matrix layout.
lchoose(int, int) - Static method in class smile.math.MathEx
The log of n choose k.
ld() - Method in class smile.math.matrix.BandMatrix
Returns the leading dimension.
ld() - Method in class smile.math.matrix.BigMatrix
Returns the leading dimension.
ld() - Method in class smile.math.matrix.fp32.BandMatrix
Returns the leading dimension.
ld() - Method in class smile.math.matrix.fp32.Matrix
Returns the leading dimension.
ld() - Method in class smile.math.matrix.Matrix
Returns the leading dimension.
LDA - Class in smile.classification
Linear discriminant analysis.
LDA(double[], double[][], double[], Matrix) - Constructor for class smile.classification.LDA
Constructor.
LDA(double[], double[][], double[], Matrix, IntSet) - Constructor for class smile.classification.LDA
Constructor.
le(double) - Method in class smile.deep.tensor.Tensor
Computes element-wise less-than-or-equal-to comparison.
le(int) - Method in class smile.deep.tensor.Tensor
Computes element-wise less-than-or-equal-to comparison.
le(Tensor) - Method in class smile.deep.tensor.Tensor
Computes element-wise less-than-or-equal-to comparison.
LeafNode - Class in smile.base.cart
A leaf node in decision tree.
LeafNode(int) - Constructor for class smile.base.cart.LeafNode
Constructor.
leafSamples() - Method in class smile.neighbor.RandomProjectionTree
Returns the list of samples in each leaf node.
leaky() - Static method in interface smile.base.mlp.ActivationFunction
The leaky rectifier activation function max(x, 0.01x).
leaky(double) - Static method in interface smile.base.mlp.ActivationFunction
The leaky rectifier activation function max(x, ax) where 0 <= a < 1.
leaky(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with leaky rectified linear activation function.
leaky(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with leaky rectified linear activation function.
leaky(int, double, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with leaky rectified linear activation function.
leaky(int, int, double) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with leaky ReLU activation function.
leaky(int, int, double, double) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with leaky ReLU activation function.
LeakyReLU - Class in smile.deep.activation
Sigmoid Linear Unit activation function.
LeakyReLU() - Constructor for class smile.deep.activation.LeakyReLU
Constructor.
LeakyReLU(double, boolean) - Constructor for class smile.deep.activation.LeakyReLU
Constructor.
learningRate - Variable in class smile.base.mlp.MultilayerPerceptron
The learning rate.
LeastAbsoluteDeviation - Enum constant in enum class smile.base.cart.Loss.Type
Least absolute deviation regression.
LeastSquares - Enum constant in enum class smile.base.cart.Loss.Type
Least squares regression.
leaves() - Method in class smile.base.cart.InternalNode
 
leaves() - Method in class smile.base.cart.LeafNode
 
leaves() - Method in interface smile.base.cart.Node
Returns the number of leaf nodes in the subtree.
LeeDistance - Class in smile.math.distance
In coding theory, the Lee distance is a distance between two strings x1x2...xn and y1y2...yn of equal length n over the q-ary alphabet {0, 1, ..., q-1} of size q >= 2, defined as
LeeDistance(int) - Constructor for class smile.math.distance.LeeDistance
Constructor with a given size q of alphabet.
LEFT - Enum constant in enum class smile.math.blas.Side
A * B
leftPad(String, int, char) - Static method in interface smile.util.Strings
Left pad a string with a specified character.
legend() - Method in class smile.plot.vega.Config
Returns the legend definition object.
legend() - Method in class smile.plot.vega.Field
Returns the legend definition object.
Legend - Class in smile.plot.swing
Legend is a single line text which coordinates are in proportional to the base coordinates.
Legend - Class in smile.plot.vega
Similar to axes, legends visualize scales.
Legend(String, Color) - Constructor for class smile.plot.swing.Legend
Constructor.
legends() - Method in class smile.plot.swing.BarPlot
 
legends() - Method in class smile.plot.swing.LinePlot
 
legends() - Method in class smile.plot.swing.Plot
Returns the optional name of shape, which will be used to draw a legend outside the box.
legends() - Method in class smile.plot.swing.ScatterPlot
 
legends() - Method in class smile.plot.swing.ScreePlot
 
legends() - Method in class smile.plot.swing.StaircasePlot
 
length - Enum constant in enum class smile.llm.FinishReason
Incomplete model output due to token limit.
length - Variable in class smile.math.Complex.Array
The length of array.
length() - Method in interface smile.data.BinarySparseDataset
Returns the number of nonzero entries.
length() - Method in interface smile.data.Tuple
Returns the number of elements in the Tuple.
length() - Method in class smile.data.type.StructType
Returns the number of fields.
length() - Method in class smile.deep.tensor.Tensor
Returns the number of tensor elements.
length() - Method in class smile.gap.BitString
Returns the length of bit string.
length() - Method in class smile.stat.distribution.BernoulliDistribution
 
length() - Method in class smile.stat.distribution.BetaDistribution
 
length() - Method in class smile.stat.distribution.BinomialDistribution
 
length() - Method in class smile.stat.distribution.ChiSquareDistribution
 
length() - Method in class smile.stat.distribution.DiscreteMixture
 
length() - Method in interface smile.stat.distribution.Distribution
Returns the number of parameters of the distribution.
length() - Method in class smile.stat.distribution.EmpiricalDistribution
 
length() - Method in class smile.stat.distribution.ExponentialDistribution
 
length() - Method in class smile.stat.distribution.FDistribution
 
length() - Method in class smile.stat.distribution.GammaDistribution
 
length() - Method in class smile.stat.distribution.GaussianDistribution
 
length() - Method in class smile.stat.distribution.GeometricDistribution
 
length() - Method in class smile.stat.distribution.HyperGeometricDistribution
 
length() - Method in class smile.stat.distribution.KernelDensity
 
length() - Method in class smile.stat.distribution.LogisticDistribution
 
length() - Method in class smile.stat.distribution.LogNormalDistribution
 
length() - Method in class smile.stat.distribution.Mixture
 
length() - Method in interface smile.stat.distribution.MultivariateDistribution
The number of parameters of the distribution.
length() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
length() - Method in class smile.stat.distribution.MultivariateMixture
 
length() - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
length() - Method in class smile.stat.distribution.PoissonDistribution
 
length() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
length() - Method in class smile.stat.distribution.TDistribution
 
length() - Method in class smile.stat.distribution.WeibullDistribution
 
length() - Method in record class smile.util.Bytes
Returns the length of byte string.
level(int) - Method in class smile.data.measure.CategoricalMeasure
Returns the level string representation.
LEVEL - Enum constant in enum class smile.data.CategoricalEncoder
Level of measurement.
levels() - Method in class smile.data.measure.CategoricalMeasure
Returns the levels.
LevenbergMarquardt - Class in smile.math
The Levenberg–Marquardt algorithm.
levenshtein(char[], char[]) - Static method in class smile.math.distance.EditDistance
Levenshtein distance between two strings allows insertion, deletion, or substitution of characters.
levenshtein(String, String) - Static method in class smile.math.distance.EditDistance
Levenshtein distance between two strings allows insertion, deletion, or substitution of characters.
leverage() - Method in record class smile.association.AssociationRule
Returns the value of the leverage record component.
lfactorial(int) - Static method in class smile.math.MathEx
The log of factorial of n.
lgamma(double) - Static method in class smile.math.special.Gamma
The log of the Gamma function.
lhs(String) - Static method in class smile.data.formula.Formula
Factory method.
lhs(Term) - Static method in class smile.data.formula.Formula
Factory method.
LI - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
The eigenvalues of largest imaginary part.
LI - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
The eigenvalues of largest imaginary part.
libsvm(BufferedReader) - Static method in interface smile.io.Read
Reads a libsvm sparse dataset.
libsvm(String) - Static method in interface smile.io.Read
Reads a libsvm sparse dataset.
libsvm(Path) - Static method in interface smile.io.Read
Reads a libsvm sparse dataset.
lift() - Method in record class smile.association.AssociationRule
Returns the value of the lift record component.
LIGHT_GRAY - Static variable in interface smile.plot.swing.Palette
 
LIGHT_GREEN - Static variable in interface smile.plot.swing.Palette
 
LIGHT_PURPLE - Static variable in interface smile.plot.swing.Palette
 
LIGHT_SLATE_GRAY - Static variable in interface smile.plot.swing.Palette
 
likelihood(double[]) - Method in interface smile.stat.distribution.Distribution
The likelihood of the sample set following this distribution.
likelihood(double[]) - Method in class smile.stat.distribution.KernelDensity
The likelihood of the samples.
likelihood(double[][]) - Method in interface smile.stat.distribution.MultivariateDistribution
The likelihood of the sample set following this distribution.
likelihood(int[]) - Method in class smile.stat.distribution.DiscreteDistribution
The likelihood given a sample set following the distribution.
LIKELIHOOD - Enum constant in enum class smile.base.mlp.Cost
Negative likelihood (or log-likelihood) cost.
limit(double) - Method in class smile.plot.vega.PivotTransform
Sets the maximum number of pivoted fields to generate.
line(boolean) - Method in class smile.plot.vega.Mark
Sets whether the line mark is shown.
Line - Class in smile.plot.swing
This class represents a poly line in the plot.
Line(double[][], Line.Style, char, Color) - Constructor for class smile.plot.swing.Line
Constructor.
Line.Style - Enum Class in smile.plot.swing
The supported styles of lines.
linear() - Static method in interface smile.base.mlp.ActivationFunction
Linear/Identity activation function.
linear(double, double, double) - Static method in interface smile.math.TimeFunction
Returns the linear learning rate decay function that starts with an initial learning rate and reach an end learning rate in the given decay steps.
linear(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with linear activation function.
linear(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with linear activation function.
linear(int, int) - Static method in interface smile.deep.layer.Layer
Returns a linear fully connected layer.
LINEAR - Enum constant in enum class smile.base.mlp.OutputFunction
Linear/Identity function.
LinearInterpolation - Class in smile.interpolation
Piecewise linear interpolation.
LinearInterpolation(double[], double[]) - Constructor for class smile.interpolation.LinearInterpolation
Constructor.
LinearKernel - Class in smile.math.kernel
The linear dot product kernel.
LinearKernel() - Constructor for class smile.math.kernel.LinearKernel
Constructor.
LinearKernelMachine - Class in smile.base.svm
Linear kernel machine.
LinearKernelMachine(double[], double) - Constructor for class smile.base.svm.LinearKernelMachine
Constructor.
LinearLayer - Class in smile.deep.layer
A fully connected linear layer.
LinearLayer(int, int) - Constructor for class smile.deep.layer.LinearLayer
Constructor.
LinearLayer(int, int, boolean) - Constructor for class smile.deep.layer.LinearLayer
Constructor.
LinearModel - Class in smile.regression
Linear model.
LinearModel(Formula, StructType, Matrix, double[], double[], double) - Constructor for class smile.regression.LinearModel
Constructor.
LinearSearch<K,V> - Class in smile.neighbor
Brute force linear nearest neighbor search.
LinearSearch(List<K>, List<V>, Distance<K>) - Constructor for class smile.neighbor.LinearSearch
Constructor.
LinearSearch(List<V>, Distance<K>, Function<V, K>) - Constructor for class smile.neighbor.LinearSearch
Constructor.
LinearSearch(K[], V[], Distance<K>) - Constructor for class smile.neighbor.LinearSearch
Constructor.
LinearSearch(V[], Distance<K>, Function<V, K>) - Constructor for class smile.neighbor.LinearSearch
Constructor.
lineBreak(String) - Method in class smile.plot.vega.Config
Sets a delimiter, such as a newline character, upon which to break text strings into multiple lines.
LinePlot - Class in smile.plot.swing
Line plot is a special scatter plot which connects points by straight lines.
LinePlot(Line...) - Constructor for class smile.plot.swing.LinePlot
Constructor.
LinePlot(Line[], Legend[]) - Constructor for class smile.plot.swing.LinePlot
Constructor.
link(double) - Method in interface smile.glm.model.Model
The link function.
Linkage - Class in smile.clustering.linkage
A measure of dissimilarity between clusters (i.e.
Linkage(double[][]) - Constructor for class smile.clustering.linkage.Linkage
Constructor.
Linkage(int, float[]) - Constructor for class smile.clustering.linkage.Linkage
Constructor.
ljung(double[], int) - Static method in class smile.timeseries.BoxTest
Box-Pierce test.
Ljung_Box - Enum constant in enum class smile.timeseries.BoxTest.Type
Ljung-Box test.
Llama - Class in smile.llm.llama
LLaMA model specification.
Llama(String, Transformer, Tokenizer) - Constructor for class smile.llm.llama.Llama
Constructor.
LLE - Class in smile.manifold
Locally Linear Embedding.
LLE() - Constructor for class smile.manifold.LLE
 
lloyd(double[][], int) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
lloyd(double[][], int, int, double) - Static method in class smile.clustering.KMeans
The implementation of Lloyd algorithm as a benchmark.
LM - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
The eigenvalues largest in magnitude.
LM - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
The eigenvalues largest in magnitude.
LM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
The eigenvalues largest in magnitude.
LM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
The eigenvalues largest in magnitude.
lo() - Method in class smile.math.kernel.BinarySparseGaussianKernel
 
lo() - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
 
lo() - Method in class smile.math.kernel.BinarySparseLaplacianKernel
 
lo() - Method in class smile.math.kernel.BinarySparseLinearKernel
 
lo() - Method in class smile.math.kernel.BinarySparseMaternKernel
 
lo() - Method in class smile.math.kernel.BinarySparsePolynomialKernel
 
lo() - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
 
lo() - Method in class smile.math.kernel.GaussianKernel
 
lo() - Method in class smile.math.kernel.HellingerKernel
 
lo() - Method in class smile.math.kernel.HyperbolicTangentKernel
 
lo() - Method in class smile.math.kernel.LaplacianKernel
 
lo() - Method in class smile.math.kernel.LinearKernel
 
lo() - Method in class smile.math.kernel.MaternKernel
 
lo() - Method in interface smile.math.kernel.MercerKernel
Returns the lower bound of hyperparameters (in hyperparameter tuning).
lo() - Method in class smile.math.kernel.PearsonKernel
 
lo() - Method in class smile.math.kernel.PolynomialKernel
 
lo() - Method in class smile.math.kernel.ProductKernel
 
lo() - Method in class smile.math.kernel.SparseGaussianKernel
 
lo() - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
 
lo() - Method in class smile.math.kernel.SparseLaplacianKernel
 
lo() - Method in class smile.math.kernel.SparseLinearKernel
 
lo() - Method in class smile.math.kernel.SparseMaternKernel
 
lo() - Method in class smile.math.kernel.SparsePolynomialKernel
 
lo() - Method in class smile.math.kernel.SparseThinPlateSplineKernel
 
lo() - Method in class smile.math.kernel.SumKernel
 
lo() - Method in class smile.math.kernel.ThinPlateSplineKernel
 
load(String) - Method in class smile.deep.layer.LayerBlock
Loads a checkpoint.
load(String) - Method in class smile.deep.Model
Loads a checkpoint.
load(String) - Static method in class smile.llm.tokenizer.Tiktoken
Loads a tiktoken model file.
loadings() - Method in class smile.feature.extraction.PCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
loadings() - Method in class smile.feature.extraction.ProbabilisticPCA
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
loess(String, String) - Method in class smile.plot.vega.Transform
Adds a loess transform.
LoessTransform - Class in smile.plot.vega
The loess transform (for locally-estimated scatterplot smoothing) uses locally-estimated regression to produce a trend line.
log() - Static method in interface smile.glm.model.Poisson
log link function.
log(double) - Static method in class smile.math.MathEx
Returns natural log without underflow.
log(String) - Static method in interface smile.data.formula.Terms
The log(x) term.
log(Term) - Static method in interface smile.data.formula.Terms
The log(x) term.
log10(String) - Static method in interface smile.data.formula.Terms
The log10(x) term.
log10(Term) - Static method in interface smile.data.formula.Terms
The log10(x) term.
log1p(String) - Static method in interface smile.data.formula.Terms
The log(1 + x) term.
log1p(Term) - Static method in interface smile.data.formula.Terms
The log(1 + x) term.
log1pe(double) - Static method in class smile.math.MathEx
Returns natural log(1+exp(x)) without overflow.
log2(double) - Static method in class smile.math.MathEx
Log of base 2.
log2(String) - Static method in interface smile.data.formula.Terms
The log2(x) term.
log2(Term) - Static method in interface smile.data.formula.Terms
The log2(x) term.
LogCosh - Class in smile.ica
A good general-purpose contrast function for ICA.
LogCosh() - Constructor for class smile.ica.LogCosh
 
logdet() - Method in class smile.math.matrix.BandMatrix.Cholesky
Returns the log of matrix determinant.
logdet() - Method in class smile.math.matrix.BigMatrix.Cholesky
Returns the log of matrix determinant.
logdet() - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
Returns the log of matrix determinant.
logdet() - Method in class smile.math.matrix.fp32.Matrix.Cholesky
Returns the log of matrix determinant.
logdet() - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
Returns the log of matrix determinant.
logdet() - Method in class smile.math.matrix.Matrix.Cholesky
Returns the log of matrix determinant.
logdet() - Method in class smile.math.matrix.SymmMatrix.Cholesky
Returns the log of matrix determinant.
logistic(int[]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for binary classification.
logistic(int, int, int[], double[][]) - Static method in interface smile.base.cart.Loss
Logistic regression loss for multi-class classification.
LogisticDistribution - Class in smile.stat.distribution
The logistic distribution is a continuous probability distribution whose cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks.
LogisticDistribution(double, double) - Constructor for class smile.stat.distribution.LogisticDistribution
Constructor.
LogisticRegression - Class in smile.classification
Logistic regression.
LogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.LogisticRegression
Constructor.
LogisticRegression.Binomial - Class in smile.classification
Binomial logistic regression.
LogisticRegression.Multinomial - Class in smile.classification
Multinomial logistic regression.
logit() - Static method in interface smile.glm.model.Bernoulli
logit link function.
logit(int[]) - Static method in interface smile.glm.model.Binomial
logit link function.
loglikelihood() - Method in class smile.classification.LogisticRegression
Returns the log-likelihood of model.
loglikelihood() - Method in class smile.classification.Maxent
Returns the log-likelihood of model.
loglikelihood() - Method in class smile.classification.SparseLogisticRegression
Returns the log-likelihood of model.
logLikelihood - Variable in class smile.glm.GLM
Log-likelihood.
logLikelihood() - Method in class smile.glm.GLM
Returns the log-likelihood of model.
logLikelihood(double[]) - Method in interface smile.stat.distribution.Distribution
The log likelihood of the sample set following this distribution.
logLikelihood(double[]) - Method in class smile.stat.distribution.KernelDensity
The log likelihood of the samples.
logLikelihood(double[][]) - Method in interface smile.stat.distribution.MultivariateDistribution
The log likelihood of the sample set following this distribution.
logLikelihood(double[], double[]) - Method in interface smile.glm.model.Model
The log-likelihood function.
logLikelihood(int[]) - Method in class smile.stat.distribution.DiscreteDistribution
The likelihood given a sample set following the distribution.
logloss() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the logloss record component.
LogLoss - Class in smile.validation.metric
Log loss is an evaluation metric for binary classifiers, and it is sometimes the optimization objective as well in case of logistic regression and neural networks.
LogLoss() - Constructor for class smile.validation.metric.LogLoss
 
LogNormalDistribution - Class in smile.stat.distribution
A log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed.
LogNormalDistribution(double, double) - Constructor for class smile.stat.distribution.LogNormalDistribution
Constructor.
logp(double) - Method in class smile.stat.distribution.BetaDistribution
 
logp(double) - Method in class smile.stat.distribution.ChiSquareDistribution
 
logp(double) - Method in class smile.stat.distribution.DiscreteDistribution
 
logp(double) - Method in interface smile.stat.distribution.Distribution
The density at x in log scale, which may prevents the underflow problem.
logp(double) - Method in class smile.stat.distribution.ExponentialDistribution
 
logp(double) - Method in class smile.stat.distribution.FDistribution
 
logp(double) - Method in class smile.stat.distribution.GammaDistribution
 
logp(double) - Method in class smile.stat.distribution.GaussianDistribution
 
logp(double) - Method in class smile.stat.distribution.KernelDensity
 
logp(double) - Method in class smile.stat.distribution.LogisticDistribution
 
logp(double) - Method in class smile.stat.distribution.LogNormalDistribution
 
logp(double) - Method in class smile.stat.distribution.Mixture
 
logp(double) - Method in class smile.stat.distribution.TDistribution
 
logp(double) - Method in class smile.stat.distribution.WeibullDistribution
 
logp(double[]) - Method in interface smile.stat.distribution.MultivariateDistribution
The density at x in log scale, which may prevents the underflow problem.
logp(double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
logp(double[]) - Method in class smile.stat.distribution.MultivariateMixture
 
logp(int) - Method in class smile.stat.distribution.BernoulliDistribution
 
logp(int) - Method in class smile.stat.distribution.BinomialDistribution
 
logp(int) - Method in class smile.stat.distribution.DiscreteDistribution
The probability mass function in log scale.
logp(int) - Method in class smile.stat.distribution.DiscreteMixture
 
logp(int) - Method in class smile.stat.distribution.EmpiricalDistribution
 
logp(int) - Method in class smile.stat.distribution.GeometricDistribution
 
logp(int) - Method in class smile.stat.distribution.HyperGeometricDistribution
 
logp(int) - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
logp(int) - Method in class smile.stat.distribution.PoissonDistribution
 
logp(int) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
logp(int[]) - Method in class smile.sequence.HMM
Returns the logarithm probability of an observation sequence given this HMM.
logp(int[], int[]) - Method in class smile.sequence.HMM
Returns the log joint probability of an observation sequence along a state sequence given this HMM.
logp(T[]) - Method in class smile.sequence.HMMLabeler
Returns the logarithm probability of an observation sequence.
logp(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the log joint probability of an observation sequence along a state sequence.
logprobs() - Method in record class smile.llm.CompletionPrediction
Returns the value of the logprobs record component.
logSigmoid(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with log sigmoid activation function.
LogSigmoid - Class in smile.deep.activation
Log sigmoid activation function.
LogSigmoid() - Constructor for class smile.deep.activation.LogSigmoid
Constructor.
logSoftmax(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with log softmax activation function.
LogSoftmax - Class in smile.deep.activation
Log softmax activation function.
LogSoftmax() - Constructor for class smile.deep.activation.LogSoftmax
Constructor.
Long - Enum constant in enum class smile.data.type.DataType.ID
Long type ID.
LONG - Static variable in interface smile.util.Regex
Long regular expression pattern.
LONG_DASH - Enum constant in enum class smile.plot.swing.Line.Style
 
longArray() - Method in class smile.deep.tensor.Tensor
Returns the long integer array of tensor elements
LongArrayCellRenderer - Class in smile.swing.table
Long array renderer in JTable.
LongArrayCellRenderer() - Constructor for class smile.swing.table.LongArrayCellRenderer
Constructor.
LongArrayType - Static variable in class smile.data.type.DataTypes
Long Array data type.
LongObjectType - Static variable in class smile.data.type.DataTypes
Long Object data type.
LongType - Class in smile.data.type
Long data type.
LongType - Static variable in class smile.data.type.DataTypes
Long data type.
longValue() - Method in class smile.deep.tensor.Tensor
Returns the long value when the tensor holds a single value.
longVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
longVector(int) - Method in class smile.data.IndexDataFrame
 
longVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
longVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
LongVector - Interface in smile.data.vector
An immutable long vector.
LOOCV - Interface in smile.validation
Leave-one-out cross validation.
lookup(String, String) - Method in class smile.plot.vega.Transform
Adds a lookup transformation.
lookup(String, LookupData) - Method in class smile.plot.vega.Transform
Adds a lookup transformation.
lookupData(String) - Method in class smile.plot.vega.Transform
Creates a lookup data.
LookupData - Class in smile.plot.vega
The density transform performs one-dimensional kernel density estimation over an input data stream and generates a new data stream of samples of the estimated densities.
Loss - Interface in smile.base.cart
Regression loss function.
Loss - Interface in smile.deep
Loss functions.
Loss.Type - Enum Class in smile.base.cart
The type of loss.
lower(int) - Method in class smile.util.PriorityQueue
The value of item k is lower (higher priority) now.
LOWER - Enum constant in enum class smile.math.blas.UPLO
Lower triangle is stored.
lowestCommonAncestor(String, String) - Method in class smile.taxonomy.Taxonomy
Returns the lowest common ancestor (LCA) of concepts v and w.
lowestCommonAncestor(Concept, Concept) - Method in class smile.taxonomy.Taxonomy
Returns the lowest common ancestor (LCA) of concepts v and w.
LR - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
The eigenvalues of largest real part.
LR - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
The eigenvalues of largest real part.
ls() - Static method in interface smile.base.cart.Loss
Least squares regression loss.
ls(double[]) - Static method in interface smile.base.cart.Loss
Least squares regression loss.
LS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
List item marker.
LSH<E> - Class in smile.neighbor
Locality-Sensitive Hashing.
LSH(double[][], E[], double) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(double[][], E[], double, int) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(int, int, int, double) - Constructor for class smile.neighbor.LSH
Constructor.
LSH(int, int, int, double, int) - Constructor for class smile.neighbor.LSH
Constructor.
lt(double) - Method in class smile.deep.tensor.Tensor
Computes element-wise less-than comparison.
lt(int) - Method in class smile.deep.tensor.Tensor
Computes element-wise less-than comparison.
lt(Tensor) - Method in class smile.deep.tensor.Tensor
Computes element-wise less-than comparison.
lu - Variable in class smile.math.matrix.BandMatrix.Cholesky
The Cholesky decomposition.
lu - Variable in class smile.math.matrix.BandMatrix.LU
The LU decomposition.
lu - Variable in class smile.math.matrix.BigMatrix.Cholesky
The Cholesky decomposition.
lu - Variable in class smile.math.matrix.BigMatrix.LU
The LU decomposition.
lu - Variable in class smile.math.matrix.fp32.BandMatrix.Cholesky
The Cholesky decomposition.
lu - Variable in class smile.math.matrix.fp32.BandMatrix.LU
The LU decomposition.
lu - Variable in class smile.math.matrix.fp32.Matrix.Cholesky
The Cholesky decomposition.
lu - Variable in class smile.math.matrix.fp32.Matrix.LU
The LU decomposition.
lu - Variable in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
The Bunch–Kaufman decomposition.
lu - Variable in class smile.math.matrix.fp32.SymmMatrix.Cholesky
The Cholesky decomposition.
lu - Variable in class smile.math.matrix.Matrix.Cholesky
The Cholesky decomposition.
lu - Variable in class smile.math.matrix.Matrix.LU
The LU decomposition.
lu - Variable in class smile.math.matrix.SymmMatrix.BunchKaufman
The Bunch–Kaufman decomposition.
lu - Variable in class smile.math.matrix.SymmMatrix.Cholesky
The Cholesky decomposition.
lu() - Method in class smile.math.matrix.BandMatrix
LU decomposition.
lu() - Method in class smile.math.matrix.BigMatrix
LU decomposition.
lu() - Method in class smile.math.matrix.fp32.BandMatrix
LU decomposition.
lu() - Method in class smile.math.matrix.fp32.Matrix
LU decomposition.
lu() - Method in class smile.math.matrix.Matrix
LU decomposition.
lu(boolean) - Method in class smile.math.matrix.BigMatrix
LU decomposition.
lu(boolean) - Method in class smile.math.matrix.fp32.Matrix
LU decomposition.
lu(boolean) - Method in class smile.math.matrix.Matrix
LU decomposition.
LU(BandMatrix, int[], int) - Constructor for class smile.math.matrix.BandMatrix.LU
Constructor.
LU(BigMatrix, IntPointer, int) - Constructor for class smile.math.matrix.BigMatrix.LU
Constructor.
LU(BandMatrix, int[], int) - Constructor for class smile.math.matrix.fp32.BandMatrix.LU
Constructor.
LU(Matrix, int[], int) - Constructor for class smile.math.matrix.fp32.Matrix.LU
Constructor.
LU(Matrix, int[], int) - Constructor for class smile.math.matrix.Matrix.LU
Constructor.

M

m - Variable in class smile.math.matrix.BigMatrix.SVD
The number of rows of matrix.
m - Variable in class smile.math.matrix.fp32.Matrix.SVD
The number of rows of matrix.
m - Variable in class smile.math.matrix.Matrix.SVD
The number of rows of matrix.
m - Variable in class smile.stat.distribution.HyperGeometricDistribution
The number of defects.
m() - Method in record class smile.neighbor.lsh.PrZ
Returns the value of the m record component.
M(double[][], double[]) - Method in interface smile.stat.distribution.MultivariateExponentialFamily
The M step in the EM algorithm, which depends on the specific distribution.
M(double[][], double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
M(double[], double[]) - Method in class smile.stat.distribution.BetaDistribution
 
M(double[], double[]) - Method in class smile.stat.distribution.ChiSquareDistribution
 
M(double[], double[]) - Method in class smile.stat.distribution.ExponentialDistribution
 
M(double[], double[]) - Method in interface smile.stat.distribution.ExponentialFamily
The M step in the EM algorithm, which depends on the specific distribution.
M(double[], double[]) - Method in class smile.stat.distribution.GammaDistribution
 
M(double[], double[]) - Method in class smile.stat.distribution.GaussianDistribution
 
M(int[], double[]) - Method in interface smile.stat.distribution.DiscreteExponentialFamily
The M step in the EM algorithm, which depends on the specific distribution.
M(int[], double[]) - Method in class smile.stat.distribution.GeometricDistribution
 
M(int[], double[]) - Method in class smile.stat.distribution.PoissonDistribution
 
M(int[], double[]) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
ma() - Method in class smile.timeseries.ARMA
Returns the linear coefficients of MA(q).
MACHEP - Static variable in class smile.math.MathEx
The largest negative integer such that 1.0 + RADIXMACHEP ≠ 1.0, except that machep is bounded below by -(DIGITS+3)
Macro - Enum constant in enum class smile.deep.metric.Averaging
Macro-averaging calculates each class's performance metric (e.g., precision, recall) and then takes the arithmetic mean across all classes.
Macro - Enum constant in enum class smile.validation.metric.Averaging
Macro-averaging calculates each class's performance metric (e.g., precision, recall) and then takes the arithmetic mean across all classes.
mad() - Method in record class smile.validation.RegressionMetrics
Returns the value of the mad record component.
mad(double[]) - Static method in class smile.math.MathEx
Returns the median absolute deviation (MAD).
mad(float[]) - Static method in class smile.math.MathEx
Returns the median absolute deviation (MAD).
mad(int[]) - Static method in class smile.math.MathEx
Returns the median absolute deviation (MAD).
MAD - Class in smile.validation.metric
Mean absolute deviation error.
MAD() - Constructor for class smile.validation.metric.MAD
 
MAGENTA - Static variable in interface smile.plot.swing.Palette
 
MahalanobisDistance - Class in smile.math.distance
In statistics, Mahalanobis distance is based on correlations between variables by which different patterns can be identified and analyzed.
MahalanobisDistance(double[][]) - Constructor for class smile.math.distance.MahalanobisDistance
Constructor.
main(String[]) - Static method in class smile.nlp.pos.HMMPOSTagger
Train the default model on WSJ and BROWN datasets.
ManhattanDistance - Class in smile.math.distance
Manhattan distance, also known as L1 distance or L1 norm, is the sum of the (absolute) differences of their coordinates.
ManhattanDistance() - Constructor for class smile.math.distance.ManhattanDistance
Constructor.
ManhattanDistance(double[]) - Constructor for class smile.math.distance.ManhattanDistance
Constructor.
map(double) - Method in class smile.stat.distribution.Mixture
Returns the index of component with maximum a posteriori probability.
map(double[]) - Method in class smile.stat.distribution.MultivariateMixture
Returns the index of component with maximum a posteriori probability.
map(int) - Method in class smile.stat.distribution.DiscreteMixture
Returns the index of component with maximum a posteriori probability.
map(ArrayElementFunction) - Method in class smile.util.SparseArray
Returns a stream consisting of the results of applying the given function to the nonzero entries.
mapEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyList
 
mapEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyMatrix
 
mapEdges(int, ArrayElementFunction) - Method in class smile.graph.Graph
Returns a stream consisting of the results of applying the given function to the edge weights of a vertex.
marginRanking(Tensor, Tensor, Tensor) - Static method in interface smile.deep.Loss
Margin Ranking Loss Function.
mark(String) - Method in class smile.plot.vega.View
Returns the mark definition object.
Mark - Class in smile.plot.vega
Mark definition object.
market(Path) - Static method in class smile.math.matrix.fp32.IMatrix
Reads a matrix from a Matrix Market File Format file.
market(Path) - Static method in class smile.math.matrix.IMatrix
Reads a matrix from a Matrix Market File Format file.
MARKS - Static variable in class smile.plot.swing.Point
The marks of point.
mask - Variable in class smile.base.mlp.Layer
The dropout mask.
Matern - Class in smile.math.kernel
The class of Matérn kernels is a generalization of the Gaussian/RBF.
Matern(double, double, double, double) - Constructor for class smile.math.kernel.Matern
Constructor.
MaternKernel - Class in smile.math.kernel
The class of Matérn kernels is a generalization of the Gaussian/RBF.
MaternKernel(double, double) - Constructor for class smile.math.kernel.MaternKernel
Constructor.
MaternKernel(double, double, double, double) - Constructor for class smile.math.kernel.MaternKernel
Constructor.
MathEx - Class in smile.math
Extra basic numeric functions.
matmul(Tensor) - Method in class smile.deep.tensor.Tensor
Returns the matrix product of two tensors.
matrix() - Static method in interface smile.data.DataFrame.Collectors
Returns a stream collector that accumulates tuples into a Matrix.
matrix() - Method in record class smile.validation.metric.ConfusionMatrix
Returns the value of the matrix record component.
matrix(DataFrame) - Method in class smile.data.formula.Formula
Returns the design matrix of predictors.
matrix(DataFrame, boolean) - Method in class smile.data.formula.Formula
Returns the design matrix of predictors.
Matrix - Class in smile.math.matrix.fp32
Dense matrix.
Matrix - Class in smile.math.matrix
Dense matrix of double precision values.
Matrix(int, int) - Constructor for class smile.math.matrix.fp32.Matrix
Constructor of zero matrix.
Matrix(int, int) - Constructor for class smile.math.matrix.Matrix
Constructor of zero matrix.
Matrix(int, int, double) - Constructor for class smile.math.matrix.Matrix
Constructor.
Matrix(int, int, float) - Constructor for class smile.math.matrix.fp32.Matrix
Constructor.
Matrix(int, int, int, double[]) - Constructor for class smile.math.matrix.Matrix
Constructor.
Matrix(int, int, int, float[]) - Constructor for class smile.math.matrix.fp32.Matrix
Constructor.
Matrix.Cholesky - Class in smile.math.matrix.fp32
The Cholesky decomposition of a symmetric, positive-definite matrix.
Matrix.Cholesky - Class in smile.math.matrix
The Cholesky decomposition of a symmetric, positive-definite matrix.
Matrix.EVD - Class in smile.math.matrix.fp32
Eigenvalue decomposition.
Matrix.EVD - Class in smile.math.matrix
Eigenvalue decomposition.
Matrix.LU - Class in smile.math.matrix.fp32
The LU decomposition.
Matrix.LU - Class in smile.math.matrix
The LU decomposition.
Matrix.QR - Class in smile.math.matrix.fp32
The QR decomposition.
Matrix.QR - Class in smile.math.matrix
The QR decomposition.
Matrix.SVD - Class in smile.math.matrix.fp32
Singular Value Decomposition.
Matrix.SVD - Class in smile.math.matrix
Singular Value Decomposition.
MatthewsCorrelation - Class in smile.validation.metric
Matthews correlation coefficient.
MatthewsCorrelation() - Constructor for class smile.validation.metric.MatthewsCorrelation
 
max - Variable in class smile.util.IntSet
The maximum of values.
max(double[]) - Static method in class smile.math.MathEx
Returns the maximum value of an array.
max(double[][]) - Static method in class smile.math.MathEx
Returns the maximum of a matrix.
max(double, double, double) - Static method in class smile.math.MathEx
Returns the maximum of 4 double numbers.
max(double, double, double, double) - Static method in class smile.math.MathEx
Returns the maximum of 4 double numbers.
max(float[]) - Static method in class smile.math.MathEx
Returns the maximum value of an array.
max(float, float, float) - Static method in class smile.math.MathEx
Returns the maximum of 4 float numbers.
max(float, float, float, float) - Static method in class smile.math.MathEx
Returns the maximum of 4 float numbers.
max(int[]) - Static method in class smile.math.MathEx
Returns the maximum value of an array.
max(int[][]) - Static method in class smile.math.MathEx
Returns the maximum of a matrix.
max(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
max(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
max(int, int, int) - Static method in class smile.math.MathEx
Returns the maximum of 3 integer numbers.
max(int, int, int, int) - Static method in class smile.math.MathEx
Returns the maximum of 4 integer numbers.
MAX - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
I(y1, y2) / max(H(y1), H(y2))
MAX - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / max(H(y1), H(y2))
MAX - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with max normalization.
MAX - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with max normalization.
MaxAbsScaler - Class in smile.feature.transform
Scales each feature by its maximum absolute value.
MaxAbsScaler() - Constructor for class smile.feature.transform.MaxAbsScaler
 
maxBatchSize() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the maxBatchSize record component.
maxBins(int) - Method in class smile.plot.vega.BinParams
Sets the maximum number of bins.
maxDepth - Variable in class smile.base.cart.CART
The maximum depth of the tree.
Maxent - Class in smile.classification
Maximum Entropy Classifier.
Maxent(int, double, double, IntSet) - Constructor for class smile.classification.Maxent
Constructor.
Maxent.Binomial - Class in smile.classification
Binomial maximum entropy classifier.
Maxent.Multinomial - Class in smile.classification
Multinomial maximum entropy classifier.
maxExtent(int) - Method in class smile.plot.vega.Axis
Sets the maximum extent in pixels that axis ticks and labels should use.
maxNodes - Variable in class smile.base.cart.CART
The maximum number of leaf nodes in the tree.
maxPool2d(int) - Static method in interface smile.deep.layer.Layer
Returns a max pooling layer that reduces a tensor by combining cells, and assigning the maximum value of the input cells to the output cell.
MaxPool2dLayer - Class in smile.deep.layer
A max pooling layer that reduces a tensor by combining cells, and assigning the maximum value of the input cells to the output cell.
MaxPool2dLayer(int) - Constructor for class smile.deep.layer.MaxPool2dLayer
Constructor.
MaxPool2dLayer(int, int) - Constructor for class smile.deep.layer.MaxPool2dLayer
Constructor.
maxSeqLen() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the maxSeqLen record component.
maxSteps(int) - Method in class smile.plot.vega.DensityTransform
Sets the maximum number of samples to take along the extent domain for plotting the density.
maxtf() - Method in class smile.nlp.SimpleText
 
maxtf() - Method in interface smile.nlp.TextTerms
Returns the maximum term frequency over all terms in the document.
MBConv - Class in smile.vision.layer
Mobile inverted bottleneck convolution.
MBConv(MBConvConfig, double, IntFunction<Layer>) - Constructor for class smile.vision.layer.MBConv
Constructor.
MBConv(double, int, int, int, int, int) - Static method in record class smile.vision.layer.MBConvConfig
Returns the config for MBConv block.
MBConv(double, int, int, int, int, int, double, double) - Static method in record class smile.vision.layer.MBConvConfig
Returns the config for MBConv block.
MBConvConfig - Record Class in smile.vision.layer
EfficientNet block configuration.
MBConvConfig(double, int, int, int, int, int, String) - Constructor for record class smile.vision.layer.MBConvConfig
Creates an instance of a MBConvConfig record class.
mcc() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the mcc record component.
MD - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Modal verb.
MDS - Record Class in smile.manifold
Classical multidimensional scaling, also known as principal coordinates analysis.
MDS(double[], double[], double[][]) - Constructor for record class smile.manifold.MDS
Creates an instance of a MDS record class.
mean - Variable in class smile.neighbor.lsh.NeighborHashValueModel
The mean of hash values of neighbors.
mean - Variable in class smile.regression.GaussianProcessRegression
The mean of responsible variable.
mean - Variable in class smile.stat.distribution.LogNormalDistribution
The mean.
mean() - Method in class smile.base.cart.RegressionNode
Returns the mean of response variable.
mean() - Method in class smile.deep.tensor.Tensor
Returns the mean of all elements in the tensor.
mean() - Method in class smile.neighbor.lsh.HashValueParzenModel
Returns the mean.
mean() - Method in class smile.stat.distribution.BernoulliDistribution
 
mean() - Method in class smile.stat.distribution.BetaDistribution
 
mean() - Method in class smile.stat.distribution.BinomialDistribution
 
mean() - Method in class smile.stat.distribution.ChiSquareDistribution
 
mean() - Method in class smile.stat.distribution.DiscreteMixture
 
mean() - Method in interface smile.stat.distribution.Distribution
Returns the mean of distribution.
mean() - Method in class smile.stat.distribution.EmpiricalDistribution
 
mean() - Method in class smile.stat.distribution.ExponentialDistribution
 
mean() - Method in class smile.stat.distribution.FDistribution
 
mean() - Method in class smile.stat.distribution.GammaDistribution
 
mean() - Method in class smile.stat.distribution.GaussianDistribution
 
mean() - Method in class smile.stat.distribution.GeometricDistribution
 
mean() - Method in class smile.stat.distribution.HyperGeometricDistribution
 
mean() - Method in class smile.stat.distribution.KernelDensity
 
mean() - Method in class smile.stat.distribution.LogisticDistribution
 
mean() - Method in class smile.stat.distribution.LogNormalDistribution
 
mean() - Method in class smile.stat.distribution.Mixture
 
mean() - Method in interface smile.stat.distribution.MultivariateDistribution
The mean vector of distribution.
mean() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
mean() - Method in class smile.stat.distribution.MultivariateMixture
 
mean() - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
mean() - Method in class smile.stat.distribution.PoissonDistribution
 
mean() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
mean() - Method in class smile.stat.distribution.TDistribution
 
mean() - Method in class smile.stat.distribution.WeibullDistribution
 
mean() - Method in class smile.timeseries.AR
Returns the mean of time series.
mean() - Method in class smile.timeseries.ARMA
Returns the mean of time series.
mean(double[]) - Static method in class smile.math.MathEx
Returns the mean of an array.
mean(float[]) - Static method in class smile.math.MathEx
Returns the mean of an array.
mean(int[]) - Static method in class smile.math.MathEx
Returns the mean of an array.
mean(int, boolean) - Method in class smile.deep.tensor.Tensor
Returns the mean along a dimension in the tensor.
MEAN_SQUARED_ERROR - Enum constant in enum class smile.base.mlp.Cost
Mean squares error cost.
measure - Variable in class smile.data.type.StructField
Optional levels of measurements.
measure() - Method in interface smile.data.vector.BaseVector
Returns the (optional) level of measurements.
measure(int) - Method in class smile.data.type.StructType
Returns the field's level of measurements.
Measure - Interface in smile.data.measure
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables.
measures() - Method in interface smile.data.DataFrame
Returns the column's level of measurements.
measures() - Method in interface smile.data.Tuple
Returns the field's level of measurements.
measures() - Method in class smile.data.type.StructType
Returns the field's level of measurements.
MEC<T> - Class in smile.clustering
Non-parametric Minimum Conditional Entropy Clustering.
MEC(double, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.MEC
Constructor.
median(double[]) - Static method in class smile.math.MathEx
Find the median of an array of type double.
median(double[]) - Static method in interface smile.sort.QuickSelect
Find the median of an array of type double.
median(float[]) - Static method in class smile.math.MathEx
Find the median of an array of type float.
median(float[]) - Static method in interface smile.sort.QuickSelect
Find the median of an array of type float.
median(int[]) - Static method in class smile.math.MathEx
Find the median of an array of type int.
median(int[]) - Static method in interface smile.sort.QuickSelect
Find the median of an array of type integer.
median(T[]) - Static method in class smile.math.MathEx
Find the median of an array of type double.
median(T[]) - Static method in interface smile.sort.QuickSelect
Find the median of an array of type double.
MercerKernel<T> - Interface in smile.math.kernel
Mercer kernel, also called covariance function in Gaussian process.
merge() - Method in class smile.base.cart.InternalNode
 
merge() - Method in class smile.base.cart.LeafNode
 
merge() - Method in interface smile.base.cart.Node
Try to merge the children nodes and return a leaf node.
merge(int, int) - Method in class smile.clustering.linkage.CompleteLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.Linkage
Merges two clusters into one and update the proximity matrix.
merge(int, int) - Method in class smile.clustering.linkage.SingleLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.UPGMCLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WardLinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMALinkage
 
merge(int, int) - Method in class smile.clustering.linkage.WPGMCLinkage
 
merge(RandomForest) - Method in class smile.classification.RandomForest
Merges two random forests.
merge(DataFrame...) - Method in interface smile.data.DataFrame
Merges data frames horizontally by columns.
merge(DataFrame...) - Method in class smile.data.IndexDataFrame
 
merge(BaseVector...) - Method in interface smile.data.DataFrame
Merges vectors with this data frame.
merge(BaseVector...) - Method in class smile.data.IndexDataFrame
 
merge(RandomForest) - Method in class smile.regression.RandomForest
Merges two random forests.
MersenneTwister - Class in smile.math.random
32-bit Mersenne Twister.
MersenneTwister() - Constructor for class smile.math.random.MersenneTwister
Constructor.
MersenneTwister(int) - Constructor for class smile.math.random.MersenneTwister
Constructor.
MersenneTwister(long) - Constructor for class smile.math.random.MersenneTwister
Constructor.
MersenneTwister64 - Class in smile.math.random
64-bit Mersenne Twister.
MersenneTwister64() - Constructor for class smile.math.random.MersenneTwister64
Constructor.
MersenneTwister64(long) - Constructor for class smile.math.random.MersenneTwister64
Constructor.
Message - Record Class in smile.llm
Dialog messages.
Message(Role, String) - Constructor for record class smile.llm.Message
Creates an instance of a Message record class.
method() - Method in record class smile.stat.hypothesis.ChiSqTest
Returns the value of the method record component.
method() - Method in record class smile.stat.hypothesis.CorTest
Returns the value of the method record component.
method() - Method in record class smile.stat.hypothesis.KSTest
Returns the value of the method record component.
method() - Method in record class smile.stat.hypothesis.TTest
Returns the value of the method record component.
method(String) - Method in class smile.plot.vega.ImputeTransform
Sets the imputation method to use for the field value of imputed data objects.
method(String) - Method in class smile.plot.vega.RegressionTransform
Sets the functional form of the regression model.
Metric - Interface in smile.deep.metric
The class metrics keeps track of metric states, which enables them to be able to calculate values through accumulations and synchronizations across multiple processes.
Metric<T> - Interface in smile.math.distance
A metric function defines a distance between elements of a set.
metrics - Variable in class smile.classification.RandomForest.Model
The performance metrics on out-of-bag samples.
metrics - Variable in class smile.regression.RandomForest.Model
The performance metrics on out-of-bag samples.
metrics - Variable in class smile.validation.ClassificationValidation
The classification metrics.
metrics - Variable in class smile.validation.RegressionValidation
The regression metrics.
metrics() - Method in class smile.classification.RandomForest
Returns the overall out-of-bag metric estimations.
metrics() - Method in class smile.regression.RandomForest
Returns the overall out-of-bag metric estimations.
Micro - Enum constant in enum class smile.deep.metric.Averaging
Micro-averaging aggregates the counts of true positives, false positives, and false negatives across all classes and then calculates the performance metric based on the total counts.
Micro - Enum constant in enum class smile.validation.metric.Averaging
Micro-averaging aggregates the counts of true positives, false positives, and false negatives across all classes and then calculates the performance metric based on the total counts.
MIDNIGHT_BLUE - Static variable in interface smile.plot.swing.Palette
 
min - Variable in class smile.util.IntSet
The minimum of values.
min(double[]) - Static method in class smile.math.MathEx
Returns the minimum value of an array.
min(double[][]) - Static method in class smile.math.MathEx
Returns the minimum of a matrix.
min(double, double, double) - Static method in class smile.math.MathEx
Returns the minimum of 3 double numbers.
min(double, double, double, double) - Static method in class smile.math.MathEx
Returns the minimum of 4 double numbers.
min(float[]) - Static method in class smile.math.MathEx
Returns the minimum value of an array.
min(float, float, float) - Static method in class smile.math.MathEx
Returns the minimum of 3 float numbers.
min(float, float, float, float) - Static method in class smile.math.MathEx
Returns the minimum of 4 float numbers.
min(int[]) - Static method in class smile.math.MathEx
Returns the minimum value of an array.
min(int[][]) - Static method in class smile.math.MathEx
Returns the minimum of a matrix.
min(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
min(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
min(int, int, int) - Static method in class smile.math.MathEx
Returns the minimum of 3 integer numbers.
min(int, int, int, int) - Static method in class smile.math.MathEx
Returns the minimum of 4 integer numbers.
MIN - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
I(y1, y2) / min(H(y1), H(y2))
MIN - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / min(H(y1), H(y2))
MIN - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with min normalization.
MIN - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with min normalization.
minExtent(int) - Method in class smile.plot.vega.Axis
Sets the minimum extent in pixels that axis ticks and labels should use.
minimize(DifferentiableMultivariateFunction, double[], double, int) - Static method in class smile.math.BFGS
This method solves the unconstrained minimization problem
minimize(DifferentiableMultivariateFunction, int, double[], double[], double[], double, int) - Static method in class smile.math.BFGS
This method solves the bound constrained minimization problem using the L-BFGS-B method.
minimize(DifferentiableMultivariateFunction, int, double[], double, int) - Static method in class smile.math.BFGS
This method solves the unconstrained minimization problem
MinkowskiDistance - Class in smile.math.distance
Minkowski distance of order p or Lp-norm, is a generalization of Euclidean distance that is actually L2-norm.
MinkowskiDistance(int) - Constructor for class smile.math.distance.MinkowskiDistance
Constructor.
MinkowskiDistance(int, double[]) - Constructor for class smile.math.distance.MinkowskiDistance
Constructor.
minmax(double[]) - Static method in class smile.math.Scaler
Returns the scaler that map the values into the range [0, 1].
minPts - Variable in class smile.clustering.DBSCAN
The minimum number of points required to form a cluster
minStep(double) - Method in class smile.plot.vega.BinParams
Sets the minimum allowable step size (particularly useful for integer values).
minSteps(int) - Method in class smile.plot.vega.DensityTransform
Sets the minimum number of samples to take along the extent domain for plotting the density.
minSupport() - Method in class smile.association.FPTree
Returns the required minimum support of item sets in terms of frequency.
MINUTE - Enum constant in enum class smile.data.formula.DateFeature
The minutes represented by an integer from 0 to 59 in the usual manner.
Mixture - Class in smile.stat.distribution
A finite mixture model is a probabilistic model for density estimation using a mixture distribution.
Mixture(Mixture.Component...) - Constructor for class smile.stat.distribution.Mixture
Constructor.
Mixture.Component - Record Class in smile.stat.distribution
A component in the mixture distribution is defined by a distribution and its weight in the mixture.
mle(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with (log-)likelihood cost function.
MLP - Class in smile.classification
Fully connected multilayer perceptron neural network for classification.
MLP - Class in smile.regression
Fully connected multilayer perceptron neural network for regression.
MLP(LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
MLP(LayerBuilder...) - Constructor for class smile.regression.MLP
Constructor.
MLP(Scaler, LayerBuilder...) - Constructor for class smile.regression.MLP
Constructor.
MLP(IntSet, LayerBuilder...) - Constructor for class smile.classification.MLP
Constructor.
mm(Transpose, BigMatrix, Transpose, BigMatrix) - Method in class smile.math.matrix.BigMatrix
Matrix-matrix multiplication.
mm(Transpose, BigMatrix, Transpose, BigMatrix, double, double) - Method in class smile.math.matrix.BigMatrix
Matrix-matrix multiplication.
mm(Transpose, Matrix, Transpose, Matrix) - Method in class smile.math.matrix.fp32.Matrix
Matrix-matrix multiplication.
mm(Transpose, Matrix, Transpose, Matrix, float, float) - Method in class smile.math.matrix.fp32.Matrix
Matrix-matrix multiplication.
mm(Transpose, Matrix, Transpose, Matrix) - Method in class smile.math.matrix.Matrix
Matrix-matrix multiplication.
mm(Transpose, Matrix, Transpose, Matrix, double, double) - Method in class smile.math.matrix.Matrix
Matrix-matrix multiplication.
mm(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Returns matrix multiplication A * B.
mm(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Returns matrix multiplication A * B.
mm(SparseMatrix) - Method in class smile.math.matrix.fp32.SparseMatrix
Returns the matrix multiplication C = A * B.
mm(Matrix) - Method in class smile.math.matrix.Matrix
Returns matrix multiplication A * B.
mm(SparseMatrix) - Method in class smile.math.matrix.SparseMatrix
Returns the matrix multiplication C = A * B.
MMDDYY - Static variable in class smile.swing.table.DateCellEditor
 
MMDDYY - Static variable in class smile.swing.table.DateCellRenderer
 
mnist(String, boolean, int) - Static method in interface smile.deep.Dataset
MNIST contains 70,000 images of handwritten digits: 60,000 for training and 10,000 for testing.
mode(int[]) - Static method in class smile.math.MathEx
Returns the mode of the array, which is the most frequent element.
mode(JSON.Mode) - Method in class smile.io.JSON
Sets the file mode (single-line or multi-line).
model - Variable in class smile.glm.GLM
The model specifications (link function, deviance, etc.).
model - Variable in class smile.sequence.CRFLabeler
The CRF model.
model - Variable in class smile.sequence.HMMLabeler
The HMM model.
model - Variable in class smile.validation.ClassificationValidation
The model.
model - Variable in class smile.validation.RegressionValidation
The model.
model() - Method in record class smile.llm.CompletionPrediction
Returns the value of the model record component.
Model - Class in smile.deep
The deep learning models.
Model - Interface in smile.glm.model
The GLM model specification.
Model(LayerBlock) - Constructor for class smile.deep.Model
Constructor.
Model(LayerBlock, Function<Tensor, Tensor>) - Constructor for class smile.deep.Model
Constructor.
ModelArgs - Record Class in smile.llm.llama
LLaMA model hyperparameters.
ModelArgs() - Constructor for record class smile.llm.llama.ModelArgs
Constructor with default parameter values.
ModelArgs(int, int, int, Integer, int, int, Double, double, double, boolean, int, int) - Constructor for record class smile.llm.llama.ModelArgs
Creates an instance of a ModelArgs record class.
models() - Method in class smile.classification.RandomForest
Returns the base models.
models() - Method in class smile.regression.RandomForest
Returns the base models.
ModelSelection - Interface in smile.validation
Model selection criteria.
module - Variable in class smile.deep.layer.LayerBlock
The neural network module.
momentum - Variable in class smile.base.mlp.MultilayerPerceptron
The momentum factor.
MONTH - Enum constant in enum class smile.data.formula.DateFeature
The month represented by an integer from 1 to 12; 1 is January, 2 is February, and so forth; thus 12 is December.
mouseClicked(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
 
mouseEntered(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
 
mouseExited(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
 
mousePressed(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
 
mouseReleased(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
 
MPLSH<E> - Class in smile.neighbor
Multi-Probe Locality-Sensitive Hashing.
MPLSH(int, int, int, double) - Constructor for class smile.neighbor.MPLSH
Constructor.
MPLSH(int, int, int, double, int) - Constructor for class smile.neighbor.MPLSH
Constructor.
MPS - Enum constant in enum class smile.deep.tensor.DeviceType
GPU for macOS devices with Metal programming framework.
MPS() - Static method in class smile.deep.tensor.Device
Returns the GPU for macOS devices with Metal programming framework.
mse() - Static method in interface smile.deep.Loss
Mean Squared Error (L2) Loss Function.
mse() - Method in record class smile.validation.RegressionMetrics
Returns the value of the mse record component.
mse(int, OutputFunction) - Static method in class smile.base.mlp.Layer
Returns an output layer with mean squared error cost function.
MSE - Class in smile.validation.metric
Mean squared error.
MSE() - Constructor for class smile.validation.metric.MSE
 
mt(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Returns matrix multiplication A * B'.
mt(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Returns matrix multiplication A * B'.
mt(Matrix) - Method in class smile.math.matrix.Matrix
Returns matrix multiplication A * B'.
mtry - Variable in class smile.base.cart.CART
The number of input variables to be used to determine the decision at a node of the tree.
mu - Variable in class smile.glm.GLM
The fitted mean values.
mu - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The mean of predictive distribution at query points.
mu - Variable in class smile.stat.distribution.GaussianDistribution
The mean.
mu - Variable in class smile.stat.distribution.LogisticDistribution
The location parameter.
mu - Variable in class smile.stat.distribution.LogNormalDistribution
The mean of normal distribution.
mu - Variable in class smile.stat.distribution.MultivariateGaussianDistribution
The mean vector.
mul(double) - Method in class smile.deep.tensor.Tensor
Returns A * b.
mul(double) - Method in class smile.math.matrix.BigMatrix
A *= b
mul(double) - Method in class smile.math.matrix.Matrix
A *= b
mul(double) - Method in class smile.util.Array2D
A *= x.
mul(float) - Method in class smile.deep.tensor.Tensor
Returns A * b.
mul(float) - Method in class smile.math.matrix.fp32.Matrix
A *= b
mul(int) - Method in class smile.util.IntArray2D
A *= x.
mul(int, int, double) - Method in class smile.math.matrix.BigMatrix
A[i,j] *= b
mul(int, int, double) - Method in class smile.math.matrix.Matrix
A[i,j] *= b
mul(int, int, double) - Method in class smile.util.Array2D
A[i, j] *= x.
mul(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
A[i,j] *= b
mul(int, int, int) - Method in class smile.util.IntArray2D
A[i, j] *= x.
mul(String, String) - Static method in interface smile.data.formula.Terms
Multiplies two terms.
mul(String, Term) - Static method in interface smile.data.formula.Terms
Multiplies two terms.
mul(Term, String) - Static method in interface smile.data.formula.Terms
Multiplies two terms.
mul(Term, Term) - Static method in interface smile.data.formula.Terms
Multiplies two terms.
mul(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A * B element wisely.
mul(Complex) - Method in class smile.math.Complex
Returns this * b.
mul(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise multiplication A *= B
mul(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise multiplication A *= B
mul(Matrix) - Method in class smile.math.matrix.Matrix
Element-wise multiplication A *= B
mul(Array2D) - Method in class smile.util.Array2D
A *= B.
mul(IntArray2D) - Method in class smile.util.IntArray2D
A *= B.
Mul - Class in smile.data.formula
The term of a * b expression.
Mul(Term, Term) - Constructor for class smile.data.formula.Mul
Constructor.
mul_(double) - Method in class smile.deep.tensor.Tensor
Returns A *= b.
mul_(float) - Method in class smile.deep.tensor.Tensor
Returns A *= b.
mul_(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A *= B element wisely.
MULTI_LINE - Enum constant in enum class smile.io.JSON.Mode
A JSON object may occupy multiple lines.
MultiColumnSortTableHeaderCellRenderer - Class in smile.swing.table
An extension of DefaultTableHeaderCellRenderer that paints sort icons on the header of each sorted column with varying opacity.
MultiColumnSortTableHeaderCellRenderer() - Constructor for class smile.swing.table.MultiColumnSortTableHeaderCellRenderer
Constructs a MultisortTableHeaderCellRenderer with a default alpha of 0.5.
MultiColumnSortTableHeaderCellRenderer(float) - Constructor for class smile.swing.table.MultiColumnSortTableHeaderCellRenderer
Constructs a MultisortTableHeaderCellRenderer with the specified alpha.
MultilayerPerceptron - Class in smile.base.mlp
Fully connected multilayer perceptron neural network.
MultilayerPerceptron(Layer...) - Constructor for class smile.base.mlp.MultilayerPerceptron
Constructor.
multinomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
Fits multinomial logistic regression.
multinomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
multinomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
multinomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
Fits maximum entropy classifier.
multinomial(SparseDataset<Integer>) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
multinomial(SparseDataset<Integer>, double, double, int) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
multinomial(SparseDataset<Integer>, Properties) - Static method in class smile.classification.SparseLogisticRegression
Fits multinomial logistic regression.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Multinomial
Constructor.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.Maxent.Multinomial
Constructor.
Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Multinomial
Constructor.
MULTINOMIAL - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
The document multinomial model generates one term from the vocabulary in each position of the document.
multipleOf() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the multipleOf record component.
MultiProbeHash - Class in smile.neighbor.lsh
The hash function for data in Euclidean spaces.
MultiProbeHash(int, int, double, int) - Constructor for class smile.neighbor.lsh.MultiProbeHash
Constructor.
MultiProbeSample - Class in smile.neighbor.lsh
Training sample for MPLSH.
MultiProbeSample(double[], List<double[]>) - Constructor for class smile.neighbor.lsh.MultiProbeSample
Constructor.
MultiquadricRadialBasis - Class in smile.math.rbf
Multiquadric RBF.
MultiquadricRadialBasis() - Constructor for class smile.math.rbf.MultiquadricRadialBasis
Constructor.
MultiquadricRadialBasis(double) - Constructor for class smile.math.rbf.MultiquadricRadialBasis
Constructor.
MultivariateDistribution - Interface in smile.stat.distribution
Probability distribution of multivariate random variable.
MultivariateExponentialFamily - Interface in smile.stat.distribution
The purpose of this interface is mainly to define the method M that is the Maximization step in the EM algorithm.
MultivariateExponentialFamilyMixture - Class in smile.stat.distribution
The finite mixture of distributions from multivariate exponential family.
MultivariateExponentialFamilyMixture(MultivariateMixture.Component...) - Constructor for class smile.stat.distribution.MultivariateExponentialFamilyMixture
Constructor.
MultivariateFunction - Interface in smile.math
An interface representing a multivariate real function.
MultivariateGaussianDistribution - Class in smile.stat.distribution
Multivariate Gaussian distribution.
MultivariateGaussianDistribution(double[], double) - Constructor for class smile.stat.distribution.MultivariateGaussianDistribution
Constructor.
MultivariateGaussianDistribution(double[], double[]) - Constructor for class smile.stat.distribution.MultivariateGaussianDistribution
Constructor.
MultivariateGaussianDistribution(double[], Matrix) - Constructor for class smile.stat.distribution.MultivariateGaussianDistribution
Constructor.
MultivariateGaussianMixture - Class in smile.stat.distribution
Finite multivariate Gaussian mixture.
MultivariateGaussianMixture(MultivariateMixture.Component...) - Constructor for class smile.stat.distribution.MultivariateGaussianMixture
Constructor.
MultivariateMixture - Class in smile.stat.distribution
The finite mixture of multivariate distributions.
MultivariateMixture(MultivariateMixture.Component...) - Constructor for class smile.stat.distribution.MultivariateMixture
Constructor.
MultivariateMixture.Component - Record Class in smile.stat.distribution
A component in the mixture distribution is defined by a distribution and its weight in the mixture.
MurmurHash2 - Interface in smile.hash
MurmurHash is a very fast, non-cryptographic hash suitable for general hash-based lookup.
MurmurHash3 - Class in smile.hash
MurmurHash is a very fast, non-cryptographic hash suitable for general hash-based lookup.
MurmurHash3() - Constructor for class smile.hash.MurmurHash3
 
mustart(double) - Method in interface smile.glm.model.Model
The function to estimates the starting value of mean given y.
MutableInt - Class in smile.util
A mutable int wrapper.
MutableInt() - Constructor for class smile.util.MutableInt
Constructor.
MutableInt(int) - Constructor for class smile.util.MutableInt
Constructor.
MutableLSH<E> - Class in smile.neighbor
Mutable LSH.
MutableLSH(int, int, int, double) - Constructor for class smile.neighbor.MutableLSH
Constructor.
mutate() - Method in class smile.gap.BitString
 
mutate() - Method in interface smile.gap.Chromosome
For genetic algorithms, this method mutates the chromosome randomly.
MutualInformation - Class in smile.validation.metric
Mutual Information for comparing clustering.
MutualInformation() - Constructor for class smile.validation.metric.MutualInformation
 
mv(double[]) - Method in class smile.math.matrix.IMatrix
Returns the matrix-vector multiplication A * x.
mv(double[], double[]) - Method in class smile.math.matrix.IMatrix
Matrix-vector multiplication y = A * x.
mv(double[], int, int) - Method in class smile.math.matrix.BandMatrix
 
mv(double[], int, int) - Method in class smile.math.matrix.BigMatrix
 
mv(double[], int, int) - Method in class smile.math.matrix.IMatrix
Matrix-vector multiplication A * x.
mv(double[], int, int) - Method in class smile.math.matrix.Matrix
 
mv(double[], int, int) - Method in class smile.math.matrix.SparseMatrix
 
mv(double[], int, int) - Method in class smile.math.matrix.SymmMatrix
 
mv(double, double[], double, double[]) - Method in class smile.math.matrix.IMatrix
Matrix-vector multiplication.
mv(float[]) - Method in class smile.math.matrix.fp32.IMatrix
Returns the matrix-vector multiplication A * x.
mv(float[], float[]) - Method in class smile.math.matrix.fp32.IMatrix
Matrix-vector multiplication y = A * x.
mv(float[], int, int) - Method in class smile.math.matrix.fp32.BandMatrix
 
mv(float[], int, int) - Method in class smile.math.matrix.fp32.IMatrix
Matrix-vector multiplication A * x.
mv(float[], int, int) - Method in class smile.math.matrix.fp32.Matrix
 
mv(float[], int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
 
mv(float[], int, int) - Method in class smile.math.matrix.fp32.SymmMatrix
 
mv(float, float[], float, float[]) - Method in class smile.math.matrix.fp32.IMatrix
Matrix-vector multiplication.
mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.BandMatrix
 
mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.BigMatrix
 
mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.IMatrix
Matrix-vector multiplication.
mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.Matrix
 
mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.SparseMatrix
 
mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.SymmMatrix
 
mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.BandMatrix
 
mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.IMatrix
Matrix-vector multiplication.
mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.Matrix
 
mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.SparseMatrix
 
mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.SymmMatrix
 
MYSQL - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
The stop words list used by MySQL FullText feature.

N

n - Variable in class smile.base.mlp.Layer
The number of neurons in this layer
n - Variable in class smile.math.matrix.BigMatrix.SVD
The number of columns of matrix.
n - Variable in class smile.math.matrix.fp32.Matrix.SVD
The number of columns of matrix.
n - Variable in class smile.math.matrix.Matrix.SVD
The number of columns of matrix.
n - Variable in class smile.stat.distribution.BinomialDistribution
The number of experiments.
n - Variable in class smile.stat.distribution.HyperGeometricDistribution
The number of draws.
n - Variable in class smile.validation.metric.ContingencyTable
The number of observations.
N - Variable in class smile.stat.distribution.HyperGeometricDistribution
The number of total samples.
n1 - Variable in class smile.validation.metric.ContingencyTable
The number of clusters of first clustering.
n2 - Variable in class smile.validation.metric.ContingencyTable
The number of clusters of second clustering.
NaiveBayes - Class in smile.classification
Naive Bayes classifier.
NaiveBayes(double[], Distribution[][]) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
NaiveBayes(double[], Distribution[][], IntSet) - Constructor for class smile.classification.NaiveBayes
Constructor of general naive Bayes classifier.
name - Variable in class smile.data.type.StructField
Field name.
name() - Method in interface smile.base.mlp.ActivationFunction
Returns the name of activation function.
name() - Method in record class smile.data.formula.Variable
Returns the value of the name record component.
name() - Method in class smile.data.type.ArrayType
 
name() - Method in class smile.data.type.BooleanType
 
name() - Method in class smile.data.type.ByteType
 
name() - Method in class smile.data.type.CharType
 
name() - Method in interface smile.data.type.DataType
Returns the type name used in external catalogs.
name() - Method in class smile.data.type.DateTimeType
 
name() - Method in class smile.data.type.DateType
 
name() - Method in class smile.data.type.DecimalType
 
name() - Method in class smile.data.type.DoubleType
 
name() - Method in class smile.data.type.FloatType
 
name() - Method in class smile.data.type.IntegerType
 
name() - Method in class smile.data.type.LongType
 
name() - Method in class smile.data.type.ObjectType
 
name() - Method in class smile.data.type.ShortType
 
name() - Method in class smile.data.type.StringType
 
name() - Method in class smile.data.type.StructType
 
name() - Method in class smile.data.type.TimeType
 
name() - Method in interface smile.data.vector.BaseVector
Returns the (optional) name of vector.
name() - Method in class smile.deep.activation.ActivationFunction
Returns the name of activation function.
name() - Method in class smile.deep.metric.Accuracy
 
name() - Method in interface smile.deep.metric.Metric
Returns the name of metric.
name() - Method in class smile.deep.metric.Precision
 
name() - Method in class smile.deep.metric.Recall
 
name() - Method in class smile.io.Arff
Returns the name of relation.
name() - Method in class smile.llm.llama.Llama
Returns the model instance name.
name(int) - Method in class smile.data.type.StructType
Returns the field name.
name(String) - Method in class smile.plot.vega.Concat
 
name(String) - Method in class smile.plot.vega.Data
Sets a placeholder name and bind data at runtime.
name(String) - Method in class smile.plot.vega.Facet
 
name(String) - Method in class smile.plot.vega.Repeat
 
name(String) - Method in class smile.plot.vega.VegaLite
Sets the name of the visualization for later reference.
name(String) - Method in class smile.plot.vega.View
 
names() - Method in interface smile.data.DataFrame
Returns the column names.
names() - Method in interface smile.data.Tuple
Returns the field names.
names() - Method in class smile.data.type.StructType
Returns the field names.
NAVY_BLUE - Static variable in interface smile.plot.swing.Palette
 
ncol() - Method in interface smile.data.BinarySparseDataset
Returns the number of columns.
ncol() - Method in interface smile.data.DataFrame
Returns the number of columns.
ncol() - Method in class smile.data.IndexDataFrame
 
ncol() - Method in interface smile.data.SparseDataset
Returns the number of columns.
ncol() - Method in class smile.math.matrix.BandMatrix
 
ncol() - Method in class smile.math.matrix.BigMatrix
 
ncol() - Method in class smile.math.matrix.fp32.BandMatrix
 
ncol() - Method in class smile.math.matrix.fp32.IMatrix
Returns the number of columns.
ncol() - Method in class smile.math.matrix.fp32.Matrix
 
ncol() - Method in class smile.math.matrix.fp32.SparseMatrix
 
ncol() - Method in class smile.math.matrix.fp32.SymmMatrix
 
ncol() - Method in class smile.math.matrix.IMatrix
Returns the number of columns.
ncol() - Method in class smile.math.matrix.Matrix
 
ncol() - Method in class smile.math.matrix.SparseMatrix
 
ncol() - Method in class smile.math.matrix.SymmMatrix
 
ncol() - Method in class smile.util.Array2D
Returns the number of columns.
ncol() - Method in class smile.util.IntArray2D
Returns the number of columns.
ne(double) - Method in class smile.deep.tensor.Tensor
Computes element-wise inequality.
ne(int) - Method in class smile.deep.tensor.Tensor
Computes element-wise inequality.
ne(Tensor) - Method in class smile.deep.tensor.Tensor
Computes element-wise inequality.
nearest(double[]) - Method in class smile.neighbor.KDTree
 
nearest(double[]) - Method in class smile.neighbor.LSH
 
nearest(double[]) - Method in class smile.neighbor.MPLSH
 
nearest(double[], double, int) - Method in class smile.neighbor.MPLSH
Returns the approximate nearest neighbor.
nearest(K) - Method in interface smile.neighbor.KNNSearch
Returns the nearest neighbor.
nearest(K) - Method in class smile.neighbor.LinearSearch
 
nearestInsertion() - Method in class smile.graph.Graph
Returns the approximate solution to TSP with the nearest insertion heuristic.
NearestNeighborGraph - Record Class in smile.graph
The k-nearest neighbor graph builder.
NearestNeighborGraph(int, int[][], double[][]) - Constructor for record class smile.graph.NearestNeighborGraph
Constructor.
NearestNeighborGraph(int, int[][], double[][], int[]) - Constructor for record class smile.graph.NearestNeighborGraph
Creates an instance of a NearestNeighborGraph record class.
neg() - Method in class smile.deep.tensor.Tensor
Returns a new tensor with the negative of the elements of input.
neg_() - Method in class smile.deep.tensor.Tensor
Returns the tensor with the negative of the elements of input.
NegativeBinomialDistribution - Class in smile.stat.distribution
Negative binomial distribution arises as the probability distribution of the number of successes in a series of independent and identically distributed Bernoulli trials needed to get a specified (non-random) number r of failures.
NegativeBinomialDistribution(double, double) - Constructor for class smile.stat.distribution.NegativeBinomialDistribution
Constructor.
NEGEP - Static variable in class smile.math.MathEx
The largest negative integer such that 1.0 - RADIXNEGEP ≠ 1.0, except that negeps is bounded below by -(DIGITS+3)
neighbor - Variable in class smile.vq.hebb.Edge
The neighbor neuron.
Neighbor<K,V> - Record Class in smile.neighbor
The immutable object encapsulates the results of nearest neighbor search.
Neighbor(K, V, int, double) - Constructor for record class smile.neighbor.Neighbor
Creates an instance of a Neighbor record class.
NeighborHashValueModel - Class in smile.neighbor.lsh
Gaussian model of hash values of nearest neighbor.
NeighborHashValueModel(double[], double[], double[]) - Constructor for class smile.neighbor.lsh.NeighborHashValueModel
Constructor.
Neighborhood - Interface in smile.vq
The neighborhood function for 2-dimensional lattice topology (e.g.
neighbors - Variable in class smile.neighbor.lsh.MultiProbeSample
The neighbors of query object in terms of kNN or range search.
neighbors() - Method in record class smile.graph.NearestNeighborGraph
Returns the value of the neighbors record component.
net - Variable in class smile.base.mlp.MultilayerPerceptron
The input and hidden layers.
network() - Method in class smile.vq.NeuralGas
Returns the network of neurons.
NeuralGas - Class in smile.vq
Neural Gas soft competitive learning algorithm.
NeuralGas(double[][], TimeFunction, TimeFunction, TimeFunction) - Constructor for class smile.vq.NeuralGas
Constructor.
NeuralMap - Class in smile.vq
NeuralMap is an efficient competitive learning algorithm inspired by growing neural gas and BIRCH.
NeuralMap(double, double, double, int, double) - Constructor for class smile.vq.NeuralMap
Constructor.
Neuron - Class in smile.vq.hebb
The neuron vertex in the growing neural gas network.
Neuron(double[]) - Constructor for class smile.vq.hebb.Neuron
Constructor.
Neuron(double[], double) - Constructor for class smile.vq.hebb.Neuron
Constructor.
neurons - Variable in class smile.base.mlp.LayerBuilder
The number of neurons.
neurons() - Method in class smile.base.mlp.LayerBuilder
Returns the number of neurons.
neurons() - Method in class smile.vq.GrowingNeuralGas
Returns the neurons in the network.
neurons() - Method in class smile.vq.NeuralGas
Returns the neurons.
neurons() - Method in class smile.vq.NeuralMap
Returns the neurons.
neurons() - Method in class smile.vq.SOM
Returns the lattice of neurons.
newInstance() - Method in class smile.gap.BitString
 
newInstance() - Method in interface smile.gap.Chromosome
Returns a new random instance.
newInstance(byte[]) - Method in class smile.gap.BitString
Creates a new instance with given bits.
newNode(int[]) - Method in class smile.base.cart.CART
Creates a new leaf node.
newNode(int[]) - Method in class smile.classification.DecisionTree
 
newNode(int[]) - Method in class smile.regression.RegressionTree
 
newOnes(long...) - Method in class smile.deep.tensor.Tensor
Returns a tensor filled with all ones.
newZeros(long...) - Method in class smile.deep.tensor.Tensor
Returns a tensor filled with all zeros.
next(int) - Method in class smile.math.random.MersenneTwister
 
next(int) - Method in class smile.math.random.MersenneTwister64
 
next(int) - Method in interface smile.math.random.RandomNumberGenerator
Returns up to 32 random bits.
next(int) - Method in class smile.math.random.UniversalGenerator
 
nextDouble() - Method in class smile.math.random.MersenneTwister
 
nextDouble() - Method in class smile.math.random.MersenneTwister64
 
nextDouble() - Method in class smile.math.Random
Generator a random number uniformly distributed in [0, 1).
nextDouble() - Method in interface smile.math.random.RandomNumberGenerator
Returns the next pseudorandom, uniformly distributed double value between 0.0 and 1.0 from this random number generator's sequence.
nextDouble() - Method in class smile.math.random.UniversalGenerator
 
nextDouble(double, double) - Method in class smile.math.Random
Generate a uniform random number in the range [lo, hi)
nextDoubles(double[]) - Method in class smile.math.random.MersenneTwister
 
nextDoubles(double[]) - Method in class smile.math.random.MersenneTwister64
 
nextDoubles(double[]) - Method in class smile.math.Random
Generate n uniform random numbers in the range [0, 1)
nextDoubles(double[]) - Method in interface smile.math.random.RandomNumberGenerator
Returns a vector of pseudorandom, uniformly distributed double values between 0.0 and 1.0 from this random number generator's sequence.
nextDoubles(double[]) - Method in class smile.math.random.UniversalGenerator
 
nextDoubles(double[], double, double) - Method in class smile.math.Random
Generate n uniform random numbers in the range [lo, hi)
nextInt() - Method in class smile.math.random.MersenneTwister
 
nextInt() - Method in class smile.math.random.MersenneTwister64
 
nextInt() - Method in class smile.math.Random
Returns a random integer.
nextInt() - Method in interface smile.math.random.RandomNumberGenerator
Returns the next pseudorandom, uniformly distributed int value from this random number generator's sequence.
nextInt() - Method in class smile.math.random.UniversalGenerator
 
nextInt(int) - Method in class smile.math.random.MersenneTwister
 
nextInt(int) - Method in class smile.math.random.MersenneTwister64
 
nextInt(int) - Method in class smile.math.Random
Returns a random integer in [0, n).
nextInt(int) - Method in interface smile.math.random.RandomNumberGenerator
Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.
nextInt(int) - Method in class smile.math.random.UniversalGenerator
 
nextLong() - Method in class smile.math.random.MersenneTwister
 
nextLong() - Method in class smile.math.random.MersenneTwister64
 
nextLong() - Method in class smile.math.Random
Returns a random long integer.
nextLong() - Method in interface smile.math.random.RandomNumberGenerator
Returns the next pseudorandom, uniformly distributed long value from this random number generator's sequence.
nextLong() - Method in class smile.math.random.UniversalGenerator
 
NGram - Class in smile.nlp.collocation
An n-gram is a contiguous sequence of n words from a given sequence of text.
NGram - Class in smile.nlp
An n-gram is a contiguous sequence of n words from a given sequence of text.
NGram(String[]) - Constructor for class smile.nlp.NGram
Constructor.
NGram(String[], int) - Constructor for class smile.nlp.collocation.NGram
Constructor.
ni - Variable in class smile.classification.ClassLabels
The number of samples per classes.
nice(int) - Method in class smile.plot.vega.BinParams
If true, attempts to make the bin boundaries use human-friendly boundaries, such as multiples of ten.
nll() - Static method in interface smile.deep.Loss
Negative Log-Likelihood Loss Function.
NN - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Noun, singular or mass.
NNP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Proper noun, singular.
NNPS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Proper noun, plural.
NNS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Noun, plural.
NO_TRANSPOSE - Enum constant in enum class smile.math.blas.Transpose
Normal operation on the matrix.
NO_VECTORS - Enum constant in enum class smile.math.blas.EVDJob
Eigenvalues only are computed.
NO_VECTORS - Enum constant in enum class smile.math.blas.SVDJob
No singular vectors are computed.
Node - Interface in smile.base.cart
CART tree node.
Node(E) - Constructor for class smile.util.PairingHeap.Node
Constructor.
Node(K) - Constructor for class smile.nlp.Trie.Node
Constructor.
nodeSize - Variable in class smile.base.cart.CART
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results.
noGradGuard() - Static method in class smile.deep.tensor.Tensor
Disables gradient calculation.
noise - Variable in class smile.regression.GaussianProcessRegression
The variance of noise.
nominal() - Method in interface smile.data.vector.StringVector
Returns a nominal scale of measure based on distinct values in the vector.
NominalNode - Class in smile.base.cart
A node with a nominal split variable.
NominalNode(int, int, double, double, Node, Node) - Constructor for class smile.base.cart.NominalNode
Constructor.
NominalScale - Class in smile.data.measure
Nominal variables take on a limited number of unordered values.
NominalScale(int[], String[]) - Constructor for class smile.data.measure.NominalScale
Constructor.
NominalScale(Class<? extends Enum<?>>) - Constructor for class smile.data.measure.NominalScale
Constructor.
NominalScale(String...) - Constructor for class smile.data.measure.NominalScale
Constructor.
NominalScale(List<String>) - Constructor for class smile.data.measure.NominalScale
Constructor.
NominalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
NominalSplit(LeafNode, int, int, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.NominalSplit
Constructor.
NON_UNIT - Enum constant in enum class smile.math.blas.Diag
Non-unit triangular.
None - Static variable in class smile.deep.tensor.Index
The None is used to insert a singleton dimension ("unsqueeze" a dimension).
nonoverlap(int[], int) - Static method in interface smile.validation.CrossValidation
Cross validation with non-overlapping groups.
nonzeros() - Method in class smile.math.matrix.fp32.SparseMatrix
Returns the stream of the non-zero elements.
nonzeros() - Method in class smile.math.matrix.SparseMatrix
Returns the stream of the non-zero elements.
nonzeros(int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
Returns the stream of the non-zero elements in given column range.
nonzeros(int, int) - Method in class smile.math.matrix.SparseMatrix
Returns the stream of the non-zero elements in given column range.
norm() - Method in class smile.math.matrix.BigMatrix
L2 matrix norm that is the maximum singular value.
norm() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the L2 matrix norm that is the largest singular value.
norm() - Method in class smile.math.matrix.fp32.Matrix
L2 matrix norm that is the maximum singular value.
norm() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the L2 matrix norm that is the largest singular value.
norm() - Method in class smile.math.matrix.Matrix
L2 matrix norm that is the maximum singular value.
norm() - Method in class smile.math.matrix.Matrix.SVD
Returns the L2 matrix norm that is the largest singular value.
norm(double[]) - Static method in class smile.math.MathEx
L2 vector norm.
norm(float[]) - Static method in class smile.math.MathEx
L2 vector norm.
norm1() - Method in class smile.math.matrix.BigMatrix
L1 matrix norm that is the maximum of column sums.
norm1() - Method in class smile.math.matrix.fp32.Matrix
L1 matrix norm that is the maximum of column sums.
norm1() - Method in class smile.math.matrix.Matrix
L1 matrix norm that is the maximum of column sums.
norm1(double[]) - Static method in class smile.math.MathEx
L1 vector norm.
norm1(float[]) - Static method in class smile.math.MathEx
L1 vector norm.
norm2() - Method in class smile.math.matrix.BigMatrix
L2 matrix norm that is the maximum singular value.
norm2() - Method in class smile.math.matrix.fp32.Matrix
L2 matrix norm that is the maximum singular value.
norm2() - Method in class smile.math.matrix.Matrix
L2 matrix norm that is the maximum singular value.
norm2(double[]) - Static method in class smile.math.MathEx
L2 vector norm.
norm2(float[]) - Static method in class smile.math.MathEx
L2 vector norm.
normalize(double[]) - Static method in class smile.math.MathEx
Normalizes an array to norm 1.
normalize(double[][]) - Static method in class smile.math.MathEx
Unitizes each column of a matrix to unit length (L_2 norm).
normalize(double[][], boolean) - Static method in class smile.math.MathEx
Unitizes each column of a matrix to unit length (L_2 norm).
normalize(String) - Method in interface smile.nlp.normalizer.Normalizer
Normalize the given string.
normalize(String) - Method in class smile.nlp.normalizer.SimpleNormalizer
 
NormalizedMutualInformation - Class in smile.validation.metric
Normalized Mutual Information (NMI) for comparing clustering.
NormalizedMutualInformation(NormalizedMutualInformation.Method) - Constructor for class smile.validation.metric.NormalizedMutualInformation
Constructor.
NormalizedMutualInformation.Method - Enum Class in smile.validation.metric
The normalization method.
normalizedNumberFormat(String) - Method in class smile.plot.vega.FormatConfig
Sets custom normalized number format.
normalizedNumberFormatType(String) - Method in class smile.plot.vega.FormatConfig
Sets custom normalized number format type.
Normalizer - Class in smile.feature.transform
Normalize samples individually to unit norm.
Normalizer - Interface in smile.nlp.normalizer
Normalization transforms text into a canonical form by removing unwanted variations.
Normalizer(Normalizer.Norm, String...) - Constructor for class smile.feature.transform.Normalizer
Constructor.
Normalizer.Norm - Enum Class in smile.feature.transform
Vector norm.
normEps() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the normEps record component.
normFro() - Method in class smile.math.matrix.BigMatrix
Frobenius matrix norm that is the square root of sum of squares of all elements.
normFro() - Method in class smile.math.matrix.fp32.Matrix
Frobenius matrix norm that is the square root of sum of squares of all elements.
normFro() - Method in class smile.math.matrix.Matrix
Frobenius matrix norm that is the square root of sum of squares of all elements.
normInf() - Method in class smile.math.matrix.BigMatrix
L matrix norm that is the maximum of row sums.
normInf() - Method in class smile.math.matrix.fp32.Matrix
L matrix norm that is the maximum of row sums.
normInf() - Method in class smile.math.matrix.Matrix
L matrix norm that is the maximum of row sums.
normInf(double[]) - Static method in class smile.math.MathEx
L vector norm.
normInf(float[]) - Static method in class smile.math.MathEx
L vector norm that is the maximum absolute value.
normLayer() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the normLayer record component.
not() - Method in class smile.deep.tensor.Tensor
Returns logical NOT of this tensor.
not(Predicate) - Static method in class smile.plot.vega.Predicate
Logical NOT operation.
not_() - Method in class smile.deep.tensor.Tensor
Returns logical NOT of this tensor.
nrm2(double[]) - Method in interface smile.math.blas.BLAS
Computes the Euclidean (L2) norm of a vector.
nrm2(float[]) - Method in interface smile.math.blas.BLAS
Computes the Euclidean (L2) norm of a vector.
nrm2(int, double[], int) - Method in interface smile.math.blas.BLAS
Computes the Euclidean (L2) norm of a vector.
nrm2(int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
nrm2(int, float[], int) - Method in interface smile.math.blas.BLAS
Computes the Euclidean (L2) norm of a vector.
nrm2(int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
nrow() - Method in interface smile.data.DataFrame
Returns the number of rows.
nrow() - Method in interface smile.data.SparseDataset
Returns the number of rows.
nrow() - Method in class smile.math.matrix.BandMatrix
 
nrow() - Method in class smile.math.matrix.BigMatrix
 
nrow() - Method in class smile.math.matrix.fp32.BandMatrix
 
nrow() - Method in class smile.math.matrix.fp32.IMatrix
Returns the number of rows.
nrow() - Method in class smile.math.matrix.fp32.Matrix
 
nrow() - Method in class smile.math.matrix.fp32.SparseMatrix
 
nrow() - Method in class smile.math.matrix.fp32.SymmMatrix
 
nrow() - Method in class smile.math.matrix.IMatrix
Returns the number of rows.
nrow() - Method in class smile.math.matrix.Matrix
 
nrow() - Method in class smile.math.matrix.SparseMatrix
 
nrow() - Method in class smile.math.matrix.SymmMatrix
 
nrow() - Method in class smile.util.Array2D
Returns the number of rows.
nrow() - Method in class smile.util.IntArray2D
Returns the number of rows.
nu - Variable in class smile.stat.distribution.ChiSquareDistribution
The degrees of freedom.
nu - Variable in class smile.stat.distribution.TDistribution
The degree of freedom.
nu1 - Variable in class smile.stat.distribution.FDistribution
The degrees of freedom of chi-square distribution in numerator.
nu2 - Variable in class smile.stat.distribution.FDistribution
The degrees of freedom chi-square distribution in denominator.
nullDeviance - Variable in class smile.glm.GLM
The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).
nullDeviance(double[], double) - Method in interface smile.glm.model.Model
The NULL deviance function.
nullity() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the dimension of null space.
nullity() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the dimension of null space.
nullity() - Method in class smile.math.matrix.Matrix.SVD
Returns the dimension of null space.
nullspace() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the matrix which columns are the orthonormal basis for the null space.
nullspace() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the matrix which columns are the orthonormal basis for the null space.
nullspace() - Method in class smile.math.matrix.Matrix.SVD
Returns the matrix which columns are the orthonormal basis for the null space.
NUMBER - Static variable in class smile.swing.table.NumberCellRenderer
 
NumberCellRenderer - Class in smile.swing.table
Number renderer in JTable.
NumberCellRenderer() - Constructor for class smile.swing.table.NumberCellRenderer
Constructor.
NumberCellRenderer(int) - Constructor for class smile.swing.table.NumberCellRenderer
Constructor.
NumberCellRenderer(NumberFormat) - Constructor for class smile.swing.table.NumberCellRenderer
Constructor.
numberFormat(String) - Method in class smile.plot.vega.FormatConfig
Sets custom number format.
numberFormatType(String) - Method in class smile.plot.vega.FormatConfig
Sets custom number format type.
NumberVector - Interface in smile.data.vector
An immutable number object vector.
numClasses() - Method in class smile.classification.AbstractClassifier
 
numClasses() - Method in interface smile.classification.Classifier
Returns the number of classes.
numClasses() - Method in class smile.classification.DecisionTree
 
numClasses() - Method in class smile.classification.MLP
 
numClasses() - Method in class smile.classification.SVM
 
NumericalMeasure - Class in smile.data.measure
Numerical data, also called quantitative data.
NumericalMeasure(NumberFormat) - Constructor for class smile.data.measure.NumericalMeasure
Constructor.
numHeads() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the numHeads record component.
numKvHeads() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the numKvHeads record component.
numLayers() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the numLayers record component.
numLayers() - Method in record class smile.vision.layer.MBConvConfig
Returns the value of the numLayers record component.
numLeaves() - Method in class smile.neighbor.RandomProjectionTree
Returns the number of leaf nodes in the tree.
numNodes() - Method in class smile.neighbor.RandomProjectionTree
Returns the number of nodes in the tree.
nystrom(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
nystrom(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
nystrom(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
nz() - Method in interface smile.data.SparseDataset
Returns the number of nonzero entries.
nz(int) - Method in interface smile.data.SparseDataset
Returns the number of nonzero entries in column j.

O

object(Serializable) - Static method in interface smile.io.Write
Writes an object to a temporary file and returns the path of file.
object(Serializable, Path) - Static method in interface smile.io.Write
Writes a serializable object to a file.
object(Class<?>) - Static method in class smile.data.type.DataTypes
Creates an object data type of given class.
object(Path) - Static method in interface smile.io.Read
Reads a serialized object from a file.
Object - Enum constant in enum class smile.data.type.DataType.ID
Object type ID.
ObjectType - Class in smile.data.type
Object data type.
ObjectType - Static variable in class smile.data.type.DataTypes
Plain Object data type.
OCSVM<T> - Class in smile.base.svm
One-class support vector machine.
OCSVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.OCSVM
Constructor.
of(boolean...) - Method in interface smile.data.DataFrame
Returns a new data frame with boolean indexing.
of(boolean...) - Static method in class smile.deep.tensor.Index
Returns the index of multiple elements in a dimension.
of(boolean[], long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with given data and shape.
of(byte[][]) - Static method in interface smile.hash.SimHash
Returns the SimHash for a set of generic features (represented as byte[]).
of(byte[], long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with given data and shape.
of(double) - Static method in class smile.math.Complex
Returns a Complex instance representing the specified value.
of(double[]) - Static method in interface smile.math.Histogram
Generate the histogram of given data.
of(double[]) - Method in class smile.math.kernel.BinarySparseGaussianKernel
 
of(double[]) - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
 
of(double[]) - Method in class smile.math.kernel.BinarySparseLaplacianKernel
 
of(double[]) - Method in class smile.math.kernel.BinarySparseLinearKernel
 
of(double[]) - Method in class smile.math.kernel.BinarySparseMaternKernel
 
of(double[]) - Method in class smile.math.kernel.BinarySparsePolynomialKernel
 
of(double[]) - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
 
of(double[]) - Method in class smile.math.kernel.GaussianKernel
 
of(double[]) - Method in class smile.math.kernel.HellingerKernel
 
of(double[]) - Method in class smile.math.kernel.HyperbolicTangentKernel
 
of(double[]) - Method in class smile.math.kernel.LaplacianKernel
 
of(double[]) - Method in class smile.math.kernel.LinearKernel
 
of(double[]) - Method in class smile.math.kernel.MaternKernel
 
of(double[]) - Method in interface smile.math.kernel.MercerKernel
Returns the same kind kernel with the new hyperparameters.
of(double[]) - Method in class smile.math.kernel.PearsonKernel
 
of(double[]) - Method in class smile.math.kernel.PolynomialKernel
 
of(double[]) - Method in class smile.math.kernel.ProductKernel
 
of(double[]) - Method in class smile.math.kernel.SparseGaussianKernel
 
of(double[]) - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
 
of(double[]) - Method in class smile.math.kernel.SparseLaplacianKernel
 
of(double[]) - Method in class smile.math.kernel.SparseLinearKernel
 
of(double[]) - Method in class smile.math.kernel.SparseMaternKernel
 
of(double[]) - Method in class smile.math.kernel.SparsePolynomialKernel
 
of(double[]) - Method in class smile.math.kernel.SparseThinPlateSplineKernel
 
of(double[]) - Method in class smile.math.kernel.SumKernel
 
of(double[]) - Method in class smile.math.kernel.ThinPlateSplineKernel
 
of(double[]) - Static method in class smile.plot.swing.Bar
Creates a bar plot.
of(double[]) - Static method in class smile.plot.swing.BarPlot
Creates a bar plot.
of(double[]) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(double...) - Static method in class smile.plot.swing.Label
Creates a black label with coordinates as text.
of(double[]) - Static method in class smile.plot.swing.LinePlot
Creates a line plot with the index as the x coordinate.
of(double[]) - Static method in class smile.plot.swing.QQPlot
One sample Q-Q plot to standard normal distribution.
of(double[][]) - Static method in class smile.clustering.linkage.CompleteLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.SingleLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMALinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.UPGMCLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WardLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMALinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in class smile.clustering.linkage.WPGMCLinkage
Computes the proximity and the linkage.
of(double[][]) - Static method in record class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS with default k = 2, tolerance = 1E-4 and maxIter = 200.
of(double[][]) - Static method in record class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][]) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping with default k = 2, lambda = 0.2, tolerance = 1E-4 and maxIter = 100.
of(double[][]) - Static method in class smile.math.matrix.BigMatrix
Returns a matrix from a two-dimensional array.
of(double[][]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a matrix from a two-dimensional array.
of(double[][]) - Static method in class smile.math.matrix.Matrix
Returns a matrix from a two-dimensional array.
of(double[][]) - Static method in class smile.neighbor.KDTree
Return a KD-tree of the data.
of(double[]...) - Static method in class smile.plot.swing.BoxPlot
Create a plot canvas with multiple box plots of given data.
of(double[][]) - Static method in class smile.plot.swing.Contour
Creates a contour plot with 10 isolines.
of(double[][]) - Static method in class smile.plot.swing.Heatmap
Constructor.
of(double[][]) - Static method in class smile.plot.swing.Hexmap
Creates a hexmap with 16-color jet color palette.
of(double[][]) - Static method in class smile.plot.swing.Histogram3D
Creates a 3D histogram plot.
of(double[][]) - Static method in class smile.plot.swing.Line
Creates a Line with solid stroke and black color.
of(double[][]) - Static method in class smile.plot.swing.LinePlot
Creates a line plot.
of(double[][]) - Static method in class smile.plot.swing.Point
Creates a Point with circle mark and black color.
of(double[][]) - Static method in class smile.plot.swing.ScatterPlot
Create a scatter plot.
of(double[][]) - Static method in class smile.plot.swing.Staircase
Creates a Staircase with solid stroke and black color.
of(double[][]) - Static method in class smile.plot.swing.StaircasePlot
Creates a line plot.
of(double[][][]) - Static method in class smile.plot.swing.Grid
Creates a grid with black lines.
of(double[][], char) - Static method in class smile.plot.swing.Line
Creates a Line.
of(double[][], char) - Static method in class smile.plot.swing.Point
Creates a Point with black color.
of(double[][], char) - Static method in class smile.plot.swing.ScatterPlot
Create a scatter plot.
of(double[][], char, Color) - Static method in class smile.plot.swing.ScatterPlot
Create a scatter plot.
of(double[][], double[][], double, double, double, int) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[][], double[][], double, int) - Static method in record class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], double[], int) - Static method in interface smile.deep.Dataset
Creates a dataset of numeric arrays.
of(double[][], int) - Static method in record class smile.graph.NearestNeighborGraph
Creates a nearest neighbor graph with Euclidean distance.
of(double[][], int) - Static method in class smile.manifold.IsoMap
Runs the C-Isomap algorithm with Euclidean distance.
of(double[][], int) - Static method in record class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], int) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(double[][], int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][], int) - Static method in record class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][], int) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[][], int) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm with Euclidean distance.
of(double[][], int) - Static method in class smile.plot.swing.Contour
Creates a contour plot.
of(double[][], int) - Static method in class smile.plot.swing.Heatmap
Creates a heatmap with jet color palette.
of(double[][], int) - Static method in class smile.plot.swing.Hexmap
Creates a hexmap with the jet color palette.
of(double[][], int) - Static method in class smile.plot.swing.Surface
Creates a regular mesh surface with the jet color palette.
of(double[][], int[][]) - Static method in class smile.plot.swing.Wireframe
Constructor.
of(double[][], int[], char) - Static method in class smile.plot.swing.ScatterPlot
Creates a scatter plot of multiple groups of data.
of(double[][], int[], int) - Static method in interface smile.deep.Dataset
Creates a dataset of numeric arrays.
of(double[][], int, boolean) - Static method in record class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][], int, boolean) - Static method in class smile.neighbor.RandomProjectionTree
Builds a random projection tree.
of(double[][], int, boolean) - Static method in class smile.plot.swing.Histogram3D
Creates a 3D histogram plot.
of(double[][], int, boolean, Color[]) - Static method in class smile.plot.swing.Histogram3D
Creates a 3D histogram plot.
of(double[][], int, double, double, double, int) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[][], int, double, int) - Static method in record class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], int, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(double[][], int, int, boolean) - Static method in class smile.neighbor.RandomProjectionForest
Builds a random projection forest.
of(double[][], int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with Gaussian kernel.
of(double[][], int, int, int, double, double, double, int, double, double) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm with Euclidean distance.
of(double[][], int, Color[]) - Static method in class smile.plot.swing.Histogram3D
Creates a 3D histogram plot.
of(double[][], Color) - Static method in class smile.plot.swing.Line
Creates a Line.
of(double[][], Color) - Static method in class smile.plot.swing.LinePlot
Creates a line plot.
of(double[][], Color) - Static method in class smile.plot.swing.Point
Creates a Point with circle mark.
of(double[][], Color) - Static method in class smile.plot.swing.ScatterPlot
Create a scatter plot.
of(double[][], Color[]) - Static method in class smile.plot.swing.Heatmap
Constructor.
of(double[][], Color[]) - Static method in class smile.plot.swing.Hexmap
Constructor.
of(double[][], Color[]) - Static method in class smile.plot.swing.Surface
Creates a regular mesh surface.
of(double[][], Color, String) - Static method in class smile.plot.swing.StaircasePlot
Creates a line plot.
of(double[][], String...) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a 2-dimensional array.
of(double[][], String[]) - Static method in class smile.plot.swing.BarPlot
Creates a bar plot of multiple groups/colors.
of(double[][], String[], char) - Static method in class smile.plot.swing.ScatterPlot
Creates a scatter plot of multiple groups of data.
of(double[][], Properties) - Static method in record class smile.manifold.IsotonicMDS
Fits Kruskal's non-metric MDS.
of(double[][], Properties) - Static method in record class smile.manifold.MDS
Fits the classical multidimensional scaling.
of(double[][], Properties) - Static method in class smile.manifold.SammonMapping
Fits Sammon's mapping.
of(double[][], NearestNeighborGraph, int) - Static method in class smile.manifold.LLE
Runs the LLE algorithm.
of(double[][], Line.Style) - Static method in class smile.plot.swing.Line
Creates a Line.
of(double[][], Line.Style) - Static method in class smile.plot.swing.LinePlot
Creates a line plot.
of(double[][], Line.Style, Color) - Static method in class smile.plot.swing.Line
Creates a Line.
of(double[][], Line.Style, Color) - Static method in class smile.plot.swing.LinePlot
Creates a line plot.
of(double[][], Line.Style, Color, String) - Static method in class smile.plot.swing.LinePlot
Creates a line plot.
of(double[], double[]) - Static method in interface smile.math.Histogram
Generate the histogram of n bins.
of(double[], double[]) - Static method in class smile.plot.swing.QQPlot
Two sample Q-Q plot.
of(double[], double[]) - Static method in class smile.validation.metric.MAD
Calculates the mean absolute deviation error.
of(double[], double[]) - Static method in class smile.validation.metric.MSE
Calculates the mean squared error.
of(double[], double[]) - Static method in class smile.validation.metric.R2
Calculates the R squared coefficient.
of(double[], double[]) - Static method in class smile.validation.metric.RMSE
Calculates the root mean squared error.
of(double[], double[]) - Static method in class smile.validation.metric.RSS
Calculates the residual sum of squares.
of(double[], double[], boolean) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(double[], double[], boolean, Color) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(double[], double[], double[][]) - Static method in class smile.plot.swing.Contour
Creates a contour plot with 10 isolines.
of(double[], double[], double[][]) - Static method in class smile.plot.swing.Heatmap
Constructor.
of(double[], double[], double[][]) - Static method in class smile.plot.swing.Surface
Creates an irregular mesh grid.
of(double[], double[], double[][], int) - Static method in class smile.plot.swing.Contour
Creates a contour plot.
of(double[], double[], double[][], int) - Static method in class smile.plot.swing.Heatmap
Constructor.
of(double[], double[], double[][], int) - Static method in class smile.plot.swing.Surface
Creates an irregular mesh surface with the jet color palette.
of(double[], double[], double[][], Color[]) - Static method in class smile.plot.swing.Surface
Creates an irregular mesh surface.
of(double[], int) - Static method in interface smile.math.Histogram
Generate the histogram of n bins.
of(double[], int, boolean) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(double[], int, boolean, Color) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(double[], long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with given data and shape.
of(double[], Color) - Static method in class smile.plot.swing.LinePlot
Creates a line plot with the index as the x coordinate.
of(double[], StructType) - Static method in interface smile.data.Tuple
Returns a double array based tuple.
of(double[], Line.Style) - Static method in class smile.plot.swing.LinePlot
Creates a line plot with the index as the x coordinate.
of(double[], Line.Style, Color) - Static method in class smile.plot.swing.LinePlot
Creates a line plot with the index as the x coordinate.
of(double[], Line.Style, Color, String) - Static method in class smile.plot.swing.LinePlot
Creates a line plot with the index as the x coordinate.
of(double[], Distribution) - Static method in class smile.plot.swing.QQPlot
One sample Q-Q plot to given distribution.
of(double, double) - Static method in class smile.math.Complex
Returns a Complex instance representing the specified value.
of(double, double, double[], double[]) - Static method in record class smile.validation.RegressionMetrics
Computes the regression metrics.
of(double, double, int[], int[]) - Static method in record class smile.validation.ClassificationMetrics
Computes the classification metrics.
of(double, double, int[], int[], double[][]) - Static method in record class smile.validation.ClassificationMetrics
Computes the soft classification metrics.
of(double, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(double, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(double, M, Formula, DataFrame) - Static method in record class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(double, M, Formula, DataFrame) - Static method in record class smile.validation.RegressionMetrics
Trains and validates a model on a train/validation split.
of(double, M, T[], double[]) - Static method in record class smile.validation.RegressionMetrics
Validates a model on a test data.
of(double, M, T[], int[]) - Static method in record class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(float[]) - Static method in interface smile.math.Histogram
Generate the histogram of given data.
of(float[][]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a matrix from a two-dimensional array.
of(float[][], float[], int) - Static method in interface smile.deep.Dataset
Creates a dataset of numeric arrays.
of(float[][], int[], int) - Static method in interface smile.deep.Dataset
Creates a dataset of numeric arrays.
of(float[][], String...) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a 2-dimensional array.
of(float[], float[]) - Static method in interface smile.math.Histogram
Generate the histogram of n bins.
of(float[], int) - Static method in interface smile.math.Histogram
Generate the histogram of n bins.
of(float[], long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with given data and shape.
of(int) - Static method in class smile.deep.tensor.Index
Returns the index of a single element in a dimension.
of(int) - Static method in class smile.util.IntSet
Returns the IntSet of [0, k).
of(int) - Static method in interface smile.validation.LOOCV
Returns the training sample index for each round.
of(int...) - Method in interface smile.data.DataFrame
Returns a new data frame with row indexing.
of(int...) - Static method in class smile.deep.tensor.Index
Returns the index of multiple elements in a dimension.
of(int[]) - Static method in interface smile.math.Histogram
Generate the histogram of given data.
of(int[]) - Static method in class smile.plot.swing.Bar
Creates a bar plot.
of(int[]) - Static method in class smile.plot.swing.BarPlot
Creates a bar plot.
of(int[]) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(int[]) - Static method in class smile.util.IntSet
Finds the unique values from samples.
of(int[][]) - Static method in interface smile.data.BinarySparseDataset
Returns a default implementation of BinarySparseDataset without targets.
of(int[][], String...) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a 2-dimensional array.
of(int[], double[]) - Static method in interface smile.math.Histogram
Generate the histogram of n bins.
of(int[], double[]) - Static method in class smile.validation.metric.AUC
Calculates AUC for binary classifier.
of(int[], double[]) - Static method in class smile.validation.metric.LogLoss
Calculates the Log Loss for binary classifier.
of(int[], double[][]) - Static method in interface smile.validation.metric.CrossEntropy
Calculates the cross entropy for multiclass classifier.
of(int[], double[], boolean) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(int[], double[], boolean, Color) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(int[], int) - Static method in interface smile.math.Histogram
Generate the histogram of k bins.
of(int[], int) - Static method in interface smile.validation.Bootstrap
Stratified bootstrap sampling.
of(int[], int[]) - Static method in class smile.plot.swing.QQPlot
Two sample Q-Q plot.
of(int[], int[]) - Static method in class smile.stat.GoodTuring
Good–Turing frequency estimation.
of(int[], int[]) - Static method in class smile.validation.metric.Accuracy
Calculates the classification accuracy.
of(int[], int[]) - Static method in class smile.validation.metric.AdjustedRandIndex
Calculates the adjusted rand index.
of(int[], int[]) - Static method in record class smile.validation.metric.ConfusionMatrix
Creates the confusion matrix.
of(int[], int[]) - Static method in class smile.validation.metric.Error
Calculates the number of errors.
of(int[], int[]) - Static method in class smile.validation.metric.Fallout
Calculates the false alarm rate.
of(int[], int[]) - Static method in class smile.validation.metric.FDR
Calculates the false discovery rate.
of(int[], int[]) - Static method in class smile.validation.metric.MatthewsCorrelation
Calculates Matthews correlation coefficient.
of(int[], int[]) - Static method in class smile.validation.metric.MutualInformation
Calculates the mutual information.
of(int[], int[]) - Static method in class smile.validation.metric.Precision
Calculates the precision of binary classification.
of(int[], int[]) - Static method in class smile.validation.metric.RandIndex
Calculates the rand index.
of(int[], int[]) - Static method in class smile.validation.metric.Recall
Calculates the recall/sensitivity of binary classification.
of(int[], int[]) - Static method in class smile.validation.metric.Sensitivity
Calculates the sensitivity.
of(int[], int[]) - Static method in class smile.validation.metric.Specificity
Calculates the specificity.
of(int[], int[], double, Averaging) - Static method in class smile.validation.metric.FScore
Calculates the F1 score.
of(int[], int[], Averaging) - Static method in class smile.validation.metric.Precision
Calculates the precision.
of(int[], int[], Averaging) - Static method in class smile.validation.metric.Recall
Calculates the recall/sensitivity.
of(int[], int, boolean) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(int[], int, boolean, Color) - Static method in class smile.plot.swing.Histogram
Creates a histogram plot.
of(int[], long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with given data and shape.
of(int[], StructType) - Static method in interface smile.data.Tuple
Returns an integer array based tuple.
of(int[], DiscreteDistribution) - Static method in class smile.plot.swing.QQPlot
One sample Q-Q plot to given discrete distribution.
of(int, int) - Static method in interface smile.validation.Bootstrap
Bootstrap sampling.
of(int, int) - Static method in interface smile.validation.CrossValidation
Creates a k-fold cross validation.
of(int, int[][]) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available in main memory.
of(int, int, int) - Method in interface smile.vq.Neighborhood
Returns the changing rate of neighborhood at a given iteration.
of(int, int, String) - Static method in class smile.base.mlp.Layer
Returns the layer builders given a string representation such as "Input(10, 0.2)|ReLU(50, 0.5)|Sigmoid(30, 0.5)|...".
of(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
Generates a non-sparse random projection.
of(int, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
One-step construction of FP-tree if the database is available as stream.
of(long) - Static method in class smile.deep.tensor.Index
Returns the index of a single element in a dimension.
of(long...) - Static method in class smile.deep.tensor.Index
Returns the index of multiple elements in a dimension.
of(long[], long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with given data and shape.
of(short[], long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor with given data and shape.
of(D[], double[]) - Static method in interface smile.data.Dataset
Returns a default implementation of Dataset from a collection.
of(D[], float[]) - Static method in interface smile.data.Dataset
Returns a default implementation of Dataset from a collection.
of(D[], int[]) - Static method in interface smile.data.Dataset
Returns a default implementation of Dataset from a collection.
of(D[], T[]) - Static method in interface smile.data.Dataset
Returns a default implementation of Dataset from a collection.
of(Class<?>) - Static method in interface smile.data.type.DataType
Returns the DataType of a class.
of(Object[], StructType) - Static method in interface smile.data.Tuple
Returns an object array based tuple.
of(String) - Static method in class smile.data.formula.Formula
Parses a formula string.
of(String) - Static method in interface smile.data.type.DataType
Returns a DataType from its string representation.
of(String) - Static method in class smile.llm.llama.Tokenizer
Loads a llama3 tokenizer model.
of(String) - Static method in interface smile.math.kernel.MercerKernel
Returns a kernel function.
of(String) - Static method in interface smile.math.TimeFunction
Parses a time function.
of(String) - Static method in interface smile.nlp.keyword.CooccurrenceKeywords
Returns the top 10 keywords.
of(String[], double[][]) - Static method in class smile.plot.swing.TextPlot
Create a text plot.
of(String[], String[], double[][]) - Static method in class smile.plot.swing.Heatmap
Constructor.
of(String[], String[], double[][], int) - Static method in class smile.plot.swing.Heatmap
Constructor.
of(String, boolean[]) - Static method in interface smile.data.vector.BooleanVector
Creates a named boolean vector.
of(String, byte[]) - Static method in interface smile.data.vector.ByteVector
Creates a named byte vector.
of(String, char[]) - Static method in interface smile.data.vector.CharVector
Creates a named char vector.
of(String, double[]) - Static method in interface smile.data.vector.DoubleVector
Creates a named double vector.
of(String, double[]) - Static method in class smile.math.Scaler
Returns the scaler.
of(String, double[]) - Static method in class smile.plot.swing.Label
Creates a black label centered at the coordinates.
of(String, double[], double, double, double) - Static method in class smile.plot.swing.Label
Creates a black label with system default font.
of(String, float[]) - Static method in interface smile.data.vector.FloatVector
Creates a named float vector.
of(String, int) - Static method in interface smile.nlp.keyword.CooccurrenceKeywords
Returns a given number of top keywords.
of(String, int[]) - Static method in interface smile.data.vector.IntVector
Creates a named integer vector.
of(String, long[]) - Static method in interface smile.data.vector.LongVector
Creates a named long vector.
of(String, short[]) - Static method in interface smile.data.vector.ShortVector
Creates a named short integer vector.
of(String, Class<?>, Number[]) - Static method in interface smile.data.vector.NumberVector
Creates a named number vector.
of(String, Class<?>, T[]) - Static method in interface smile.data.vector.Vector
Creates a named vector.
of(String, String...) - Static method in class smile.data.formula.Formula
Factory method.
of(String, String...) - Static method in interface smile.data.vector.StringVector
Creates a named string vector.
of(String, String, boolean) - Static method in class smile.plot.vega.Predicate
Test if a field in the data point satisfies certain conditions.
of(String, String, double) - Static method in class smile.plot.vega.Predicate
Test if a field in the data point satisfies certain conditions.
of(String, String, Class<R>, Function<T, R>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variable.
of(String, String, String) - Static method in class smile.plot.vega.Predicate
Test if a field in the data point satisfies certain conditions.
of(String, String, String, Class<R>, BiFunction<T, U, R>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variables.
of(String, String, String, ToDoubleBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variables.
of(String, String, String, ToIntBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variables.
of(String, String, String, ToLongBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variables.
of(String, String, ToDoubleFunction<T>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variable.
of(String, String, ToIntFunction<T>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variable.
of(String, String, ToLongFunction<T>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given variable.
of(String, DoubleStream) - Static method in interface smile.data.vector.DoubleVector
Creates a named double vector.
of(String, IntStream) - Static method in interface smile.data.vector.IntVector
Creates a named integer vector.
of(String, LongStream) - Static method in interface smile.data.vector.LongVector
Creates a named long integer vector.
of(String, Term...) - Static method in class smile.data.formula.Formula
Factory method.
of(String, Term, Class<R>, Function<T, R>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given term.
of(String, Term, ToDoubleFunction<T>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given term.
of(String, Term, ToIntFunction<T>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given term.
of(String, Term, ToLongFunction<T>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given term.
of(String, Term, Term, Class<R>, BiFunction<T, U, R>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given terms.
of(String, Term, Term, ToDoubleBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given terms.
of(String, Term, Term, ToIntBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given terms.
of(String, Term, Term, ToLongBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
Returns a term that applies a lambda on given terms.
of(String, DataType, Number[]) - Static method in interface smile.data.vector.NumberVector
Creates a named number vector.
of(String, DataType, T[]) - Static method in interface smile.data.vector.Vector
Creates a named vector.
of(Path) - Static method in class smile.nlp.embedding.GloVe
Loads a GloVe model.
of(Path) - Static method in class smile.nlp.embedding.Word2Vec
Loads a pre-trained word2vec model from binary file of ByteOrder.LITTLE_ENDIAN.
of(Path, ByteOrder) - Static method in class smile.nlp.embedding.Word2Vec
Loads a pre-trained word2vec model from binary file.
of(JDBCType, boolean, String) - Static method in interface smile.data.type.DataType
Returns the DataType of a JDBC type.
of(ResultSet) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a JDBC ResultSet.
of(ResultSet, StructType) - Static method in interface smile.data.Tuple
Returns the current row of a JDBC ResultSet as a tuple.
of(Collection<String[]>, int, int) - Static method in class smile.nlp.collocation.NGram
Extracts n-gram phrases by an Apiori-like algorithm.
of(Collection<Map<String, T>>, StructType) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a set of Maps.
of(Collection<SampleInstance<D, T>>) - Static method in interface smile.data.Dataset
Returns a default implementation of Dataset from a collection.
of(Collection<SampleInstance<int[], T>>) - Static method in interface smile.data.BinarySparseDataset
Returns a default implementation of BinarySparseDataset.
of(Collection<SampleInstance<SparseArray, T>>) - Static method in interface smile.data.SparseDataset
Returns a default implementation of SparseDataset without targets.
of(Collection<SampleInstance<SparseArray, T>>, int) - Static method in interface smile.data.SparseDataset
Returns a default implementation of SparseDataset without targets.
of(List<? extends Tuple>) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a set of tuples.
of(List<? extends Tuple>, StructType) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a set of tuples.
of(List<D>, List<T>) - Static method in interface smile.data.Dataset
Returns a default implementation of Dataset from a collection.
of(List<T>, Class<T>) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a collection.
of(List<T>, Distance<T>) - Static method in class smile.neighbor.LinearSearch
Return linear nearest neighbor search.
of(List<T>, Metric<T>) - Static method in class smile.neighbor.BKTree
Return a BK-tree of the data.
of(List<T>, Metric<T>) - Static method in class smile.neighbor.CoverTree
Return a cover tree of the data.
of(List<T>, Metric<T>, double) - Static method in class smile.neighbor.CoverTree
Return a cover tree of the data.
of(Stream<? extends Tuple>) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a stream of tuples.
of(Stream<? extends Tuple>, StructType) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a stream of tuples.
of(Stream<SparseArray>) - Static method in interface smile.data.SparseDataset
Returns a default implementation of SparseDataset.
of(M, Formula, DataFrame) - Static method in record class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(M, Formula, DataFrame) - Static method in record class smile.validation.RegressionMetrics
Trains and validates a model on a train/validation split.
of(M, T[], double[]) - Static method in record class smile.validation.RegressionMetrics
Validates a model on a test data.
of(M, T[], int[]) - Static method in record class smile.validation.ClassificationMetrics
Validates a model on a test data.
of(KernelMachine<double[]>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
of(DataFrame, String, String, char, Color) - Static method in class smile.plot.swing.ScatterPlot
Creates a scatter plot from a data frame.
of(DataFrame, String, String, String, char) - Static method in class smile.plot.swing.ScatterPlot
Creates a scatter plot from a data frame.
of(DataFrame, String, String, String, char, Color) - Static method in class smile.plot.swing.ScatterPlot
Creates a scatter plot from a data frame.
of(DataFrame, String, String, String, String, char) - Static method in class smile.plot.swing.ScatterPlot
Creates a scatter plot from a data frame.
of(Formula, DataFrame, int) - Static method in interface smile.deep.Dataset
Returns a dataset.
of(Formula, DataFrame, Properties, Classifier.Trainer<double[], ?>) - Static method in interface smile.classification.DataFrameClassifier
Fits a vector classifier on data frame.
of(Formula, DataFrame, Properties, Regression.Trainer<double[], ?>) - Static method in interface smile.regression.DataFrameRegression
Fits a vector regression model on data frame.
of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on a train/validation split.
of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on a train/validation split.
of(Term, Term...) - Static method in class smile.data.formula.Formula
Factory method.
of(StructField, boolean[]) - Static method in interface smile.data.vector.BooleanVector
Creates a named boolean vector.
of(StructField, byte[]) - Static method in interface smile.data.vector.ByteVector
Creates a named byte vector.
of(StructField, char[]) - Static method in interface smile.data.vector.CharVector
Creates a named char vector.
of(StructField, double[]) - Static method in interface smile.data.vector.DoubleVector
Creates a named double vector.
of(StructField, float[]) - Static method in interface smile.data.vector.FloatVector
Creates a named float vector.
of(StructField, int[]) - Static method in interface smile.data.vector.IntVector
Creates a named integer vector.
of(StructField, long[]) - Static method in interface smile.data.vector.LongVector
Creates a named long integer vector.
of(StructField, short[]) - Static method in interface smile.data.vector.ShortVector
Creates a named short integer vector.
of(StructField, Number[]) - Static method in interface smile.data.vector.NumberVector
Creates a named number vector.
of(StructField, String...) - Static method in interface smile.data.vector.StringVector
Creates a named string vector.
of(StructField, DoubleStream) - Static method in interface smile.data.vector.DoubleVector
Creates a named double vector.
of(StructField, IntStream) - Static method in interface smile.data.vector.IntVector
Creates a named integer vector.
of(StructField, LongStream) - Static method in interface smile.data.vector.LongVector
Creates a named long integer vector.
of(StructField, T[]) - Static method in interface smile.data.vector.Vector
Creates a named vector.
of(BaseVector...) - Static method in interface smile.data.DataFrame
Creates a DataFrame from a set of vectors.
of(Tensor) - Static method in class smile.deep.tensor.Index
Returns the tensor index along a dimension.
of(NearestNeighborGraph, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(NearestNeighborGraph, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with Gaussian kernel.
of(Complex...) - Static method in class smile.math.Complex.Array
Creates a packed array of complex values.
of(IMatrix) - Static method in class smile.math.matrix.PageRank
Calculates the page rank vector.
of(IMatrix, double[]) - Static method in class smile.math.matrix.PageRank
Calculates the page rank vector.
of(IMatrix, double[], double, double, int) - Static method in class smile.math.matrix.PageRank
Calculates the page rank vector.
of(SparseMatrix) - Static method in class smile.graph.AdjacencyList
Converts the sparse matrix to a graph.
of(SparseMatrix) - Static method in class smile.plot.swing.SparseMatrixPlot
Creates a sparse matrix plot with blue color for nonzero entries.
of(SparseMatrix, int) - Static method in class smile.plot.swing.SparseMatrixPlot
Creates a sparse matrix plot with the jet color palette.
of(Corpus, double, int) - Static method in class smile.nlp.collocation.Bigram
Finds bigram collocations in the given corpus whose p-value is less than the given threshold.
of(Corpus, int, int) - Static method in class smile.nlp.collocation.Bigram
Finds top k bigram collocations in the given corpus.
of(SparseArray[]) - Static method in interface smile.data.SparseDataset
Returns a default implementation of SparseDataset without targets.
of(SparseArray[], int) - Static method in interface smile.data.SparseDataset
Returns a default implementation of SparseDataset without targets.
of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on multiple train/validation split.
of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on multiple train/validation split.
of(Bag[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on multiple train/validation split.
of(Bag[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on multiple train/validation split.
of(T[], double[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
Trains and validates a model on a train/validation split.
of(T[], int[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
Trains and validates a model on a train/validation split.
of(T[], NearestNeighborGraph, int, int, double, double, double, int, double, double) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.CompleteLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.SingleLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMALinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMCLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WardLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMALinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMCLinkage
Computes the proximity and the linkage.
of(T[], Distance<T>) - Static method in class smile.neighbor.LinearSearch
Return linear nearest neighbor search.
of(T[], Distance<T>, int) - Static method in record class smile.graph.NearestNeighborGraph
Creates a nearest neighbor graph.
of(T[], Distance<T>, int) - Static method in class smile.manifold.IsoMap
Runs the C-Isomap algorithm.
of(T[], Distance<T>, int) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(T[], Distance<T>, int, int, boolean) - Static method in class smile.manifold.IsoMap
Runs the Isomap algorithm.
of(T[], Distance<T>, int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
Laplacian Eigenmaps with discrete weights.
of(T[], Metric<T>) - Static method in class smile.neighbor.BKTree
Return a BK-tree of the data.
of(T[], Metric<T>) - Static method in class smile.neighbor.CoverTree
Return a cover tree of the data.
of(T[], Metric<T>, double) - Static method in class smile.neighbor.CoverTree
Return a cover tree of the data.
of(T[], Metric<T>, int) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], Metric<T>, int, int, int, double, double, double, int, double, double) - Static method in class smile.manifold.UMAP
Runs the UMAP algorithm.
of(T[], RadialBasisFunction[], Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
of(T[], RadialBasisFunction, Metric<T>) - Static method in class smile.base.rbf.RBF
Makes a set of RBF neurons.
of(T, int, double) - Static method in record class smile.neighbor.Neighbor
Creates a neighbor object, of which key and object are the same.
offer(E) - Method in class smile.util.PairingHeap
 
offset() - Method in class smile.math.kernel.HyperbolicTangent
Returns the offset of kernel.
offset() - Method in class smile.math.kernel.Polynomial
Returns the offset of kernel.
offset(double) - Method in class smile.plot.vega.Axis
Sets the offset, in pixels, by which to displace the axis from the edge of the enclosing group or data rectangle.
offset(double) - Method in class smile.plot.vega.Legend
Sets the offset, in pixels, by which to displace the legend from the edge of the enclosing group or data rectangle.
offset(String) - Method in class smile.plot.vega.StackTransform
Sets the mode for stacking marks.
OK_OPTION - Static variable in class smile.swing.FontChooser
Return value from showDialog().
ols(double[], int) - Static method in class smile.timeseries.AR
Fits an autoregressive model with least squares method.
ols(double[], int, boolean) - Static method in class smile.timeseries.AR
Fits an autoregressive model with least squares method.
OLS - Class in smile.regression
Ordinary least squares.
OLS - Enum constant in enum class smile.timeseries.AR.Method
Ordinary least squares.
OLS() - Constructor for class smile.regression.OLS
 
omega() - Method in class smile.math.kernel.PearsonKernel
Returns the tailing factor of the peak.
omit(double[], double) - Static method in class smile.math.MathEx
Returns a new array without the specified value.
omit(float[], float) - Static method in class smile.math.MathEx
Returns a new array without the specified value.
omit(int[], int) - Static method in class smile.math.MathEx
Returns a new array without the specified value.
omitNaN(double[]) - Static method in class smile.math.MathEx
Returns a new array without NaN values.
omitNaN(float[]) - Static method in class smile.math.MathEx
Returns a new array without NaN values.
omitNullRows() - Method in interface smile.data.DataFrame
Returns a new data frame without rows that have null/missing values.
ONE_HOT - Enum constant in enum class smile.data.CategoricalEncoder
One hot encoding.
oneOf(String, double...) - Static method in class smile.plot.vega.Predicate
Test if a field in the data point satisfies certain conditions.
oneOf(String, String...) - Static method in class smile.plot.vega.Predicate
Test if a field in the data point satisfies certain conditions.
ones(long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with all ones.
ones(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with all ones.
OneVersusOne<T> - Class in smile.classification
One-vs-one strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusOne(Classifier<T>[][], PlattScaling[][]) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusOne(Classifier<T>[][], PlattScaling[][], IntSet) - Constructor for class smile.classification.OneVersusOne
Constructor.
OneVersusRest<T> - Class in smile.classification
One-vs-rest (or one-vs-all) strategy for reducing the problem of multiclass classification to multiple binary classification problems.
OneVersusRest(Classifier<T>[], PlattScaling[]) - Constructor for class smile.classification.OneVersusRest
Constructor.
OneVersusRest(Classifier<T>[], PlattScaling[], IntSet) - Constructor for class smile.classification.OneVersusRest
Constructor.
online() - Method in interface smile.classification.Classifier
Returns true if this is an online learner.
online() - Method in class smile.classification.DiscreteNaiveBayes
 
online() - Method in class smile.classification.LogisticRegression
 
online() - Method in class smile.classification.Maxent
 
online() - Method in class smile.classification.MLP
 
online() - Method in class smile.classification.SparseLogisticRegression
 
online() - Method in class smile.regression.LinearModel
 
online() - Method in class smile.regression.MLP
 
online() - Method in interface smile.regression.Regression
Returns true if this is an online learner.
oob() - Method in record class smile.validation.Bag
Returns the value of the oob record component.
op() - Method in record class smile.plot.vega.WindowTransformField
Returns the value of the op record component.
op(String) - Method in class smile.plot.vega.PivotTransform
Sets the aggregation operation to apply to grouped value field values.
opacity(double) - Method in class smile.plot.vega.Background
Sets the overall opacity.
opacity(double) - Method in class smile.plot.vega.Mark
Sets the overall opacity.
opacity(double) - Method in class smile.plot.vega.ViewConfig
Sets the overall opacity.
open - Variable in enum class smile.nlp.pos.PennTreebankPOS
True if the POS is an open class.
OpenBLAS - Class in smile.math.blas.openblas
OpenBLAS library wrapper.
OpenBLAS() - Constructor for class smile.math.blas.openblas.OpenBLAS
 
OPENING_PARENTHESIS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation ( [ {
OPENING_QUOTATION - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation ` or ``
Operator - Class in smile.data.formula
The infix bifunction term.
Operator(String, Term, Term) - Constructor for class smile.data.formula.Operator
Constructor.
opt2(int[], int) - Method in class smile.graph.Graph
Improves an existing TSP tour with the 2-opt heuristic.
Optimizer - Class in smile.deep
Optimizer functions.
Options() - Constructor for class smile.deep.tensor.Tensor.Options
Constructor with default values for every axis.
Options(int, int, int) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
Constructor.
Options(int, int, int, int, int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
Custom constructor.
Options(int, int, int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
Constructor.
Options(int, int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
Constructor.
Options(int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
Constructor.
or(Tensor) - Method in class smile.deep.tensor.Tensor
Returns logical OR of two boolean tensors.
or(Predicate...) - Static method in class smile.plot.vega.Predicate
Logical OR composition to combine predicates.
or_(Tensor) - Method in class smile.deep.tensor.Tensor
Returns logical OR of two boolean tensors.
ORANGE - Static variable in interface smile.plot.swing.Palette
 
order - Variable in class smile.base.cart.CART
An index of training values.
order() - Method in record class smile.plot.vega.SortField
Returns the value of the order record component.
order(boolean) - Method in class smile.plot.vega.Mark
For line and trail marks, sets this order property false to make the lines use the original order in the data sources.
order(int) - Method in class smile.plot.vega.RegressionTransform
Sets the polynomial order (number of coefficients) for the "poly" method.
order(DataFrame) - Static method in class smile.base.cart.CART
Returns the index of ordered samples for each ordinal column.
ordinal - Variable in class smile.sequence.HMMLabeler
The lambda returns the ordinal numbers of symbols.
ordinal(int) - Static method in interface smile.util.Strings
Returns the string representation of ordinal number with suffix.
OrdinalNode - Class in smile.base.cart
A node with an ordinal split variable (real-valued or ordinal categorical value).
OrdinalNode(int, double, double, double, Node, Node) - Constructor for class smile.base.cart.OrdinalNode
Constructor.
OrdinalScale - Class in smile.data.measure
The ordinal type allows for rank order (1st, 2nd, 3rd, etc.) by which data can be sorted, but still does not allow for relative degree of difference between them.
OrdinalScale(int[], String[]) - Constructor for class smile.data.measure.OrdinalScale
Constructor.
OrdinalScale(Class<? extends Enum<?>>) - Constructor for class smile.data.measure.OrdinalScale
Constructor.
OrdinalScale(String...) - Constructor for class smile.data.measure.OrdinalScale
Constructor.
OrdinalScale(List<String>) - Constructor for class smile.data.measure.OrdinalScale
Constructor.
OrdinalSplit - Class in smile.base.cart
The data about of a potential split for a leaf node.
OrdinalSplit(LeafNode, int, double, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.OrdinalSplit
Constructor.
orgqr(Layout, int, int, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
orgqr(Layout, int, int, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
orgqr(Layout, int, int, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
orgqr(Layout, int, int, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
orgqr(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
orgqr(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
orgqr(Layout, int, int, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
orgqr(Layout, int, int, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
orgqr(Layout, int, int, int, DoublePointer, int, DoublePointer) - Method in interface smile.math.blas.LAPACK
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
orgqr(Layout, int, int, int, DoublePointer, int, DoublePointer) - Method in class smile.math.blas.openblas.OpenBLAS
 
orient(String) - Method in class smile.plot.vega.Axis
Sets the orientation of the axis.
orient(String) - Method in class smile.plot.vega.Legend
Sets the orientation of the legend.
orient(String) - Method in class smile.plot.vega.Mark
Sets the orientation of a non-stacked bar, tick, area, and line charts.
ormqr(Layout, Side, Transpose, int, int, int, double[], int, double[], double[], int) - Method in interface smile.math.blas.LAPACK
Overwrites the general real M-by-N matrix C with
ormqr(Layout, Side, Transpose, int, int, int, double[], int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ormqr(Layout, Side, Transpose, int, int, int, float[], int, float[], float[], int) - Method in interface smile.math.blas.LAPACK
Overwrites the general real M-by-N matrix C with
ormqr(Layout, Side, Transpose, int, int, int, float[], int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ormqr(Layout, Side, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Overwrites the general real M-by-N matrix C with
ormqr(Layout, Side, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ormqr(Layout, Side, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Overwrites the general real M-by-N matrix C with
ormqr(Layout, Side, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ormqr(Layout, Side, Transpose, int, int, int, DoublePointer, int, DoublePointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Overwrites the general real M-by-N matrix C with
ormqr(Layout, Side, Transpose, int, int, int, DoublePointer, int, DoublePointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
out() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the out record component.
outer(Tensor) - Method in class smile.deep.tensor.Tensor
Returns the outer product of two tensors.
outerRadius(double) - Method in class smile.plot.vega.Mark
Sets the primary (inner) radius in pixels for arc mark.
OUTLIER - Static variable in class smile.clustering.PartitionClustering
Cluster label for outliers or noises.
OUTLIER - Static variable in interface smile.vq.VectorQuantizer
The label for outliers or noises.
output - Variable in class smile.base.mlp.Layer
The output vector.
output - Variable in class smile.base.mlp.MultilayerPerceptron
The output layer.
output() - Method in class smile.base.cart.DecisionNode
Returns the predicted value.
output() - Method in class smile.base.cart.RegressionNode
Returns the predicted value.
output() - Method in class smile.base.mlp.Layer
Returns the output vector.
output(int[], int[]) - Method in interface smile.base.cart.Loss
Calculate the node output.
outputChannels() - Method in record class smile.vision.layer.MBConvConfig
Returns the value of the outputChannels record component.
OutputFunction - Enum Class in smile.base.mlp
The output function of neural networks.
outputGradient - Variable in class smile.base.mlp.Layer
The output gradient.
OutputLayer - Class in smile.base.mlp
The output layer in the neural network.
OutputLayer(int, int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayer
Constructor.
OutputLayerBuilder - Class in smile.base.mlp
The builder of output layers.
OutputLayerBuilder(int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayerBuilder
Constructor.
OVERWRITE - Enum constant in enum class smile.math.blas.SVDJob
The first min(m, n) singular vectors are overwritten on the matrix A.

P

p - Variable in class smile.base.mlp.Layer
The number of input variables.
p - Variable in class smile.base.mlp.MultilayerPerceptron
The dimensionality of input data.
p - Variable in class smile.stat.distribution.BernoulliDistribution
Probability of success.
p - Variable in class smile.stat.distribution.BinomialDistribution
The probability of success.
p - Variable in class smile.stat.distribution.EmpiricalDistribution
The probabilities for each x.
p - Variable in class smile.stat.distribution.GeometricDistribution
Probability of success on each trial.
p - Variable in class smile.stat.distribution.NegativeBinomialDistribution
The success probability in each experiment.
p - Variable in class smile.stat.distribution.ShiftedGeometricDistribution
The probability of success.
p - Variable in class smile.stat.GoodTuring
The probabilities corresponding to the observed frequencies.
p() - Method in class smile.timeseries.AR
Returns the order of AR.
p() - Method in class smile.timeseries.ARMA
Returns the order of AR.
p(double) - Method in class smile.stat.distribution.BetaDistribution
 
p(double) - Method in class smile.stat.distribution.ChiSquareDistribution
 
p(double) - Method in class smile.stat.distribution.DiscreteDistribution
 
p(double) - Method in interface smile.stat.distribution.Distribution
The probability density function for continuous distribution or probability mass function for discrete distribution at x.
p(double) - Method in class smile.stat.distribution.ExponentialDistribution
 
p(double) - Method in class smile.stat.distribution.FDistribution
 
p(double) - Method in class smile.stat.distribution.GammaDistribution
 
p(double) - Method in class smile.stat.distribution.GaussianDistribution
 
p(double) - Method in class smile.stat.distribution.KernelDensity
 
p(double) - Method in class smile.stat.distribution.LogisticDistribution
 
p(double) - Method in class smile.stat.distribution.LogNormalDistribution
 
p(double) - Method in class smile.stat.distribution.Mixture
 
p(double) - Method in class smile.stat.distribution.TDistribution
 
p(double) - Method in class smile.stat.distribution.WeibullDistribution
 
p(double[]) - Method in interface smile.stat.distribution.MultivariateDistribution
The probability density function for continuous distribution or probability mass function for discrete distribution at x.
p(double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
p(double[]) - Method in class smile.stat.distribution.MultivariateMixture
 
p(int) - Method in class smile.stat.distribution.BernoulliDistribution
 
p(int) - Method in class smile.stat.distribution.BinomialDistribution
 
p(int) - Method in class smile.stat.distribution.DiscreteDistribution
The probability mass function.
p(int) - Method in class smile.stat.distribution.DiscreteMixture
 
p(int) - Method in class smile.stat.distribution.EmpiricalDistribution
 
p(int) - Method in class smile.stat.distribution.GeometricDistribution
 
p(int) - Method in class smile.stat.distribution.HyperGeometricDistribution
 
p(int) - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
p(int) - Method in class smile.stat.distribution.PoissonDistribution
 
p(int) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
p(int[]) - Method in class smile.sequence.HMM
Returns the probability of an observation sequence given this HMM.
p(int[], int[]) - Method in class smile.sequence.HMM
Returns the joint probability of an observation sequence along a state sequence given this HMM.
p(T[]) - Method in class smile.sequence.HMMLabeler
Returns the probability of an observation sequence.
p(T[], int[]) - Method in class smile.sequence.HMMLabeler
Returns the joint probability of an observation sequence along a state sequence.
p0 - Variable in class smile.stat.GoodTuring
The joint probability of all unobserved species.
pacf(double[], int) - Static method in interface smile.timeseries.TimeSeries
Partial autocorrelation function.
pad() - Method in class smile.llm.llama.Tokenizer
Returns the padding token id.
padAngle(double) - Method in class smile.plot.vega.Mark
Setsthe angular padding applied to sides of the arc in radians.
padding() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the padding record component.
padding(double) - Method in class smile.plot.vega.Legend
Sets the padding between the border and content of the legend group.
padding(int) - Method in class smile.plot.vega.Concat
 
padding(int) - Method in class smile.plot.vega.Config
Specifies padding for all sides.
padding(int) - Method in class smile.plot.vega.Facet
 
padding(int) - Method in class smile.plot.vega.Repeat
 
padding(int) - Method in class smile.plot.vega.VegaLite
Specifies padding for all sides.
padding(int) - Method in class smile.plot.vega.View
 
padding(int, int, int, int) - Method in class smile.plot.vega.Concat
 
padding(int, int, int, int) - Method in class smile.plot.vega.Config
Specifies padding for each side.
padding(int, int, int, int) - Method in class smile.plot.vega.Facet
 
padding(int, int, int, int) - Method in class smile.plot.vega.Repeat
 
padding(int, int, int, int) - Method in class smile.plot.vega.VegaLite
Specifies padding for each side.
padding(int, int, int, int) - Method in class smile.plot.vega.View
 
pageDown() - Method in class smile.swing.table.PageTableModel
Moves to next page and fire a data changed (all rows).
PageRank - Class in smile.math.matrix
PageRank is a link analysis algorithm, and it assigns a numerical weighting to each element of a hyperlinked set of documents, such as the World Wide Web, with the purpose of "measuring" its relative importance within the set.
PageTableModel - Class in smile.swing.table
A table model that performs "paging" of its data.
PageTableModel() - Constructor for class smile.swing.table.PageTableModel
Default constructor.
PageTableModel(int) - Constructor for class smile.swing.table.PageTableModel
Constructor.
pageUp() - Method in class smile.swing.table.PageTableModel
Moves to previous page and fire a data changed (all rows).
paint(Graphics2D, int, int) - Method in class smile.plot.swing.Canvas
Paints the canvas.
paint(Graphics) - Method in class smile.plot.swing.Axis
Draw the axis.
paint(Graphics) - Method in class smile.plot.swing.Bar
 
paint(Graphics) - Method in class smile.plot.swing.BarPlot
 
paint(Graphics) - Method in class smile.plot.swing.BoxPlot
 
paint(Graphics) - Method in class smile.plot.swing.Contour
 
paint(Graphics) - Method in class smile.plot.swing.Dendrogram
 
paint(Graphics) - Method in class smile.plot.swing.Grid
 
paint(Graphics) - Method in class smile.plot.swing.Heatmap
 
paint(Graphics) - Method in class smile.plot.swing.Hexmap
 
paint(Graphics) - Method in class smile.plot.swing.Histogram3D
 
paint(Graphics) - Method in class smile.plot.swing.Isoline
Paint the contour line.
paint(Graphics) - Method in class smile.plot.swing.Label
 
paint(Graphics) - Method in class smile.plot.swing.Line
 
paint(Graphics) - Method in class smile.plot.swing.LinePlot
 
paint(Graphics) - Method in class smile.plot.swing.Point
 
paint(Graphics) - Method in class smile.plot.swing.QQPlot
 
paint(Graphics) - Method in class smile.plot.swing.ScatterPlot
 
paint(Graphics) - Method in class smile.plot.swing.ScreePlot
 
paint(Graphics) - Method in class smile.plot.swing.Shape
Draws the shape.
paint(Graphics) - Method in class smile.plot.swing.SparseMatrixPlot
 
paint(Graphics) - Method in class smile.plot.swing.Staircase
 
paint(Graphics) - Method in class smile.plot.swing.StaircasePlot
 
paint(Graphics) - Method in class smile.plot.swing.Surface
 
paint(Graphics) - Method in class smile.plot.swing.TextPlot
 
paint(Graphics) - Method in class smile.plot.swing.Wireframe
 
paintIcon(Component, Graphics, int, int) - Method in record class smile.swing.AlphaIcon
Paints the wrapped icon with this AlphaIcon's transparency.
PairingHeap<E> - Class in smile.util
A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance.
PairingHeap() - Constructor for class smile.util.PairingHeap
 
PairingHeap.Node - Class in smile.util
A multiway tree node in the pairing heap.
Palette - Interface in smile.plot.swing
Color palette generator.
panel() - Method in class smile.plot.swing.Canvas
Returns a Swing JPanel of the canvas.
ParagraphSplitter - Interface in smile.nlp.tokenizer
A paragraph splitter segments text into paragraphs.
parallels(double...) - Method in class smile.plot.vega.Projection
For conic projections, sets the two standard parallels that define the map layout.
param() - Method in record class smile.plot.vega.WindowTransformField
Returns the value of the param record component.
parameters - Variable in class smile.math.LevenbergMarquardt
The fitted parameters.
params(boolean) - Method in class smile.plot.vega.RegressionTransform
Sets if the transform should return the regression model parameters (one object per group), rather than trend line points.
parquet(String) - Static method in interface smile.io.Read
Reads an Apache Parquet file.
parquet(String, String...) - Method in class smile.data.SQL
Creates an in-memory table from parquet files.
parquet(String, Map<String, String>, String...) - Method in class smile.data.SQL
Creates an in-memory table from parquet files.
parquet(Path) - Static method in interface smile.io.Read
Reads an Apache Parquet file.
Parquet - Class in smile.io
Apache Parquet is a columnar storage format that supports nested data structures.
parseDoubleArray(String) - Static method in interface smile.util.Strings
Parses a double array in format '[1.0, 2.0, 3.0]'.
parseIntArray(String) - Static method in interface smile.util.Strings
Parses an integer array in format '[1, 2, 3]'.
parser() - Method in class smile.data.type.StructType
Returns the lambda functions that parse field values.
partition(double) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the cut height.
partition(int) - Method in class smile.clustering.HierarchicalClustering
Cuts a tree into several groups by specifying the desired number.
PartitionClustering - Class in smile.clustering
Partition clustering.
PartitionClustering(int, int[]) - Constructor for class smile.clustering.PartitionClustering
Constructor.
PASTEL_GREEN - Static variable in interface smile.plot.swing.Palette
 
path(double[]) - Method in class smile.anomaly.IsolationTree
Returns the path length from the root to the leaf node.
Paths - Interface in smile.util
Static methods that return a Path by converting a path string or URI.
pbtrf(Layout, UPLO, int, int, double[], int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
pbtrf(Layout, UPLO, int, int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pbtrf(Layout, UPLO, int, int, float[], int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
pbtrf(Layout, UPLO, int, int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pbtrf(Layout, UPLO, int, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
pbtrf(Layout, UPLO, int, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pbtrf(Layout, UPLO, int, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
pbtrf(Layout, UPLO, int, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pbtrs(Layout, UPLO, int, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pbtrs(Layout, UPLO, int, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pbtrs(Layout, UPLO, int, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pbtrs(Layout, UPLO, int, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pbtrs(Layout, UPLO, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pbtrs(Layout, UPLO, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pbtrs(Layout, UPLO, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pbtrs(Layout, UPLO, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
PCA - Class in smile.feature.extraction
Principal component analysis.
PCA(double[], double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.PCA
Constructor.
pdist(double[][]) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple vectors.
pdist(double[][], boolean) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple vectors.
pdist(float[][]) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple vectors.
pdist(float[][], boolean) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple vectors.
pdist(int[][]) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple binary sparse vectors.
pdist(int[][], boolean) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple binary sparse vectors.
pdist(SparseArray[]) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple vectors.
pdist(SparseArray[], boolean) - Static method in class smile.math.MathEx
Returns the pairwise distance matrix of multiple vectors.
pdist(T[], double[][], Distance<T>) - Static method in class smile.math.MathEx
Computes the pairwise distance matrix of multiple vectors.
pdot(double[][]) - Static method in class smile.math.MathEx
Returns the pairwise dot product matrix of double vectors.
pdot(float[][]) - Static method in class smile.math.MathEx
Returns the pairwise dot product matrix of float vectors.
pdot(int[][]) - Static method in class smile.math.MathEx
Returns the pairwise dot product matrix of binary sparse vectors.
pdot(SparseArray[]) - Static method in class smile.math.MathEx
Returns the pairwise dot product matrix of multiple vectors.
PDT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Predeterminer.
pearson(double[], double[]) - Static method in record class smile.stat.hypothesis.CorTest
Pearson correlation coefficient test.
PearsonKernel - Class in smile.math.kernel
Pearson VII universal kernel.
PearsonKernel(double, double) - Constructor for class smile.math.kernel.PearsonKernel
Constructor.
PearsonKernel(double, double, double, double) - Constructor for class smile.math.kernel.PearsonKernel
Constructor.
peek() - Method in class smile.sort.DoubleHeapSelect
Returns the k-th smallest value seen so far.
peek() - Method in class smile.sort.FloatHeapSelect
Returns the k-th smallest value seen so far.
peek() - Method in class smile.sort.HeapSelect
Returns the k-th smallest value seen so far.
peek() - Method in class smile.sort.IntHeapSelect
Returns the k-th smallest value seen so far.
peek() - Method in class smile.util.PairingHeap
 
PennTreebankPOS - Enum Class in smile.nlp.pos
The Penn Treebank Tag set.
PennTreebankTokenizer - Class in smile.nlp.tokenizer
A word tokenizer that tokenizes English sentences using the conventions used by the Penn Treebank.
Percent - Static variable in interface smile.data.measure.Measure
Percent.
PERCENT - Static variable in class smile.swing.table.NumberCellRenderer
 
PerfectHash - Class in smile.hash
A perfect hash of an array of strings to their index in the array.
PerfectHash(int[], String...) - Constructor for class smile.hash.PerfectHash
Constructor.
PerfectHash(String...) - Constructor for class smile.hash.PerfectHash
Constructor.
PerfectMap<T> - Class in smile.hash
Perfect hash based immutable map.
PerfectMap.Builder<T> - Class in smile.hash
The builder of perfect map.
permutate(double[]) - Static method in class smile.math.MathEx
Permutates an array.
permutate(double[]) - Method in class smile.math.Random
Permutates an array.
permutate(float[]) - Static method in class smile.math.MathEx
Permutates an array.
permutate(float[]) - Method in class smile.math.Random
Permutates an array.
permutate(int) - Static method in class smile.math.MathEx
Returns a permutation of (0, 1, 2, ..., n-1).
permutate(int) - Method in class smile.math.Random
Returns a permutation of (0, 1, 2, ..., n-1).
permutate(int[]) - Static method in class smile.math.MathEx
Permutates an array.
permutate(int[]) - Method in class smile.math.Random
Permutates an array.
permutate(Object[]) - Static method in class smile.math.MathEx
Permutates an array.
permutate(Object[]) - Method in class smile.math.Random
Permutates an array.
permute(long...) - Method in class smile.deep.tensor.Tensor
Returns a view of the original tensor input with its dimensions permuted.
phase() - Method in class smile.math.Complex
Returns the angle/phase/argument between -pi and pi.
PHONE_NUMBER - Static variable in interface smile.util.Regex
U.S.
PHONE_NUMBER_EXTENSION - Static variable in interface smile.util.Regex
U.S.
piecewise(int[], double[]) - Static method in interface smile.math.TimeFunction
Returns the piecewise constant learning rate.
piecewise(int[], TimeFunction...) - Static method in interface smile.math.TimeFunction
Returns the piecewise constant learning rate.
pierce(double[], int) - Static method in class smile.timeseries.BoxTest
Box-Pierce test.
PINK - Static variable in interface smile.plot.swing.Palette
 
pinv() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the pseudo inverse.
pinv() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the pseudo inverse.
pinv() - Method in class smile.math.matrix.Matrix.SVD
Returns the pseudo inverse.
pipeline(Transform...) - Static method in interface smile.data.transform.Transform
Returns a pipeline of data transforms.
pivot(String, String) - Method in class smile.plot.vega.Transform
Adds a pivot transform.
PivotTransform - Class in smile.plot.vega
The pivot transform maps unique values from a field to new aggregated fields (columns) in the output stream.
PlattScaling - Class in smile.classification
Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.
PlattScaling(double, double) - Constructor for class smile.classification.PlattScaling
Constructor.
Plot - Class in smile.plot.swing
The abstract base class of plots.
Plot() - Constructor for class smile.plot.swing.Plot
Constructor.
Plot(Color) - Constructor for class smile.plot.swing.Plot
Constructor.
Plot(String, Color) - Constructor for class smile.plot.swing.Plot
Constructor.
PlotGrid - Class in smile.plot.swing
PlotGrid organizes multiple plots in a grid layout.
PlotGrid(int, int) - Constructor for class smile.plot.swing.PlotGrid
Constructor.
PlotGrid(PlotPanel...) - Constructor for class smile.plot.swing.PlotGrid
Constructor.
PlotPanel - Class in smile.plot.swing
Canvas for mathematical plots.
PlotPanel(Canvas) - Constructor for class smile.plot.swing.PlotPanel
Constructor
PLUM - Static variable in interface smile.plot.swing.Palette
 
point(boolean) - Method in class smile.plot.vega.Mark
Sets whether overlaying points on top of line or area marks.
Point - Class in smile.plot.swing
One more points in the plot.
Point(double[][], char, Color) - Constructor for class smile.plot.swing.Point
Constructor.
pointRadius(double) - Method in class smile.plot.vega.Projection
Sets the default radius (in pixels) to use when drawing GeoJSON Point and MultiPoint geometries.
points() - Method in class smile.neighbor.lsh.Bucket
Returns the points in the bucket.
Poisson - Interface in smile.glm.model
The response variable is of Poisson distribution.
PoissonDistribution - Class in smile.stat.distribution
Poisson distribution expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event.
PoissonDistribution(double) - Constructor for class smile.stat.distribution.PoissonDistribution
Constructor.
polar(Tensor, Tensor) - Static method in class smile.deep.tensor.Tensor
Returns a complex tensor whose elements are Cartesian coordinates corresponding to the polar coordinates with abs and angle.
poll() - Method in class smile.util.PairingHeap
 
poll() - Method in class smile.util.PriorityQueue
Removes and returns the index of item with minimum value (highest priority).
POLYAURN - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
The document Polya Urn model is similar to MULTINOMIAL but different in the conditional probability update during learning.
polynomial(double, double, double, double) - Static method in interface smile.math.TimeFunction
Returns the polynomial learning rate decay function that starts with an initial learning rate and reach an end learning rate in the given decay steps, without cycling.
polynomial(double, double, double, double, boolean) - Static method in interface smile.math.TimeFunction
Returns the polynomial learning rate decay function that starts with an initial learning rate and reach an end learning rate in the given decay steps.
Polynomial - Class in smile.math.kernel
The polynomial kernel.
Polynomial(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.Polynomial
Constructor.
PolynomialKernel - Class in smile.math.kernel
The polynomial kernel.
PolynomialKernel(int) - Constructor for class smile.math.kernel.PolynomialKernel
Constructor with scale 1 and offset 0.
PolynomialKernel(int, double, double) - Constructor for class smile.math.kernel.PolynomialKernel
Constructor.
PolynomialKernel(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.PolynomialKernel
Constructor.
pop() - Static method in class smile.deep.tensor.Tensor
Removes the scope at the top of the tensor stack.
population() - Method in class smile.gap.GeneticAlgorithm
Returns the population of current generation.
PorterStemmer - Class in smile.nlp.stemmer
Porter's stemming algorithm.
PorterStemmer() - Constructor for class smile.nlp.stemmer.PorterStemmer
Constructor.
POS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Possessive ending.
position(double) - Method in class smile.plot.vega.Axis
Sets the anchor position of the axis in pixels.
PositionalEncoding - Class in smile.llm
Positional encoding in original Transformer.
PositionalEncoding(int, int) - Constructor for class smile.llm.PositionalEncoding
Constructor.
PositionalEncoding(int, int, double) - Constructor for class smile.llm.PositionalEncoding
Constructor.
POSTagger - Interface in smile.nlp.pos
Part-of-speech tagging (POS tagging) is the process of marking up the words in a sentence as corresponding to a particular part of speech.
posteriori - Variable in class smile.validation.ClassificationValidation
The posteriori probability of prediction if the model is a soft classifier.
posteriori(double) - Method in class smile.stat.distribution.Mixture
Returns the posteriori probabilities.
posteriori(double[]) - Method in class smile.base.cart.DecisionNode
Returns the class probability.
posteriori(double[]) - Method in class smile.stat.distribution.MultivariateMixture
Returns the posteriori probabilities.
posteriori(int) - Method in class smile.stat.distribution.DiscreteMixture
Returns the posteriori probabilities.
posteriori(int[], double[]) - Static method in class smile.base.cart.DecisionNode
Returns the class probability.
PosterioriModel - Class in smile.neighbor.lsh
Pre-computed posteriori probabilities for generating multiple probes.
PosterioriModel(MultiProbeHash, MultiProbeSample[], int, double) - Constructor for class smile.neighbor.lsh.PosterioriModel
Constructor.
postprocess(double[]) - Method in class smile.feature.extraction.PCA
 
postprocess(double[]) - Method in class smile.feature.extraction.ProbabilisticPCA
 
postprocess(double[]) - Method in class smile.feature.extraction.Projection
Postprocess the output vector after projection.
posv(Layout, UPLO, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
posv(Layout, UPLO, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
posv(Layout, UPLO, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
posv(Layout, UPLO, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
posv(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
posv(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
posv(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
posv(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf(Layout, UPLO, int, double[], int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
potrf(Layout, UPLO, int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf(Layout, UPLO, int, float[], int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
potrf(Layout, UPLO, int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf(Layout, UPLO, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
potrf(Layout, UPLO, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf(Layout, UPLO, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
potrf(Layout, UPLO, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf(Layout, UPLO, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
potrf(Layout, UPLO, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf2(Layout, UPLO, int, double[], int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
potrf2(Layout, UPLO, int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf2(Layout, UPLO, int, float[], int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
potrf2(Layout, UPLO, int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf2(Layout, UPLO, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
potrf2(Layout, UPLO, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrf2(Layout, UPLO, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
potrf2(Layout, UPLO, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrs(Layout, UPLO, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
potrs(Layout, UPLO, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrs(Layout, UPLO, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
potrs(Layout, UPLO, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrs(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
potrs(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrs(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
potrs(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
potrs(Layout, UPLO, int, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
potrs(Layout, UPLO, int, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
POUND - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Punctuation #
pow(double) - Method in class smile.deep.tensor.Tensor
Returns a new tensor with the power of the elements of input.
pow(double[], double) - Static method in class smile.math.MathEx
Raise each element of an array to a scalar power.
pow_(double) - Method in class smile.deep.tensor.Tensor
Computes the power of the elements of input in place.
pow2(double) - Static method in class smile.math.MathEx
Returns x * x.
PowerVariogram - Class in smile.interpolation.variogram
Power variogram.
PowerVariogram(double[][], double[]) - Constructor for class smile.interpolation.variogram.PowerVariogram
Constructor.
PowerVariogram(double[][], double[], double) - Constructor for class smile.interpolation.variogram.PowerVariogram
Constructor.
PowerVariogram(double[][], double[], double, double) - Constructor for class smile.interpolation.variogram.PowerVariogram
Constructor.
ppsv(Layout, UPLO, int, int, double[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
ppsv(Layout, UPLO, int, int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ppsv(Layout, UPLO, int, int, float[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
ppsv(Layout, UPLO, int, int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ppsv(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
ppsv(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ppsv(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
ppsv(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrf(Layout, UPLO, int, double[]) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
pptrf(Layout, UPLO, int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrf(Layout, UPLO, int, float[]) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
pptrf(Layout, UPLO, int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrf(Layout, UPLO, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
pptrf(Layout, UPLO, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrf(Layout, UPLO, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
pptrf(Layout, UPLO, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrs(Layout, UPLO, int, int, double[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pptrs(Layout, UPLO, int, int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrs(Layout, UPLO, int, int, float[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pptrs(Layout, UPLO, int, int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrs(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pptrs(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pptrs(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
pptrs(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
pr() - Method in record class smile.neighbor.lsh.PrH
Returns the value of the pr record component.
precision() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the precision record component.
precision(double) - Method in class smile.plot.vega.Projection
Sets the threshold for the projection's adaptive resampling to the specified value in pixels.
Precision - Class in smile.deep.metric
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
Precision - Class in smile.validation.metric
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
Precision() - Constructor for class smile.deep.metric.Precision
Constructor.
Precision() - Constructor for class smile.validation.metric.Precision
Constructor.
Precision(double) - Constructor for class smile.deep.metric.Precision
Constructor.
Precision(Averaging) - Constructor for class smile.deep.metric.Precision
Constructor.
Precision(Averaging) - Constructor for class smile.validation.metric.Precision
Constructor.
predicate() - Method in class smile.base.cart.NominalSplit
 
predicate() - Method in class smile.base.cart.OrdinalSplit
 
predicate() - Method in class smile.base.cart.Split
Returns the lambda that tests on the split feature.
Predicate - Class in smile.plot.vega
To test a data point in a filter transform or a test property in conditional encoding, a predicate definition of the following forms must be specified:
Predicate(String) - Constructor for class smile.plot.vega.Predicate
Constructor.
Predicate(String, boolean) - Constructor for class smile.plot.vega.Predicate
Constructor of parameter predicate.
predict(double) - Method in class smile.classification.IsotonicRegressionScaling
Returns the posterior probability estimate P(y = 1 | x).
predict(double[]) - Method in class smile.classification.FLD
 
predict(double[]) - Method in class smile.classification.LDA
 
predict(double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
predict(double[]) - Method in class smile.classification.LogisticRegression.Multinomial
 
predict(double[]) - Method in class smile.classification.MLP
 
predict(double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(double[]) - Method in class smile.classification.QDA
 
predict(double[]) - Method in class smile.clustering.DENCLUE
Classifies a new observation.
predict(double[]) - Method in class smile.regression.LinearModel
Predicts the dependent variable of an instance.
predict(double[]) - Method in class smile.regression.MLP
 
predict(double[], double[]) - Method in class smile.classification.LDA
 
predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Multinomial
 
predict(double[], double[]) - Method in class smile.classification.MLP
 
predict(double[], double[]) - Method in class smile.classification.NaiveBayes
Predict the class of an instance.
predict(double[], double[]) - Method in class smile.classification.QDA
 
predict(int[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(int[]) - Method in class smile.classification.Maxent.Binomial
 
predict(int[]) - Method in class smile.classification.Maxent.Multinomial
 
predict(int[]) - Method in class smile.sequence.HMM
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(int[], double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(int[], double[]) - Method in class smile.classification.Maxent.Binomial
 
predict(int[], double[]) - Method in class smile.classification.Maxent.Multinomial
 
predict(List<T>) - Method in interface smile.classification.Classifier
Predicts the class labels of a list of instances.
predict(List<T>) - Method in interface smile.regression.Regression
Predicts the dependent variable of a list of instances.
predict(List<T>, List<double[]>) - Method in interface smile.classification.Classifier
Predicts the class labels of a list of instances.
predict(DataFrame) - Method in interface smile.classification.DataFrameClassifier
Predicts the class labels of a data frame.
predict(DataFrame) - Method in class smile.glm.GLM
Predicts the mean response.
predict(DataFrame) - Method in interface smile.regression.DataFrameRegression
Predicts the dependent variables of a data frame.
predict(DataFrame) - Method in class smile.regression.LinearModel
 
predict(DataFrame, List<double[]>) - Method in interface smile.classification.DataFrameClassifier
Predicts the class labels of a dataset.
predict(Dataset<T, ?>) - Method in interface smile.classification.Classifier
Predicts the class labels of a dataset.
predict(Dataset<T, ?>) - Method in interface smile.regression.Regression
Predicts the dependent variable of a dataset.
predict(Dataset<T, ?>, List<double[]>) - Method in interface smile.classification.Classifier
Predicts the class labels of a dataset.
predict(Tuple) - Method in class smile.base.cart.InternalNode
 
predict(Tuple) - Method in class smile.base.cart.LeafNode
 
predict(Tuple) - Method in interface smile.base.cart.Node
Evaluate the tree over an instance.
predict(Tuple) - Method in class smile.base.cart.NominalNode
 
predict(Tuple) - Method in class smile.base.cart.OrdinalNode
 
predict(Tuple) - Method in class smile.classification.AdaBoost
 
predict(Tuple) - Method in class smile.classification.DecisionTree
 
predict(Tuple) - Method in class smile.classification.GradientTreeBoost
 
predict(Tuple) - Method in class smile.classification.RandomForest
 
predict(Tuple) - Method in class smile.glm.GLM
Predicts the mean response.
predict(Tuple) - Method in class smile.regression.GradientTreeBoost
 
predict(Tuple) - Method in class smile.regression.LinearModel
 
predict(Tuple) - Method in class smile.regression.RandomForest
 
predict(Tuple) - Method in class smile.regression.RegressionTree
 
predict(Tuple[]) - Method in class smile.sequence.CRF
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(Tuple, double[]) - Method in class smile.classification.AdaBoost
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(Tuple, double[]) - Method in class smile.classification.DecisionTree
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(Tuple, double[]) - Method in class smile.classification.GradientTreeBoost
 
predict(Tuple, double[]) - Method in class smile.classification.RandomForest
 
predict(SparseArray) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
predict(SparseArray, double[]) - Method in class smile.classification.DiscreteNaiveBayes
Predict the class of an instance.
predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
predict(T) - Method in interface smile.classification.Classifier
Predicts the class label of an instance.
predict(T) - Method in class smile.classification.KNN
 
predict(T) - Method in class smile.classification.OneVersusOne
Prediction is based on voting.
predict(T) - Method in class smile.classification.OneVersusRest
 
predict(T) - Method in class smile.classification.RBFNetwork
 
predict(T) - Method in class smile.classification.SVM
 
predict(T) - Method in class smile.clustering.DBSCAN
Classifies a new observation.
predict(T) - Method in class smile.clustering.MEC
Cluster a new instance.
predict(T) - Method in class smile.regression.GaussianProcessRegression
 
predict(T) - Method in class smile.regression.KernelMachine
 
predict(T) - Method in class smile.regression.RBFNetwork
 
predict(T) - Method in interface smile.regression.Regression
Predicts the dependent variable of an instance.
predict(T[]) - Method in interface smile.classification.Classifier
Predicts the class labels of an array of instances.
predict(T[]) - Method in interface smile.regression.Regression
Predicts the dependent variable of an array of instances.
predict(T[]) - Method in class smile.sequence.CRFLabeler
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
predict(T[]) - Method in class smile.sequence.HMMLabeler
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of P(I | O, HMM).
predict(T[]) - Method in interface smile.sequence.SequenceLabeler
Predicts the sequence labels.
predict(T[], double[][]) - Method in interface smile.classification.Classifier
Predicts the class labels of an array of instances.
predict(T, double[]) - Method in interface smile.classification.Classifier
Predicts the class label of an instance and also calculate a posteriori probabilities.
predict(T, double[]) - Method in class smile.classification.KNN
 
predict(T, double[]) - Method in class smile.classification.OneVersusOne
Prediction is based posteriori probability estimation.
predict(T, double[]) - Method in class smile.classification.OneVersusRest
 
predict(T, double[]) - Method in class smile.regression.GaussianProcessRegression
Predicts the mean and standard deviation of an instance.
predict(U) - Method in class smile.clustering.CentroidClustering
Classifies a new observation.
prediction - Variable in class smile.validation.ClassificationValidation
The model prediction.
prediction - Variable in class smile.validation.RegressionValidation
The model prediction.
predictors() - Method in class smile.data.formula.Formula
Returns the predictors.
predictors(Tuple) - Method in class smile.base.cart.CART
Returns the predictors by the model formula if it is not null.
preferredDevice() - Static method in class smile.deep.tensor.Device
Returns the preferred (most powerful) device.
preprocess(double[]) - Method in class smile.feature.extraction.Projection
Preprocess the input vector before projection.
prh() - Method in record class smile.neighbor.lsh.PrZ
Returns the value of the prh record component.
PrH - Record Class in smile.neighbor.lsh
The probability for given query object and hash function.
PrH(int, double) - Constructor for record class smile.neighbor.lsh.PrH
Creates an instance of a PrH record class.
prim(List<Graph.Edge>) - Method in class smile.graph.Graph
Returns the minimum spanning tree (MST) for a weighted undirected graph by Prim's algorithm.
print() - Method in class smile.deep.tensor.Tensor
Prints the tensor on the standard output.
print() - Method in class smile.plot.swing.PlotGrid
Prints the plot.
print() - Method in class smile.plot.swing.PlotPanel
Prints the plot.
print(Graphics, PageFormat, int) - Method in class smile.plot.swing.PlotGrid
 
print(Printable) - Method in class smile.swing.Printer
Prints a document that implements Printable interface.
Printer - Class in smile.swing
A printer controller object.
priori - Variable in class smile.classification.ClassLabels
The estimated priori probabilities.
priori() - Method in class smile.classification.DiscreteNaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.LDA
Returns a priori probabilities.
priori() - Method in class smile.classification.NaiveBayes
Returns a priori probabilities.
priori() - Method in class smile.classification.QDA
Returns a priori probabilities.
priori() - Method in record class smile.stat.distribution.DiscreteMixture.Component
Returns the value of the priori record component.
priori() - Method in record class smile.stat.distribution.Mixture.Component
Returns the value of the priori record component.
priori() - Method in record class smile.stat.distribution.MultivariateMixture.Component
Returns the value of the priori record component.
PriorityQueue - Class in smile.util
Priority Queue for index items.
PriorityQueue(double[]) - Constructor for class smile.util.PriorityQueue
Constructor.
PriorityQueue(int, double[]) - Constructor for class smile.util.PriorityQueue
Constructor.
ProbabilisticClassificationMetric - Interface in smile.validation.metric
An abstract interface to measure the probabilistic classification performance.
ProbabilisticPCA - Class in smile.feature.extraction
Probabilistic principal component analysis.
ProbabilisticPCA(double, double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.ProbabilisticPCA
Constructor.
probablePrime(long, int) - Static method in class smile.math.MathEx
Returns a probably prime number greater than n.
Probe - Class in smile.neighbor.lsh
Probe to check for nearest neighbors.
Probe(int[]) - Constructor for class smile.neighbor.lsh.Probe
Constructor.
probs(double[]) - Method in class smile.plot.vega.QuantileTransform
Sets an array of probabilities in the range (0, 1) for which to compute quantile values.
ProductKernel<T> - Class in smile.math.kernel
The product kernel takes two kernels and combines them via k1(x, y) * k2(x, y).
ProductKernel(MercerKernel<T>, MercerKernel<T>) - Constructor for class smile.math.kernel.ProductKernel
Constructor.
project(double[]) - Method in class smile.classification.FLD
Projects a sample to the feature space.
project(double[][]) - Method in class smile.classification.FLD
Projects samples to the feature space.
projection - Variable in class smile.feature.extraction.Projection
The projection matrix.
projection() - Method in class smile.manifold.KPCA
Returns the projection matrix.
projection(String) - Method in class smile.plot.vega.View
Returns the defining properties of geographic projection, which will be applied to shape path for "geoshape" marks and to latitude and "longitude" channels for other marks.
Projection - Class in smile.feature.extraction
A projection is a kind of feature extraction technique that transforms data from the input space to a feature space, linearly or non-linearly.
Projection - Class in smile.plot.swing
Projection provides methods to map logical coordinates to Java2D coordinates.
Projection - Class in smile.plot.vega
The geographic projection, which will be applied to shape path for "geoshape" marks and to latitude and "longitude" channels for other marks.
Projection(Matrix, String, String...) - Constructor for class smile.feature.extraction.Projection
Constructor.
Projection(Canvas) - Constructor for class smile.plot.swing.Projection
Constructor.
prompt(DataType, DataType) - Static method in interface smile.data.type.DataType
Type promotion when apply to expressions.
promptTokens() - Method in record class smile.llm.CompletionPrediction
Returns the value of the promptTokens record component.
propagate(double[]) - Method in class smile.base.mlp.InputLayer
 
propagate(double[]) - Method in class smile.base.mlp.Layer
Propagates the signals from a lower layer to this layer.
propagate(double[], boolean) - Method in class smile.base.mlp.MultilayerPerceptron
Propagates the signals through the neural network.
propagateDropout() - Method in class smile.base.mlp.Layer
Propagates the output signals through the implicit dropout layer.
propertyChange(PropertyChangeEvent) - Method in class smile.swing.Table.RowHeader
 
proportion() - Method in record class smile.manifold.MDS
Returns the value of the proportion record component.
proximity(double[][]) - Static method in class smile.clustering.linkage.Linkage
Computes the proximity matrix (linearized in column major) based on Euclidean distance.
proximity(T[], Distance<T>) - Static method in class smile.clustering.linkage.Linkage
Computes the proximity matrix (linearized in column major).
PRP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Personal pronoun.
PRP$ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Possessive pronoun.
prune(DataFrame) - Method in class smile.classification.DecisionTree
Returns a new decision tree by reduced error pruning.
prune(DataFrame) - Method in class smile.classification.RandomForest
Returns a new random forest by reduced error pruning.
PrZ - Record Class in smile.neighbor.lsh
The probability list of all buckets for given query object.
PrZ(int, PrH[]) - Constructor for record class smile.neighbor.lsh.PrZ
Creates an instance of a PrZ record class.
Punctuations - Interface in smile.nlp.dictionary
Punctuation marks are symbols that indicate the structure and organization of written language, as well as intonation and pauses to be observed when reading aloud.
PURPLE - Static variable in interface smile.plot.swing.Palette
 
push(AutoScope) - Static method in class smile.deep.tensor.Tensor
Pushes a scope onto the top of the tensor scope stack.
pushRelabel(double[][], int, int) - Method in class smile.graph.AdjacencyMatrix
Push-relabel algorithm for maximum flow.
put(double[], E) - Method in class smile.neighbor.LSH
Insert an item into the hash table.
put(double[], E) - Method in class smile.neighbor.MutableLSH
 
put(int, double) - Method in class smile.util.IntDoubleHashMap
Associates the specified value with the specified key in this map.
put(K[], V) - Method in class smile.nlp.Trie
Add a key with associated value to the trie.
put(K, V) - Method in class smile.neighbor.SNLSH
Adds a new item.
put(Tensor, Index...) - Method in class smile.deep.tensor.Tensor
Updates a portion of tensor.
put(Tensor, Tensor) - Method in class smile.deep.tensor.Tensor
Updates a portion of tensor.
put_(byte, int...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(byte, long...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(double, int...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(double, long...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(float, int...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(float, long...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(int, int...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(int, long...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(long, int...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(long, long...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(short, int...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(short, long...) - Method in class smile.deep.tensor.Tensor
Updates an element in place.
put_(Tensor, Index...) - Method in class smile.deep.tensor.Tensor
Updates a portion of tensor in place.
put_(Tensor, Tensor) - Method in class smile.deep.tensor.Tensor
Updates a portion of tensor in place.
pvalue - Variable in class smile.timeseries.BoxTest
p-value
pvalue() - Method in class smile.regression.LinearModel
Returns the p-value of goodness-of-fit test.
pvalue() - Method in record class smile.stat.hypothesis.ChiSqTest
Returns the value of the pvalue record component.
pvalue() - Method in record class smile.stat.hypothesis.CorTest
Returns the value of the pvalue record component.
pvalue() - Method in record class smile.stat.hypothesis.FTest
Returns the value of the pvalue record component.
pvalue() - Method in record class smile.stat.hypothesis.KSTest
Returns the value of the pvalue record component.
pvalue() - Method in record class smile.stat.hypothesis.TTest
Returns the value of the pvalue record component.

Q

q - Variable in class smile.stat.distribution.BernoulliDistribution
Probability of failure.
q - Variable in class smile.timeseries.BoxTest
Box-Pierce or Ljung-Box statistic.
q() - Method in class smile.timeseries.ARMA
Returns the order of MA.
Q() - Method in class smile.math.matrix.BigMatrix.QR
Returns the orthogonal factor.
Q() - Method in class smile.math.matrix.fp32.Matrix.QR
Returns the orthogonal factor.
Q() - Method in class smile.math.matrix.Matrix.QR
Returns the orthogonal factor.
q1(double[]) - Static method in class smile.math.MathEx
Find the first quantile (p = 1/4) of an array of type double.
q1(double[]) - Static method in interface smile.sort.QuickSelect
Find the first quantile (p = 1/4) of an array of type double.
q1(float[]) - Static method in class smile.math.MathEx
Find the first quantile (p = 1/4) of an array of type float.
q1(float[]) - Static method in interface smile.sort.QuickSelect
Find the first quantile (p = 1/4) of an array of type float.
q1(int[]) - Static method in class smile.math.MathEx
Find the first quantile (p = 1/4) of an array of type int.
q1(int[]) - Static method in interface smile.sort.QuickSelect
Find the first quantile (p = 1/4) of an array of type integer.
q1(T[]) - Static method in class smile.math.MathEx
Find the first quantile (p = 1/4) of an array of type double.
q1(T[]) - Static method in interface smile.sort.QuickSelect
Find the first quantile (p = 1/4) of an array of type double.
q3(double[]) - Static method in class smile.math.MathEx
Find the third quantile (p = 3/4) of an array of type double.
q3(double[]) - Static method in interface smile.sort.QuickSelect
Find the third quantile (p = 3/4) of an array of type double.
q3(float[]) - Static method in class smile.math.MathEx
Find the third quantile (p = 3/4) of an array of type float.
q3(float[]) - Static method in interface smile.sort.QuickSelect
Find the third quantile (p = 3/4) of an array of type float.
q3(int[]) - Static method in class smile.math.MathEx
Find the third quantile (p = 3/4) of an array of type int.
q3(int[]) - Static method in interface smile.sort.QuickSelect
Find the third quantile (p = 3/4) of an array of type integer.
q3(T[]) - Static method in class smile.math.MathEx
Find the third quantile (p = 3/4) of an array of type double.
q3(T[]) - Static method in interface smile.sort.QuickSelect
Find the third quantile (p = 3/4) of an array of type double.
QDA - Class in smile.classification
Quadratic discriminant analysis.
QDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.QDA
Constructor.
QDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.QDA
Constructor.
QInt8 - Enum constant in enum class smile.deep.tensor.ScalarType
8-bit quantized signed tensor type which represents a compressed floating point tensor.
QQPlot - Class in smile.plot.swing
A Q-Q plot ("Q" stands for quantile) is a probability plot, a kind of graphical method for comparing two probability distributions, by plotting their quantiles against each other.
QQPlot(double[][]) - Constructor for class smile.plot.swing.QQPlot
Constructor.
qr - Variable in class smile.math.matrix.BigMatrix.QR
The QR decomposition.
qr - Variable in class smile.math.matrix.fp32.Matrix.QR
The QR decomposition.
qr - Variable in class smile.math.matrix.Matrix.QR
The QR decomposition.
qr() - Method in class smile.math.matrix.BigMatrix
QR Decomposition.
qr() - Method in class smile.math.matrix.fp32.Matrix
QR Decomposition.
qr() - Method in class smile.math.matrix.Matrix
QR Decomposition.
qr(boolean) - Method in class smile.math.matrix.BigMatrix
QR Decomposition.
qr(boolean) - Method in class smile.math.matrix.fp32.Matrix
QR Decomposition.
qr(boolean) - Method in class smile.math.matrix.Matrix
QR Decomposition.
QR(BigMatrix, DoublePointer) - Constructor for class smile.math.matrix.BigMatrix.QR
Constructor.
QR(Matrix, float[]) - Constructor for class smile.math.matrix.fp32.Matrix.QR
Constructor.
QR(Matrix, double[]) - Constructor for class smile.math.matrix.Matrix.QR
Constructor.
quantile(double) - Static method in interface smile.base.cart.Loss
Quantile regression loss.
quantile(double) - Method in class smile.sort.IQAgent
Returns the estimated p-quantile for the data seen so far.
quantile(double) - Method in class smile.stat.distribution.BernoulliDistribution
 
quantile(double) - Method in class smile.stat.distribution.BetaDistribution
 
quantile(double) - Method in class smile.stat.distribution.BinomialDistribution
 
quantile(double) - Method in class smile.stat.distribution.ChiSquareDistribution
 
quantile(double) - Method in class smile.stat.distribution.DiscreteMixture
 
quantile(double) - Method in interface smile.stat.distribution.Distribution
The quantile, the probability to the left of quantile is p.
quantile(double) - Method in class smile.stat.distribution.EmpiricalDistribution
 
quantile(double) - Method in class smile.stat.distribution.ExponentialDistribution
 
quantile(double) - Method in class smile.stat.distribution.FDistribution
 
quantile(double) - Method in class smile.stat.distribution.GammaDistribution
 
quantile(double) - Method in class smile.stat.distribution.GaussianDistribution
The quantile, the probability to the left of quantile(p) is p.
quantile(double) - Method in class smile.stat.distribution.GeometricDistribution
 
quantile(double) - Method in class smile.stat.distribution.HyperGeometricDistribution
 
quantile(double) - Method in class smile.stat.distribution.KernelDensity
Inverse of CDF.
quantile(double) - Method in class smile.stat.distribution.LogisticDistribution
 
quantile(double) - Method in class smile.stat.distribution.LogNormalDistribution
 
quantile(double) - Method in class smile.stat.distribution.Mixture
 
quantile(double) - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
quantile(double) - Method in class smile.stat.distribution.PoissonDistribution
 
quantile(double) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
quantile(double) - Method in class smile.stat.distribution.TDistribution
 
quantile(double) - Method in class smile.stat.distribution.WeibullDistribution
 
quantile(double, double, double) - Method in interface smile.stat.distribution.Distribution
Inversion of CDF by bisection numeric root finding of "cdf(x) = p" for continuous distribution.
quantile(double, double, double, double) - Method in interface smile.stat.distribution.Distribution
Inversion of CDF by bisection numeric root finding of "cdf(x) = p" for continuous distribution.
quantile(double, int, int) - Method in class smile.stat.distribution.DiscreteDistribution
Inversion of cdf by bisection numeric root finding of cdf(x) = p for discrete distribution.
quantile(String) - Method in class smile.plot.vega.Transform
Adds a quantile transform.
Quantile - Enum constant in enum class smile.base.cart.Loss.Type
Quantile regression.
quantile2tailed(double) - Method in class smile.stat.distribution.TDistribution
Two-tailed quantile.
QuantileTransform - Class in smile.plot.vega
The quantile transform calculates empirical quantile values for an input data stream.
quantize(double[]) - Method in class smile.vq.BIRCH
 
quantize(double[]) - Method in class smile.vq.GrowingNeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralGas
 
quantize(double[]) - Method in class smile.vq.NeuralMap
 
quantize(double[]) - Method in class smile.vq.SOM
 
quantize(double[]) - Method in interface smile.vq.VectorQuantizer
Quantize a new observation.
QUARTER - Enum constant in enum class smile.data.formula.DateFeature
The quarter-of-year has values from 1 to 4.
query - Variable in class smile.neighbor.lsh.MultiProbeSample
The query object.
query(String) - Method in class smile.data.SQL
Executes a SELECT statement.
query(T[]) - Method in class smile.regression.GaussianProcessRegression
Evaluates the Gaussian Process at some query points.
QuickSelect - Interface in smile.sort
Selection is asking for the k-th smallest element out of n elements.
QuickSort - Class in smile.sort
Quicksort is a well-known sorting algorithm that, on average, makes O(n log n) comparisons to sort n items.
QUInt8 - Enum constant in enum class smile.deep.tensor.ScalarType
8-bit quantized unsigned tensor type which represents a compressed floating point tensor.

R

r - Variable in class smile.stat.distribution.NegativeBinomialDistribution
The number of failures until the experiment is stopped.
R() - Method in class smile.math.matrix.BigMatrix.QR
Returns the upper triangular factor.
R() - Method in class smile.math.matrix.fp32.Matrix.QR
Returns the upper triangular factor.
R() - Method in class smile.math.matrix.Matrix.QR
Returns the upper triangular factor.
r2() - Method in record class smile.validation.RegressionMetrics
Returns the value of the r2 record component.
R2 - Class in smile.validation.metric
R2.
R2() - Constructor for class smile.validation.metric.R2
 
R2() - Method in class smile.timeseries.AR
Returns R2 statistic.
R2() - Method in class smile.timeseries.ARMA
Returns R2 statistic.
RadialBasisFunction - Interface in smile.math.rbf
A radial basis function (RBF) is a real-valued function whose value depends only on the distance from the origin, so that φ(x)=φ(||x||); or alternatively on the distance from some other point c, called a center, so that φ(x,c)=φ(||x-c||).
radius - Variable in class smile.clustering.DBSCAN
The neighborhood radius.
radius - Variable in class smile.clustering.MEC
The range of neighborhood.
radius(double) - Method in class smile.plot.vega.Mark
Sets the primary (outer) radius in pixels for arc mark, or polar coordinate radial offset of the text from the origin determined by the x and y properties for text marks.
radius2(double) - Method in class smile.plot.vega.Mark
Sets the secondary (inner) radius in pixels for arc mark.
radius2Offset(double) - Method in class smile.plot.vega.Mark
Sets the offset for radius2.
radiusOffset(double) - Method in class smile.plot.vega.Mark
Sets the offset for radius.
RADIX - Static variable in class smile.math.MathEx
The base of the exponent of the double type.
rainbow(int) - Static method in interface smile.plot.swing.Palette
Generate rainbow color palette.
rainbow(int, float) - Static method in interface smile.plot.swing.Palette
Generate rainbow color palette.
rainbow(int, float, float, float) - Static method in interface smile.plot.swing.Palette
Generate rainbow color palette.
rainbow(int, float, float, float, float, float) - Static method in interface smile.plot.swing.Palette
Generate rainbow color palette.
rand() - Method in class smile.stat.distribution.BernoulliDistribution
 
rand() - Method in class smile.stat.distribution.BetaDistribution
 
rand() - Method in class smile.stat.distribution.BinomialDistribution
This function generates a random variate with the binomial distribution.
rand() - Method in class smile.stat.distribution.ChiSquareDistribution
 
rand() - Method in class smile.stat.distribution.DiscreteMixture
 
rand() - Method in interface smile.stat.distribution.Distribution
Generates a random number following this distribution.
rand() - Method in class smile.stat.distribution.EmpiricalDistribution
 
rand() - Method in class smile.stat.distribution.ExponentialDistribution
 
rand() - Method in class smile.stat.distribution.FDistribution
 
rand() - Method in class smile.stat.distribution.GammaDistribution
Only support shape parameter k of integer.
rand() - Method in class smile.stat.distribution.GaussianDistribution
Generates a Gaussian random number with the Box-Muller algorithm.
rand() - Method in class smile.stat.distribution.GeometricDistribution
 
rand() - Method in class smile.stat.distribution.HyperGeometricDistribution
Uses inversion by chop-down search from the mode when the mean < 20 and the patchwork-rejection method when the mean >= 20.
rand() - Method in class smile.stat.distribution.KernelDensity
Random number generator.
rand() - Method in class smile.stat.distribution.LogisticDistribution
 
rand() - Method in class smile.stat.distribution.LogNormalDistribution
 
rand() - Method in class smile.stat.distribution.Mixture
 
rand() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
Generate a random multivariate Gaussian sample.
rand() - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
rand() - Method in class smile.stat.distribution.PoissonDistribution
This function generates a random variate with the poisson distribution.
rand() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
rand() - Method in class smile.stat.distribution.TDistribution
 
rand() - Method in class smile.stat.distribution.WeibullDistribution
 
rand(int) - Method in interface smile.stat.distribution.Distribution
Generates a set of random numbers following this distribution.
rand(int) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
Generates a set of random numbers following this distribution.
rand(int, int) - Static method in class smile.math.matrix.BigMatrix
Returns a uniformly distributed random matrix in [0, 1).
rand(int, int) - Static method in class smile.math.matrix.fp32.Matrix
Returns a uniformly distributed random matrix in [0, 1).
rand(int, int) - Static method in class smile.math.matrix.Matrix
Returns a uniformly distributed random matrix in [0, 1).
rand(int, int, double, double) - Static method in class smile.math.matrix.BigMatrix
Returns a random matrix of uniform distribution.
rand(int, int, double, double) - Static method in class smile.math.matrix.Matrix
Returns a uniformly distributed random matrix in given range.
rand(int, int, float, float) - Static method in class smile.math.matrix.fp32.Matrix
Returns a uniformly distributed random matrix in given range.
rand(int, int, Distribution) - Static method in class smile.math.matrix.BigMatrix
Returns a random matrix.
rand(int, int, Distribution) - Static method in class smile.math.matrix.fp32.Matrix
Returns a random matrix.
rand(int, int, Distribution) - Static method in class smile.math.matrix.Matrix
Returns a random matrix.
rand(long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with values drawn from a uniform distribution on [0, 1).
rand(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with values drawn from a uniform distribution on [0, 1).
randi() - Method in class smile.stat.distribution.DiscreteDistribution
Generates an integer random number following this discrete distribution.
randi(int) - Method in class smile.stat.distribution.DiscreteDistribution
Generates a set of integer random numbers following this discrete distribution.
randi(int) - Method in class smile.stat.distribution.EmpiricalDistribution
 
RandIndex - Class in smile.validation.metric
Rand Index.
RandIndex() - Constructor for class smile.validation.metric.RandIndex
 
randn(int, int) - Static method in class smile.math.matrix.BigMatrix
Returns a random matrix of standard normal distribution.
randn(int, int) - Static method in class smile.math.matrix.fp32.Matrix
Returns a random matrix of standard normal distribution.
randn(int, int) - Static method in class smile.math.matrix.Matrix
Returns a random matrix of standard normal distribution.
randn(long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with values drawn from a unit normal distribution.
randn(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with values drawn from a unit normal distribution.
random() - Method in class smile.hpo.Hyperparameters
Generates a stream of hyperparameters for random search.
random() - Static method in class smile.math.MathEx
Generate a random number in [0, 1).
random(double[]) - Static method in class smile.math.MathEx
Given a set of n probabilities, generate a random number in [0, n).
random(double[], int) - Static method in class smile.math.MathEx
Given a set of m probabilities, draw with replacement a set of n random number in [0, m).
random(double, double) - Static method in class smile.math.MathEx
Generate a uniform random number in the range [lo, hi).
random(double, double, int) - Static method in class smile.math.MathEx
Generate uniform random numbers in the range [lo, hi).
random(int) - Static method in class smile.math.MathEx
Generate n random numbers in [0, 1).
random(int, double) - Static method in interface smile.stat.Sampling
Simple random sampling.
random(T[], Distance<T>, int) - Static method in record class smile.graph.NearestNeighborGraph
Creates a random neighbor graph.
Random - Class in smile.math
This is a high quality random number generator as a replacement of the standard Random class of Java system.
Random() - Constructor for class smile.math.Random
Initialize with default random number generator engine.
Random(long) - Constructor for class smile.math.Random
Initialize with given seed for default random number generator engine.
RandomForest - Class in smile.classification
Random forest for classification.
RandomForest - Class in smile.regression
Random forest for regression.
RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[]) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[], IntSet) - Constructor for class smile.classification.RandomForest
Constructor.
RandomForest(Formula, RandomForest.Model[], RegressionMetrics, double[]) - Constructor for class smile.regression.RandomForest
Constructor.
RandomForest.Model - Class in smile.classification
The base model.
RandomForest.Model - Class in smile.regression
The base model.
randomInt(int) - Static method in class smile.math.MathEx
Returns a random integer in [0, n).
randomInt(int, int) - Static method in class smile.math.MathEx
Returns a random integer in [lo, hi).
randomLong() - Static method in class smile.math.MathEx
Returns a random long integer.
RandomNumberGenerator - Interface in smile.math.random
Random number generator interface.
RandomProjection - Class in smile.feature.extraction
Random projection is a promising dimensionality reduction technique for learning mixtures of Gaussians.
RandomProjection(Matrix, String...) - Constructor for class smile.feature.extraction.RandomProjection
Constructor.
RandomProjectionForest - Class in smile.neighbor
A set of random projection trees.
RandomProjectionTree - Class in smile.neighbor
Random projection trees.
range() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the matrix which columns are the orthonormal basis for the range space.
range() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the matrix which columns are the orthonormal basis for the range space.
range() - Method in class smile.math.matrix.Matrix.SVD
Returns the matrix which columns are the orthonormal basis for the range space.
range(double...) - Method in class smile.plot.vega.Field
Sets the customize range values.
range(String...) - Method in class smile.plot.vega.Field
Sets the customize range values.
range(String, double, double) - Static method in class smile.plot.vega.Predicate
Test if a field in the data point satisfies certain conditions.
rangeMax(double) - Method in class smile.plot.vega.Field
Sets the maximum value in the scale range, overriding the range property or the default range.
rangeMax(String) - Method in class smile.plot.vega.Field
Sets the maximum value in the scale range, overriding the range property or the default range.
rangeMin(double) - Method in class smile.plot.vega.Field
Sets the minimum value in the scale range, overriding the range property or the default range.
rangeMin(String) - Method in class smile.plot.vega.Field
Sets the minimum value in the scale range, overriding the range property or the default range.
rank() - Method in class smile.math.matrix.BigMatrix.SVD
Returns the effective numerical matrix rank.
rank() - Method in class smile.math.matrix.fp32.Matrix.SVD
Returns the effective numerical matrix rank.
rank() - Method in class smile.math.matrix.Matrix.SVD
Returns the effective numerical matrix rank.
rank(int, int, long, long) - Method in class smile.nlp.relevance.TFIDF
Returns the relevance score between a term and a document based on a corpus.
rank(Corpus, TextTerms, String[], int[], int) - Method in class smile.nlp.relevance.BM25
 
rank(Corpus, TextTerms, String[], int[], int) - Method in interface smile.nlp.relevance.RelevanceRanker
Returns the relevance score between a set of terms and a document based on a corpus.
rank(Corpus, TextTerms, String[], int[], int) - Method in class smile.nlp.relevance.TFIDF
 
rank(Corpus, TextTerms, String, int, int) - Method in class smile.nlp.relevance.BM25
 
rank(Corpus, TextTerms, String, int, int) - Method in interface smile.nlp.relevance.RelevanceRanker
Returns the relevance score between a term and a document based on a corpus.
rank(Corpus, TextTerms, String, int, int) - Method in class smile.nlp.relevance.TFIDF
 
Rank() - Static method in interface smile.gap.Selection
Rank Selection.
ranks - Variable in class smile.llm.tokenizer.Tiktoken
Token -> Rank
ratio() - Method in record class smile.feature.selection.SignalNoiseRatio
Returns the value of the ratio record component.
ratio() - Method in record class smile.feature.selection.SumSquaresRatio
Returns the value of the ratio record component.
RatioScale - Class in smile.data.measure
The ratio scale allows for both difference and ratio of two values.
RatioScale(NumberFormat) - Constructor for class smile.data.measure.RatioScale
Constructor.
rawinterp(int, double) - Method in class smile.interpolation.AbstractInterpolation
Subclasses provide this as the actual interpolation method.
rawinterp(int, double) - Method in class smile.interpolation.CubicSplineInterpolation1D
 
rawinterp(int, double) - Method in class smile.interpolation.LinearInterpolation
 
RB - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Adverb.
RBF<T> - Class in smile.base.rbf
A neuron in radial basis function network.
RBF(T, RadialBasisFunction, Metric<T>) - Constructor for class smile.base.rbf.RBF
Constructor.
RBFInterpolation - Class in smile.interpolation
Radial basis function interpolation is a popular method for the data points are irregularly distributed in space.
RBFInterpolation(double[][], double[], RadialBasisFunction) - Constructor for class smile.interpolation.RBFInterpolation
Constructor.
RBFInterpolation(double[][], double[], RadialBasisFunction, boolean) - Constructor for class smile.interpolation.RBFInterpolation
Constructor.
RBFInterpolation1D - Class in smile.interpolation
Radial basis function interpolation is a popular method for the data points are irregularly distributed in space.
RBFInterpolation1D(double[], double[], RadialBasisFunction) - Constructor for class smile.interpolation.RBFInterpolation1D
Constructor.
RBFInterpolation1D(double[], double[], RadialBasisFunction, boolean) - Constructor for class smile.interpolation.RBFInterpolation1D
Constructor.
RBFInterpolation2D - Class in smile.interpolation
Radial basis function interpolation is a popular method for the data points are irregularly distributed in space.
RBFInterpolation2D(double[], double[], double[], RadialBasisFunction) - Constructor for class smile.interpolation.RBFInterpolation2D
Constructor.
RBFInterpolation2D(double[], double[], double[], RadialBasisFunction, boolean) - Constructor for class smile.interpolation.RBFInterpolation2D
Constructor.
RBFNetwork<T> - Class in smile.classification
Radial basis function networks.
RBFNetwork<T> - Class in smile.regression
Radial basis function network.
RBFNetwork(int, RBF<T>[], Matrix, boolean) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork(int, RBF<T>[], Matrix, boolean, IntSet) - Constructor for class smile.classification.RBFNetwork
Constructor.
RBFNetwork(RBF<T>[], double[], boolean) - Constructor for class smile.regression.RBFNetwork
Constructor.
rbind(double[]...) - Static method in class smile.math.MathEx
Concatenates vectors by rows.
rbind(float[]...) - Static method in class smile.math.MathEx
Concatenates vectors by rows.
rbind(int[]...) - Static method in class smile.math.MathEx
Concatenates vectors by rows.
rbind(String[]...) - Static method in class smile.math.MathEx
Concatenates vectors by rows.
RBR - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Adverb, comparative.
RBS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Adverb, superlative.
RDA - Class in smile.classification
Regularized discriminant analysis.
RDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.RDA
Constructor.
RDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.RDA
Constructor.
re - Variable in class smile.math.Complex
The real part.
read() - Method in class smile.io.Arff
Reads all the records.
read(int) - Method in class smile.io.Arff
Reads a limited number of records.
read(BufferedReader, int) - Method in class smile.io.JSON
Reads a limited number of records from a JSON file.
read(InputStream, int) - Method in class smile.io.Arrow
Reads a limited number of records from an arrow file.
read(InputStream, int) - Method in class smile.io.Avro
Reads a limited number of records from an avro file.
read(InputStream, int) - Static method in interface smile.io.SAS
Reads a limited number of records from a SAS7BDAT file.
read(String) - Method in class smile.io.Arrow
Reads a limited number of records from an arrow file.
read(String) - Method in class smile.io.Avro
Reads an avro file.
read(String) - Method in class smile.io.CSV
Reads a CSV file.
read(String) - Method in class smile.io.JSON
Reads a JSON file.
read(String) - Static method in class smile.io.Parquet
Reads a HDFS parquet file.
read(String) - Static method in interface smile.io.SAS
Reads a SAS7BDAT file.
read(String, int) - Method in class smile.io.Arrow
Reads a limited number of records from an arrow file.
read(String, int) - Method in class smile.io.CSV
Reads a limited number of records from a CSV file.
read(String, int) - Method in class smile.io.JSON
Reads a JSON file.
read(String, int) - Static method in class smile.io.Parquet
Reads a HDFS parquet file.
read(Path) - Method in class smile.io.Arrow
Reads an arrow file.
read(Path) - Method in class smile.io.Avro
Reads an avro file.
read(Path) - Method in class smile.io.CSV
Reads a CSV file.
read(Path) - Method in class smile.io.JSON
Reads a JSON file.
read(Path) - Static method in class smile.io.Parquet
Reads a local parquet file.
read(Path) - Static method in interface smile.io.SAS
Reads a SAS7BDAT file.
read(Path, int) - Method in class smile.io.Arrow
Reads an arrow file.
read(Path, int) - Method in class smile.io.CSV
Reads a limited number of records from a CSV file.
read(Path, int) - Method in class smile.io.JSON
Reads a JSON file.
read(Path, int) - Static method in class smile.io.Parquet
Reads a local parquet file.
read(Path, List<String[]>, List<PennTreebankPOS[]>) - Static method in class smile.nlp.pos.HMMPOSTagger
Load training data from a corpora.
read(InputFile) - Static method in class smile.io.Parquet
Reads a parquet file.
read(InputFile, int) - Static method in class smile.io.Parquet
Reads a limited number of records from a parquet file.
Read - Interface in smile.io
Reads data from external storage systems.
reader(String) - Static method in interface smile.io.HadoopInput
Returns the reader of a file path or URI.
reader(String) - Static method in interface smile.io.Input
Returns the reader of a file path or URI.
reader(String, Charset) - Static method in interface smile.io.HadoopInput
Returns the reader of a file path or URI.
reader(String, Charset) - Static method in interface smile.io.Input
Returns the reader of a file path or URI.
reason() - Method in record class smile.llm.CompletionPrediction
Returns the value of the reason record component.
rebuild() - Method in class smile.util.PairingHeap
Rebuilds the pairing heap.
Recall - Class in smile.deep.metric
Recall or true positive rate (TPR) (also called hit rate, sensitivity) is a statistical measures of the performance of a binary classification test.
Recall - Class in smile.validation.metric
In information retrieval area, sensitivity is called recall.
Recall() - Constructor for class smile.deep.metric.Recall
Constructor.
Recall() - Constructor for class smile.validation.metric.Recall
Constructor.
Recall(double) - Constructor for class smile.deep.metric.Recall
Constructor.
Recall(Averaging) - Constructor for class smile.deep.metric.Recall
Constructor.
Recall(Averaging) - Constructor for class smile.validation.metric.Recall
Constructor.
reciprocal() - Method in class smile.math.Complex
Returns the reciprocal.
rectifier() - Static method in interface smile.base.mlp.ActivationFunction
The rectifier activation function max(0, x).
rectifier(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with rectified linear activation function.
rectifier(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with rectified linear activation function.
RED - Static variable in interface smile.plot.swing.Palette
 
redblue(int) - Static method in interface smile.plot.swing.Palette
Generate red-blue color palette.
redblue(int, float) - Static method in interface smile.plot.swing.Palette
Generate red-blue color palette.
redgreen(int) - Static method in interface smile.plot.swing.Palette
Generate red-green color palette.
redgreen(int, float) - Static method in interface smile.plot.swing.Palette
Generate red-green color palette.
References - Search tag in class smile.anomaly.IsolationForest
Section
References - Search tag in class smile.anomaly.SVM
Section
References - Search tag in class smile.association.FPGrowth
Section
References - Search tag in class smile.base.svm.SVR
Section
References - Search tag in class smile.classification.AdaBoost
Section
References - Search tag in class smile.classification.DiscreteNaiveBayes
Section
References - Search tag in class smile.classification.FLD
Section
References - Search tag in class smile.classification.GradientTreeBoost
Section
References - Search tag in class smile.classification.IsotonicRegressionScaling
Section
References - Search tag in class smile.classification.Maxent
Section
References - Search tag in class smile.classification.NaiveBayes
Section
References - Search tag in class smile.classification.PlattScaling
Section
References - Search tag in class smile.classification.RBFNetwork
Section
References - Search tag in class smile.classification.SVM
Section
References - Search tag in class smile.clustering.BBDTree
Section
References - Search tag in class smile.clustering.CLARANS
Section
References - Search tag in class smile.clustering.DBSCAN
Section
References - Search tag in class smile.clustering.DENCLUE
Section
References - Search tag in class smile.clustering.DeterministicAnnealing
Section
References - Search tag in class smile.clustering.GMeans
Section
References - Search tag in class smile.clustering.HierarchicalClustering
Section
References - Search tag in class smile.clustering.KMeans
Section
References - Search tag in class smile.clustering.KModes
Section
References - Search tag in class smile.clustering.MEC
Section
References - Search tag in class smile.clustering.SIB
Section
References - Search tag in class smile.clustering.SpectralClustering
Section
References - Search tag in class smile.clustering.XMeans
Section
References - Search tag in class smile.clustering.linkage.Linkage
Section
References - Search tag in class smile.feature.extraction.GHA
Section
References - Search tag in class smile.feature.extraction.KernelPCA
Section
References - Search tag in class smile.feature.extraction.ProbabilisticPCA
Section
References - Search tag in class smile.feature.extraction.RandomProjection
Section
References - Search tag in class smile.feature.selection.GAFE
Section
References - Search tag in class smile.ica.ICA
Section
References - Search tag in class smile.manifold.IsoMap
Section
References - Search tag in class smile.manifold.KPCA
Section
References - Search tag in class smile.manifold.LLE
Section
References - Search tag in class smile.manifold.LaplacianEigenmap
Section
References - Search tag in class smile.manifold.TSNE
Section
References - Search tag in class smile.manifold.UMAP
Section
References - Search tag in class smile.math.BFGS
Section
References - Search tag in class smile.math.kernel.PearsonKernel
Section
References - Search tag in class smile.math.random.MersenneTwister
Section
References - Search tag in class smile.math.random.MersenneTwister64
Section
References - Search tag in class smile.math.rbf.GaussianRadialBasis
Section
References - Search tag in class smile.neighbor.BKTree
Section
References - Search tag in class smile.neighbor.CoverTree
Section
References - Search tag in class smile.neighbor.LSH
Section
References - Search tag in class smile.neighbor.MPLSH
Section
References - Search tag in class smile.neighbor.SNLSH
Section
References - Search tag in class smile.nlp.stemmer.LancasterStemmer
Section
References - Search tag in class smile.nlp.stemmer.PorterStemmer
Section
References - Search tag in class smile.nlp.tokenizer.SimpleSentenceSplitter
Section
References - Search tag in class smile.regression.ElasticNet
Section
References - Search tag in class smile.regression.GaussianProcessRegression
Section
References - Search tag in class smile.regression.GradientTreeBoost
Section
References - Search tag in class smile.regression.LASSO
Section
References - Search tag in class smile.regression.RBFNetwork
Section
References - Search tag in class smile.regression.SVM
Section
References - Search tag in class smile.sequence.CRF
Section
References - Search tag in class smile.sort.IQAgent
Section
References - Search tag in class smile.validation.metric.AdjustedMutualInformation
Section
References - Search tag in class smile.validation.metric.MutualInformation
Section
References - Search tag in class smile.validation.metric.NormalizedMutualInformation
Section
References - Search tag in class smile.vq.BIRCH
Section
References - Search tag in class smile.vq.GrowingNeuralGas
Section
References - Search tag in class smile.vq.NeuralGas
Section
References - Search tag in class smile.vq.SOM
Section
References - Search tag in interface smile.feature.importance.SHAP
Section
References - Search tag in package smile.association
Section
References - Search tag in record class smile.feature.selection.SignalNoiseRatio
Section
References - Search tag in record class smile.feature.selection.SumSquaresRatio
Section
Regex - Interface in smile.util
Regular expression patterns.
regression(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of regression.
regression(int, int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
Repeated cross validation of regression.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
Runs regression bootstrap validation.
regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Cross validation of regression.
regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.Bootstrap
Runs regression bootstrap validation.
regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
Cross validation of regression.
regression(String, String) - Method in class smile.plot.vega.Transform
Adds a regression transform.
regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
regression(T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.LOOCV
Runs leave-one-out cross validation tests.
Regression<T> - Interface in smile.regression
Regression analysis includes any techniques for modeling and analyzing the relationship between a dependent variable and one or more independent variables.
Regression.Trainer<T,M> - Interface in smile.regression
The regression trainer.
RegressionMetric - Interface in smile.validation.metric
An abstract interface to measure the regression performance.
RegressionMetrics - Record Class in smile.validation
The regression validation metrics.
RegressionMetrics(double, double, int, double, double, double, double, double) - Constructor for record class smile.validation.RegressionMetrics
Creates an instance of a RegressionMetrics record class.
RegressionNode - Class in smile.base.cart
A leaf node in regression tree.
RegressionNode(int, double, double, double) - Constructor for class smile.base.cart.RegressionNode
Constructor.
RegressionTransform - Class in smile.plot.vega
The regression transform fits two-dimensional regression models to smooth and predict data.
RegressionTree - Class in smile.regression
Regression tree.
RegressionTree(DataFrame, Loss, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.regression.RegressionTree
Constructor.
RegressionValidation<M> - Class in smile.validation
Regression model validation results.
RegressionValidation(M, double[], double[], RegressionMetrics) - Constructor for class smile.validation.RegressionValidation
Constructor.
RegressionValidations<M> - Class in smile.validation
Regression model validation results.
RegressionValidations(List<RegressionValidation<M>>) - Constructor for class smile.validation.RegressionValidations
Constructor.
regressors - Variable in class smile.regression.GaussianProcessRegression
The regressors.
regularizedIncompleteBetaFunction(double, double, double) - Static method in class smile.math.special.Beta
Regularized Incomplete Beta function.
regularizedIncompleteGamma(double, double) - Static method in class smile.math.special.Gamma
Regularized Incomplete Gamma Function P(s,x) = 0x e-t t(s-1) dt
regularizedUpperIncompleteGamma(double, double) - Static method in class smile.math.special.Gamma
Regularized Upper/Complementary Incomplete Gamma Function Q(s,x) = 1 - P(s,x) = 1 - 0x e-t t(s-1) dt
rejectionSampling(double, double, double) - Method in interface smile.stat.distribution.Distribution
Use the rejection technique to draw a sample from the given distribution.
Relevance - Class in smile.nlp.relevance
In the context of information retrieval, relevance denotes how well a retrieved set of documents meets the information need of the user.
Relevance(Text, double) - Constructor for class smile.nlp.relevance.Relevance
Constructor.
RelevanceRanker - Interface in smile.nlp.relevance
An interface to provide relevance ranking algorithm.
relu(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with ReLU activation function.
relu(int, int, double) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with ReLU activation function.
ReLU - Class in smile.deep.activation
Rectified Linear Unit activation function.
ReLU(boolean) - Constructor for class smile.deep.activation.ReLU
Constructor.
remove() - Method in class smile.util.PairingHeap
 
remove(double[], E) - Method in class smile.neighbor.MutableLSH
Remove an entry from the hash table.
remove(int) - Method in class smile.neighbor.lsh.Bucket
Removes a point from bucket.
remove(int) - Method in class smile.util.DoubleArrayList
Removes the value at specified index from the list.
remove(int) - Method in class smile.util.IntArrayList
Removes the value at specified index from the list.
remove(int) - Method in class smile.util.IntDoubleHashMap
Removes the mapping for the specified key from this map if present.
remove(int) - Method in class smile.util.IntHashSet
Removes the specified element from this set if it is present.
remove(int) - Method in class smile.util.SparseArray
Removes an entry.
remove(AutoCloseable) - Method in class smile.util.AutoScope
Detaches resources from this scope.
remove(Object) - Method in class smile.util.PairingHeap
 
remove(Plot) - Method in class smile.plot.swing.Canvas
Remove a graphical shape from the canvas.
remove(PlotPanel) - Method in class smile.plot.swing.PlotGrid
Remove a plot from the frame.
remove(Shape) - Method in class smile.plot.swing.Canvas
Remove a graphical shape from the canvas.
removeAll(Collection<?>) - Method in class smile.util.PairingHeap
 
removeChild(Concept) - Method in class smile.taxonomy.Concept
Removes a child to this node.
removeEdge(int, int) - Method in class smile.graph.Graph
In a simple graph, removes and returns the edge going from the specified source vertex to the specified target vertex.
removeEdge(Neuron) - Method in class smile.vq.hebb.Neuron
Removes an edge.
removeEdges(Collection<Graph.Edge>) - Method in class smile.graph.Graph
Removes a set of edges from the graph.
removeKeyword(String) - Method in class smile.taxonomy.Concept
Removes a keyword from the concept synset.
removeLegend() - Method in class smile.plot.vega.Field
Removes the legend for the encoding channel will be removed.
removePropertyChangeListener(PropertyChangeListener) - Method in class smile.plot.swing.Canvas
Remove a PropertyChangeListener from the listener list.
Repeat - Class in smile.plot.vega
Repeat a View.
Repeat(VegaLite, String...) - Constructor for class smile.plot.vega.Repeat
Creates a view for each entry in an array of fields.
Repeat(VegaLite, String[], String[]) - Constructor for class smile.plot.vega.Repeat
Creates a view for each entry in an array of fields.
replace(Node, Node) - Method in class smile.base.cart.InternalNode
Returns a new internal node with children replaced.
replace(Node, Node) - Method in class smile.base.cart.NominalNode
 
replace(Node, Node) - Method in class smile.base.cart.OrdinalNode
 
replaceNaN(double) - Method in class smile.math.matrix.BigMatrix
Replaces NaN's with given value.
replaceNaN(double) - Method in class smile.math.matrix.Matrix
Replaces NaN's with given value.
replaceNaN(double) - Method in class smile.util.Array2D
Replaces NaN values with x.
replaceNaN(float) - Method in class smile.math.matrix.fp32.Matrix
Replaces NaN's with given value.
requireGradients(boolean) - Method in class smile.deep.tensor.Tensor.Options
Set true if gradients need to be computed for this tensor.
reset() - Method in class smile.deep.metric.Accuracy
 
reset() - Method in interface smile.deep.metric.Metric
Resets the metric state variables to their default value.
reset() - Method in class smile.deep.metric.Precision
 
reset() - Method in class smile.deep.metric.Recall
 
reset() - Method in class smile.deep.Optimizer
Resets gradients.
reset() - Method in class smile.plot.swing.Axis
Set the base coordinate space.
reset() - Method in class smile.plot.swing.Base
Reset base coordinates.
reset() - Method in class smile.plot.swing.PlotPanel
Resets the plot.
reset() - Method in class smile.plot.swing.Projection
Reset the base coordinates on Java2D screen.
resetProjection() - Method in class smile.plot.swing.Graphics
Reset projection object when the PlotCanvas size changed.
reshape(long...) - Method in class smile.deep.tensor.Tensor
Returns a tensor with the same data and number of elements but with the specified shape.
reshapeForBroadcast(Tensor, Tensor) - Static method in interface smile.llm.RotaryPositionalEncoding
Reshapes the cis tensor to match the shape of the target tensor x for broadcasting purposes, allowing for element-wise operations between tensors of compatible shapes.
residual() - Method in interface smile.base.cart.Loss
Returns the residual vector.
residuals - Variable in class smile.math.LevenbergMarquardt
The residuals.
residuals() - Method in class smile.regression.LinearModel
Returns the residuals, which is response minus fitted values.
residuals() - Method in class smile.timeseries.AR
Returns the residuals, that is response minus fitted values.
residuals() - Method in class smile.timeseries.ARMA
Returns the residuals, that is response minus fitted values.
resize(BufferedImage, int, int) - Method in interface smile.vision.transform.Transform
Resizes an image and keeps the aspect ratio.
resolveAxis(String, String) - Method in class smile.plot.vega.Concat
 
resolveAxis(String, String) - Method in class smile.plot.vega.Facet
 
resolveAxis(String, String) - Method in class smile.plot.vega.Layer
 
resolveAxis(String, String) - Method in class smile.plot.vega.Repeat
 
resolveAxis(String, String) - Method in interface smile.plot.vega.ViewComposition
Sets an axis resolution.
resolveLegend(String, String) - Method in class smile.plot.vega.Concat
 
resolveLegend(String, String) - Method in class smile.plot.vega.Facet
 
resolveLegend(String, String) - Method in class smile.plot.vega.Layer
 
resolveLegend(String, String) - Method in class smile.plot.vega.Repeat
 
resolveLegend(String, String) - Method in interface smile.plot.vega.ViewComposition
Sets a legend resolution.
resolveScale(String, String) - Method in class smile.plot.vega.Concat
 
resolveScale(String, String) - Method in class smile.plot.vega.Facet
 
resolveScale(String, String) - Method in class smile.plot.vega.Layer
 
resolveScale(String, String) - Method in class smile.plot.vega.Repeat
 
resolveScale(String, String) - Method in interface smile.plot.vega.ViewComposition
Sets a scale resolution.
response - Variable in class smile.base.cart.CART
The schema of response variable.
response() - Method in interface smile.base.cart.Loss
Returns the response variable for next iteration.
response() - Method in class smile.data.formula.Formula
Returns the response term.
retainAll(Collection<?>) - Method in class smile.util.PairingHeap
 
reverse(double[]) - Static method in class smile.math.MathEx
Reverses the order of the elements in the specified array.
reverse(float[]) - Static method in class smile.math.MathEx
Reverses the order of the elements in the specified array.
reverse(int[]) - Static method in class smile.math.MathEx
Reverses the order of the elements in the specified array.
reverse(T[]) - Static method in class smile.math.MathEx
Reverses the order of the elements in the specified array.
rho - Variable in class smile.base.mlp.MultilayerPerceptron
The discounting factor for the history/coming gradient in RMSProp.
rhs(String...) - Static method in class smile.data.formula.Formula
Factory method.
rhs(Term...) - Static method in class smile.data.formula.Formula
Factory method.
RidgeRegression - Class in smile.regression
Ridge Regression.
RidgeRegression() - Constructor for class smile.regression.RidgeRegression
 
RIGHT - Enum constant in enum class smile.math.blas.Side
B * A
rightPad(String, int, char) - Static method in interface smile.util.Strings
Right pad a string with a specified character.
rint(String) - Static method in interface smile.data.formula.Terms
The rint(x) term.
rint(Term) - Static method in interface smile.data.formula.Terms
The rint(x) term.
rmse() - Method in record class smile.validation.RegressionMetrics
Returns the value of the rmse record component.
RMSE - Class in smile.validation.metric
Root mean squared error.
RMSE() - Constructor for class smile.validation.metric.RMSE
 
RMSNormLayer - Class in smile.deep.layer
Root Mean Square Layer Normalization.
RMSNormLayer(int) - Constructor for class smile.deep.layer.RMSNormLayer
Constructor.
RMSNormLayer(int, double) - Constructor for class smile.deep.layer.RMSNormLayer
Constructor.
RMSprop(Model, double) - Static method in class smile.deep.Optimizer
Returns an RMSprop optimizer.
RMSprop(Model, double, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
Returns an RMSprop optimizer.
RNNSearch<K,V> - Interface in smile.neighbor
Retrieves the nearest neighbors to a query in a radius.
RobustStandardizer - Class in smile.feature.transform
Robustly standardizes numeric feature by subtracting the median and dividing by the IQR.
RobustStandardizer() - Constructor for class smile.feature.transform.RobustStandardizer
 
role() - Method in record class smile.llm.Message
Returns the value of the role record component.
Role - Enum Class in smile.llm
The role of message speaker in a dialog.
root - Variable in class smile.base.cart.CART
The root of decision tree.
root() - Method in class smile.base.cart.CART
Returs the root node.
Root - Class in smile.math
Root finding algorithms.
ropeTheta() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the ropeTheta record component.
RotaryPositionalEncoding - Interface in smile.llm
Rotary positional encoding (RoPE).
rotate(double, double) - Method in class smile.plot.swing.Graphics
Rotate the 3D view based on the changes on mouse position.
rotate(double, double, double) - Method in class smile.plot.vega.Projection
Sets the projection's three-axis rotation to the specified angles by specifying the rotation angles in degrees about each spherical axis.
RouletteWheel() - Static method in interface smile.gap.Selection
Roulette Wheel Selection, also called fitness proportionate selection.
round(double, int) - Static method in class smile.math.MathEx
Round a double vale to given digits such as 10^n, where n is a positive or negative integer.
round(String) - Static method in interface smile.data.formula.Terms
The round(x) term.
round(Term) - Static method in interface smile.data.formula.Terms
The round(x) term.
Round - Class in smile.data.formula
The term of round function.
Round(Term) - Constructor for class smile.data.formula.Round
Constructor.
ROUND_STYLE - Static variable in class smile.math.MathEx
Rounding style.
rounds - Variable in class smile.validation.ClassificationValidations
The multiple round validations.
rounds - Variable in class smile.validation.RegressionValidations
The multiple round validations.
row(double[]) - Static method in class smile.math.matrix.BigMatrix
Returns a row vector/matrix.
row(double[]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a row vector/matrix.
row(double[]) - Static method in class smile.math.matrix.Matrix
Returns a row vector/matrix.
row(double[], int, int) - Static method in class smile.math.matrix.BigMatrix
Returns a row vector/matrix.
row(double[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
Returns a row vector/matrix.
row(double[], int, int) - Static method in class smile.math.matrix.Matrix
Returns a row vector/matrix.
row(float[]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a row vector/matrix.
row(float[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
Returns a row vector/matrix.
row(int) - Method in class smile.math.matrix.BigMatrix
Returns the i-th row.
row(int) - Method in class smile.math.matrix.fp32.Matrix
Returns the i-th row.
row(int) - Method in class smile.math.matrix.Matrix
Returns the i-th row.
row(int...) - Method in class smile.math.matrix.BigMatrix
Returns the matrix of selected rows.
row(String) - Method in class smile.plot.vega.Facet
Returns the field definition for the horizontal facet of trellis plots.
ROW_MAJOR - Enum constant in enum class smile.math.blas.Layout
Row major layout.
RowHeader() - Constructor for class smile.swing.Table.RowHeader
Constructor.
rowMax(double[][]) - Static method in class smile.math.MathEx
Returns the row maximum of a matrix.
rowMax(int[][]) - Static method in class smile.math.MathEx
Returns the row maximum of a matrix.
rowMeans() - Method in class smile.math.matrix.BigMatrix
Returns the mean of each row.
rowMeans() - Method in class smile.math.matrix.fp32.Matrix
Returns the mean of each row.
rowMeans() - Method in class smile.math.matrix.Matrix
Returns the mean of each row.
rowMeans(double[][]) - Static method in class smile.math.MathEx
Returns the row means of a matrix.
rowMin(double[][]) - Static method in class smile.math.MathEx
Returns the row minimum of a matrix.
rowMin(int[][]) - Static method in class smile.math.MathEx
Returns the row minimum of a matrix.
rowName(int) - Method in class smile.math.matrix.fp32.IMatrix
Returns the name of i-th row.
rowName(int) - Method in class smile.math.matrix.IMatrix
Returns the name of i-th row.
rowNames() - Method in class smile.math.matrix.fp32.IMatrix
Returns the row names.
rowNames() - Method in class smile.math.matrix.IMatrix
Returns the row names.
rowNames(String[]) - Method in class smile.math.matrix.fp32.IMatrix
Sets the row names.
rowNames(String[]) - Method in class smile.math.matrix.IMatrix
Sets the row names.
rowPadding(double) - Method in class smile.plot.vega.Legend
Sets the vertical padding in pixels between symbol legend entries.
rows(int...) - Method in class smile.math.matrix.fp32.Matrix
Returns the matrix of selected rows.
rows(int...) - Method in class smile.math.matrix.Matrix
Returns the matrix of selected rows.
rowSds() - Method in class smile.math.matrix.BigMatrix
Returns the standard deviations of each row.
rowSds() - Method in class smile.math.matrix.fp32.Matrix
Returns the standard deviations of each row.
rowSds() - Method in class smile.math.matrix.Matrix
Returns the standard deviations of each row.
rowSds(double[][]) - Static method in class smile.math.MathEx
Returns the row standard deviations of a matrix.
rowSums() - Method in class smile.math.matrix.BigMatrix
Returns the sum of each row.
rowSums() - Method in class smile.math.matrix.fp32.Matrix
Returns the sum of each row.
rowSums() - Method in class smile.math.matrix.Matrix
Returns the sum of each row.
rowSums(double[][]) - Static method in class smile.math.MathEx
Returns the row sums of a matrix.
rowSums(int[][]) - Static method in class smile.math.MathEx
Returns the row sums of a matrix.
ROYAL_BLUE - Static variable in interface smile.plot.swing.Palette
 
RP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Particle.
rsqrt() - Method in class smile.deep.tensor.Tensor
Returns the reciprocal of the square-root of each of the elements in the tensor.
rsqrt_() - Method in class smile.deep.tensor.Tensor
Returns the reciprocal of the square-root of each of the elements in the tensor.
RSquared() - Method in class smile.regression.LinearModel
Returns R2 statistic.
rss() - Method in record class smile.validation.RegressionMetrics
Returns the value of the rss record component.
RSS - Class in smile.validation.metric
Residual sum of squares.
RSS() - Constructor for class smile.validation.metric.RSS
 
RSS() - Method in class smile.regression.LinearModel
Returns the residual sum of squares.
RSS() - Method in class smile.timeseries.AR
Returns the residual sum of squares.
RSS() - Method in class smile.timeseries.ARMA
Returns the residual sum of squares.
run(int, Supplier<T>) - Static method in class smile.clustering.PartitionClustering
Runs a clustering algorithm multiple times and return the best one (e.g.
rutherford(Path) - Static method in class smile.math.matrix.fp32.SparseMatrix
Reads a sparse matrix from a Rutherford-Boeing Exchange Format file.
rutherford(Path) - Static method in class smile.math.matrix.SparseMatrix
Reads a sparse matrix from a Rutherford-Boeing Exchange Format file.

S

s - Variable in class smile.math.matrix.BigMatrix.SVD
The singular values in descending order.
s - Variable in class smile.math.matrix.fp32.Matrix.SVD
The singular values in descending order.
s - Variable in class smile.math.matrix.Matrix.SVD
The singular values in descending order.
SA - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
The smallest algebraic eigenvalues.
SA - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
The smallest algebraic eigenvalues.
SALMON - Static variable in interface smile.plot.swing.Palette
 
SammonMapping - Class in smile.manifold
The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object.
SammonMapping(double, double[][]) - Constructor for class smile.manifold.SammonMapping
Constructor.
sample(int) - Method in class smile.plot.vega.Transform
Adds a sample transform.
sample(int) - Method in class smile.regression.GaussianProcessRegression.JointPrediction
Draw samples from Gaussian process.
SampleBatch - Record Class in smile.deep
A min-batch dataset consists of data and an associated target (label).
SampleBatch(Tensor, Tensor) - Constructor for record class smile.deep.SampleBatch
Creates an instance of a SampleBatch record class.
SampleInstance<D,T> - Record Class in smile.data
An immutable sample instance.
SampleInstance(D) - Constructor for record class smile.data.SampleInstance
Constructor without target.
SampleInstance(D, T) - Constructor for record class smile.data.SampleInstance
Creates an instance of a SampleInstance record class.
samples - Variable in class smile.base.cart.CART
The samples for training this node.
samples() - Method in record class smile.validation.Bag
Returns the value of the samples record component.
Sampling - Interface in smile.stat
Random sampling is the selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population.
sas(String) - Static method in interface smile.io.Read
Reads a SAS7BDAT file.
sas(Path) - Static method in interface smile.io.Read
Reads a SAS7BDAT file.
SAS - Interface in smile.io
Reads SAS7BDAT datasets.
save() - Method in class smile.plot.swing.PlotGrid
Shows a file chooser and exports the plot to the selected image file.
save() - Method in class smile.plot.swing.PlotPanel
Shows a file chooser and exports the plot to the selected image file.
save(File) - Method in class smile.plot.swing.PlotGrid
Exports the plot to an image file.
save(File) - Method in class smile.plot.swing.PlotPanel
Exports the plot to an image file.
save(String) - Method in class smile.deep.layer.LayerBlock
Serialize the layer block as a checkpoint.
save(String) - Method in class smile.deep.Model
Serialize the model as a checkpoint.
sbmv(Layout, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric band matrix.
sbmv(Layout, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sbmv(Layout, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric band matrix.
sbmv(Layout, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sbmv(Layout, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric band matrix.
sbmv(Layout, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sbmv(Layout, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric band matrix.
sbmv(Layout, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
scal(double, double[]) - Method in interface smile.math.blas.BLAS
Scales a vector with a scalar.
scal(float, float[]) - Method in interface smile.math.blas.BLAS
Scales a vector with a scalar.
scal(int, double, double[], int) - Method in interface smile.math.blas.BLAS
Scales a vector with a scalar.
scal(int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
scal(int, float, float[], int) - Method in interface smile.math.blas.BLAS
Scales a vector with a scalar.
scal(int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
ScalarType - Enum Class in smile.deep.tensor
The data type of the elements stored in the tensor.
scale - Variable in class smile.stat.distribution.LogisticDistribution
The scale parameter.
scale() - Method in class smile.classification.ClassLabels
Returns the nominal scale of the class labels.
scale() - Method in class smile.math.kernel.Gaussian
Returns the length scale of kernel.
scale() - Method in class smile.math.kernel.HyperbolicTangent
Returns the scale of kernel.
scale() - Method in class smile.math.kernel.Laplacian
Returns the length scale of kernel.
scale() - Method in class smile.math.kernel.Matern
Returns the length scale of kernel.
scale() - Method in class smile.math.kernel.Polynomial
Returns the scale of kernel.
scale() - Method in class smile.math.kernel.ThinPlateSpline
Returns the length scale of kernel.
scale(double) - Method in class smile.classification.PlattScaling
Returns the posterior probability estimate P(y = 1 | x).
scale(double) - Method in class smile.math.Complex
Scalar multiplication.
scale(double) - Method in class smile.plot.vega.Projection
Sets the projection's scale (zoom) factor, overriding automatic fitting.
scale(double[][]) - Static method in class smile.math.MathEx
Scales each column of a matrix to range [0, 1].
scale(double[], double[]) - Method in class smile.math.matrix.BigMatrix
Centers and scales the columns of matrix.
scale(double[], double[]) - Method in class smile.math.matrix.Matrix
Centers and scales the columns of matrix.
scale(double, double[]) - Static method in class smile.math.MathEx
Scale each element of an array by a constant x = a * x.
scale(double, double[], double[]) - Static method in class smile.math.MathEx
Scale each element of an array by a constant y = a * x.
scale(float[], float[]) - Method in class smile.math.matrix.fp32.Matrix
Centers and scales the columns of matrix.
scale(String) - Method in class smile.plot.vega.Field
Sets the function that transforms values in the data domain (numbers, dates, strings, etc.) to visual values (pixels, colors, sizes) for position and mark property channels.
scale(Tensor) - Static method in interface smile.llm.RotaryPositionalEncoding
Adapts RoPE to longer input lengths.
scaledRope() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the scaledRope record component.
ScaledRouletteWheel() - Static method in interface smile.gap.Selection
Scaled Roulette Wheel Selection.
Scaler - Class in smile.feature.transform
Scales the numeric variables into the range [0, 1].
Scaler - Class in smile.math
Affine transformation y = (x - offset) / scale.
Scaler() - Constructor for class smile.feature.transform.Scaler
 
Scaler(double, double, boolean) - Constructor for class smile.math.Scaler
Constructor.
scatter() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
Returns the scatter of distribution, which is defined as |Σ|.
ScatterPlot - Class in smile.plot.swing
The data is displayed as a collection of points.
ScatterPlot(Point...) - Constructor for class smile.plot.swing.ScatterPlot
Constructor.
ScatterPlot(Point[], Legend[]) - Constructor for class smile.plot.swing.ScatterPlot
Constructor.
scatterReduce(int, Tensor, Tensor, String) - Method in class smile.deep.tensor.Tensor
Writes all values from the tensor src into this tensor at the indices specified in the index tensor.
scatterReduce_(int, Tensor, Tensor, String) - Method in class smile.deep.tensor.Tensor
Writes all values from the tensor src into this tensor at the indices specified in the index tensor.
schema - Variable in class smile.base.cart.CART
The schema of predictors.
schema - Variable in class smile.feature.extraction.Projection
The schema of output space.
schema() - Method in class smile.classification.AdaBoost
 
schema() - Method in interface smile.classification.DataFrameClassifier
Returns the predictor schema.
schema() - Method in class smile.classification.DecisionTree
 
schema() - Method in class smile.classification.GradientTreeBoost
 
schema() - Method in class smile.classification.RandomForest
 
schema() - Method in interface smile.data.DataFrame
Returns the schema of DataFrame.
schema() - Method in class smile.data.IndexDataFrame
 
schema() - Method in interface smile.data.Tuple
Returns the schema of tuple.
schema() - Method in class smile.io.Arff
Returns the data schema.
schema() - Method in interface smile.regression.DataFrameRegression
Returns the schema of predictors.
schema() - Method in class smile.regression.GradientTreeBoost
 
schema() - Method in class smile.regression.LinearModel
 
schema() - Method in class smile.regression.RandomForest
 
schema() - Method in class smile.regression.RegressionTree
 
schema(StructType) - Method in class smile.io.CSV
Sets the schema.
schema(StructType) - Method in class smile.io.JSON
Sets the schema.
score - Variable in class smile.nlp.collocation.Bigram
The chi-square statistical score of the collocation.
score - Variable in class smile.nlp.relevance.Relevance
The relevance score.
score() - Method in class smile.base.cart.InternalNode
Returns the split score (reduction of impurity).
score(double[]) - Method in class smile.anomaly.IsolationForest
Returns the anomaly score.
score(double[]) - Method in class smile.classification.LogisticRegression.Binomial
 
score(double[][]) - Method in class smile.anomaly.IsolationForest
Returns the anomaly scores.
score(double[], double[]) - Method in class smile.validation.metric.MAD
 
score(double[], double[]) - Method in class smile.validation.metric.MSE
 
score(double[], double[]) - Method in class smile.validation.metric.R2
 
score(double[], double[]) - Method in interface smile.validation.metric.RegressionMetric
Returns a score to measure the quality of regression.
score(double[], double[]) - Method in class smile.validation.metric.RMSE
 
score(double[], double[]) - Method in class smile.validation.metric.RSS
 
score(double, int, double, long, long) - Method in class smile.nlp.relevance.BM25
Returns the relevance score between a term and a document based on a corpus.
score(double, long, long) - Method in class smile.nlp.relevance.BM25
Returns the relevance score between a term and a document based on a corpus.
score(int[]) - Method in class smile.classification.Maxent.Binomial
 
score(int[], double[]) - Method in class smile.validation.metric.AUC
 
score(int[], double[]) - Method in class smile.validation.metric.LogLoss
 
score(int[], double[]) - Method in interface smile.validation.metric.ProbabilisticClassificationMetric
Returns a score to measure the quality of classification.
score(int[], int[]) - Method in class smile.validation.metric.Accuracy
 
score(int[], int[]) - Method in class smile.validation.metric.AdjustedMutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.AdjustedRandIndex
 
score(int[], int[]) - Method in interface smile.validation.metric.ClassificationMetric
Returns a score to measure the quality of classification.
score(int[], int[]) - Method in interface smile.validation.metric.ClusteringMetric
Returns a score to measure the quality of clustering.
score(int[], int[]) - Method in class smile.validation.metric.Error
 
score(int[], int[]) - Method in class smile.validation.metric.Fallout
 
score(int[], int[]) - Method in class smile.validation.metric.FDR
 
score(int[], int[]) - Method in class smile.validation.metric.FScore
 
score(int[], int[]) - Method in class smile.validation.metric.MatthewsCorrelation
 
score(int[], int[]) - Method in class smile.validation.metric.MutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.NormalizedMutualInformation
 
score(int[], int[]) - Method in class smile.validation.metric.Precision
 
score(int[], int[]) - Method in class smile.validation.metric.RandIndex
 
score(int[], int[]) - Method in class smile.validation.metric.Recall
 
score(int[], int[]) - Method in class smile.validation.metric.Sensitivity
 
score(int[], int[]) - Method in class smile.validation.metric.Specificity
 
score(int, int, double, int, int, double, int, int, double, long, long) - Method in class smile.nlp.relevance.BM25
Returns the relevance score between a term and a document based on a corpus.
score(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
score(T) - Method in class smile.base.svm.KernelMachine
Returns the decision function value.
score(T) - Method in interface smile.classification.Classifier
The raw prediction score.
score(T) - Method in interface smile.gap.Fitness
Returns the non-negative fitness value of a chromosome.
scores() - Method in record class smile.manifold.MDS
Returns the value of the scores record component.
scoreTime() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the scoreTime record component.
scoreTime() - Method in record class smile.validation.RegressionMetrics
Returns the value of the scoreTime record component.
scott(double[]) - Static method in interface smile.math.Histogram
Returns the number of bins by Scott's rule h = 3.5 * σ / (n1/3).
screenProjection(double...) - Method in class smile.plot.swing.Projection
Project logical coordinates to Java2D coordinates.
screenProjectionBaseRatio(double...) - Method in class smile.plot.swing.Projection
Project logical coordinates in base ratio to Java2D coordinates.
ScreePlot - Class in smile.plot.swing
In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis.
ScreePlot(double[]) - Constructor for class smile.plot.swing.ScreePlot
Constructor.
sd - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The standard deviation of predictive distribution at query points.
sd - Variable in class smile.regression.GaussianProcessRegression
The standard deviation of responsible variable.
sd - Variable in class smile.validation.ClassificationValidations
The standard deviation of metrics.
sd - Variable in class smile.validation.RegressionValidations
The standard deviation of metrics.
sd() - Method in class smile.neighbor.lsh.HashValueParzenModel
Returns the standard deviation.
sd() - Method in class smile.stat.distribution.BinomialDistribution
 
sd() - Method in class smile.stat.distribution.ChiSquareDistribution
 
sd() - Method in interface smile.stat.distribution.Distribution
Returns the standard deviation of distribution.
sd() - Method in class smile.stat.distribution.EmpiricalDistribution
 
sd() - Method in class smile.stat.distribution.ExponentialDistribution
 
sd() - Method in class smile.stat.distribution.GammaDistribution
 
sd() - Method in class smile.stat.distribution.GaussianDistribution
 
sd() - Method in class smile.stat.distribution.GeometricDistribution
 
sd() - Method in class smile.stat.distribution.KernelDensity
 
sd() - Method in class smile.stat.distribution.LogisticDistribution
 
sd() - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
sd() - Method in class smile.stat.distribution.PoissonDistribution
 
sd() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
sd() - Method in class smile.stat.distribution.TDistribution
 
sd(double[]) - Static method in class smile.math.MathEx
Returns the standard deviation of an array.
sd(float[]) - Static method in class smile.math.MathEx
Returns the standard deviation of an array.
sd(int[]) - Static method in class smile.math.MathEx
Returns the standard deviation of an array.
search(double) - Method in class smile.interpolation.AbstractInterpolation
Given a value x, return a value j such that x is (insofar as possible) centered in the subrange xx[j..j+m-1], where xx is the stored data.
search(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.KDTree
 
search(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.LSH
 
search(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.MPLSH
 
search(double[], double, List<Neighbor<double[], E>>, double, int) - Method in class smile.neighbor.MPLSH
Search the neighbors in the given radius of query object, i.e.
search(double[], int) - Method in class smile.neighbor.KDTree
 
search(double[], int) - Method in class smile.neighbor.LSH
 
search(double[], int) - Method in class smile.neighbor.MPLSH
 
search(double[], int) - Method in class smile.neighbor.RandomProjectionForest
 
search(double[], int) - Method in class smile.neighbor.RandomProjectionTree
 
search(double[], int, double, int) - Method in class smile.neighbor.MPLSH
Returns the approximate k-nearest neighbors.
search(String) - Method in interface smile.nlp.Corpus
Returns the iterator over the set of documents containing the given term.
search(String) - Method in class smile.nlp.SimpleCorpus
 
search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.BKTree
 
search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.CoverTree
 
search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.LinearSearch
 
search(K, double, List<Neighbor<K, V>>) - Method in interface smile.neighbor.RNNSearch
Retrieves the neighbors in a fixed radius of query object, i.e.
search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.SNLSH
 
search(K, int) - Method in class smile.neighbor.CoverTree
 
search(K, int) - Method in interface smile.neighbor.KNNSearch
Retrieves the k nearest neighbors to the query key.
search(K, int) - Method in class smile.neighbor.LinearSearch
 
search(K, int, List<Neighbor<K, V>>) - Method in class smile.neighbor.BKTree
Search the neighbors in the given radius of query object, i.e.
search(RelevanceRanker, String) - Method in interface smile.nlp.Corpus
Returns the iterator over the set of documents containing the given term in descending order of relevance.
search(RelevanceRanker, String) - Method in class smile.nlp.SimpleCorpus
 
search(RelevanceRanker, String[]) - Method in interface smile.nlp.Corpus
Returns the iterator over the set of documents containing (at least one of) the given terms in descending order of relevance.
search(RelevanceRanker, String[]) - Method in class smile.nlp.SimpleCorpus
 
SECOND - Enum constant in enum class smile.data.formula.DateFeature
The seconds represented by an integer from 0 to 59 in the usual manner.
seed(int, double[][]) - Static method in class smile.vq.NeuralGas
Selects random samples as initial neurons of Neural Gas.
seed(T[], T[], int[], ToDoubleBiFunction<T, T>) - Static method in class smile.clustering.PartitionClustering
Initialize cluster membership of input objects with K-Means++ algorithm.
seeds() - Static method in class smile.math.MathEx
Returns a stream of random numbers to be used as RNG seeds.
select(double[], int) - Static method in interface smile.sort.QuickSelect
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
select(float[], int) - Static method in interface smile.sort.QuickSelect
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
select(int...) - Method in interface smile.data.DataFrame
Returns a new DataFrame with selected columns.
select(int...) - Method in class smile.data.IndexDataFrame
 
select(int[], int) - Static method in interface smile.sort.QuickSelect
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
select(String...) - Method in interface smile.data.DataFrame
Returns a new DataFrame with selected columns.
select(T[], int) - Static method in interface smile.sort.QuickSelect
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
Selection - Interface in smile.gap
The way to select chromosomes from the population as parents to crossover.
sensitivity() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the sensitivity record component.
Sensitivity - Class in smile.validation.metric
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a statistical measures of the performance of a binary classification test.
Sensitivity() - Constructor for class smile.validation.metric.Sensitivity
 
SENT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Sentence-break punctuation .
sentencePiece(String) - Static method in interface smile.llm.tokenizer.Tokenizer
Loads a SentencePiece model.
SentencePiece - Class in smile.llm.tokenizer
SentencePiece is an unsupervised text tokenizer by Google.
SentencePiece(String) - Constructor for class smile.llm.tokenizer.SentencePiece
Constructor.
SentenceSplitter - Interface in smile.nlp.tokenizer
A sentence splitter segments text into sentences (a string of words satisfying the grammatical rules of a language).
SequenceLabeler<T> - Interface in smile.sequence
A sequence labeler assigns a class label to each position of the sequence.
SequentialBlock - Class in smile.deep.layer
A block of sequential layers.
SequentialBlock() - Constructor for class smile.deep.layer.SequentialBlock
Constructor.
SequentialBlock(String) - Constructor for class smile.deep.layer.SequentialBlock
Constructor.
SequentialBlock(Layer...) - Constructor for class smile.deep.layer.SequentialBlock
Constructor.
set(int, double) - Method in class smile.math.Complex.Array
Sets the i-th element with a real value.
set(int, double) - Method in class smile.math.matrix.SparseMatrix
Sets the element at the storage index.
set(int, double) - Method in class smile.util.DoubleArrayList
Replaces the value at the specified position in this list with the specified value.
set(int, double) - Method in class smile.util.SparseArray
Sets or adds an entry.
set(int, float) - Method in class smile.math.matrix.fp32.SparseMatrix
Sets the element at the storage index.
set(int, int) - Method in class smile.util.IntArrayList
Replaces the value at the specified position in this list with the specified value.
set(int, int, double) - Method in class smile.math.matrix.BandMatrix
 
set(int, int, double) - Method in class smile.math.matrix.BigMatrix
 
set(int, int, double) - Method in class smile.math.matrix.IMatrix
Sets A[i,j] = x.
set(int, int, double) - Method in class smile.math.matrix.Matrix
 
set(int, int, double) - Method in class smile.math.matrix.SymmMatrix
 
set(int, int, double) - Method in class smile.util.Array2D
Sets A[i, j].
set(int, int, float) - Method in class smile.math.matrix.fp32.BandMatrix
 
set(int, int, float) - Method in class smile.math.matrix.fp32.IMatrix
Sets A[i,j] = x.
set(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
 
set(int, int, float) - Method in class smile.math.matrix.fp32.SymmMatrix
 
set(int, int, int) - Method in class smile.util.IntArray2D
Sets A[i, j].
set(int, Complex) - Method in class smile.math.Complex.Array
Sets the i-th element.
set(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Sets the matrix value.
set(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Sets the matrix value.
set(Matrix) - Method in class smile.math.matrix.Matrix
Sets the matrix value.
setAnchor(String) - Method in interface smile.nlp.AnchorText
Sets the anchor text.
setAnchor(String) - Method in class smile.nlp.SimpleText
Sets the anchor text.
setAxisLabel(int, String) - Method in class smile.plot.swing.Canvas
Sets the label/legend of an axis.
setAxisLabels(String...) - Method in class smile.plot.swing.Canvas
Sets the labels/legends of axes.
setBound(double[], double[]) - Method in class smile.plot.swing.Base
Sets the axis bounds without applying the extending heuristic.
setBound(double[], double[]) - Method in class smile.plot.swing.Canvas
Extend lower and upper bounds.
setClipNorm(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the gradient clipping norm.
setClipValue(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the gradient clipping value.
setColor(Color) - Method in class smile.plot.swing.Graphics
Set the color.
setDefaultDevice() - Method in class smile.deep.tensor.Device
Sets Tensor to be allocated on this device.
setDefaultOptions(Tensor.Options) - Static method in class smile.deep.tensor.Tensor
Sets the default options to create tensors.
setDescription(String) - Method in class smile.swing.FileChooser.SimpleFileFilter
Sets the human-readable description of this filter.
setEdgeAge(Neuron, int) - Method in class smile.vq.hebb.Neuron
Sets the age of edge.
setFocusBorder(Border) - Method in class smile.swing.table.ButtonCellRenderer
The foreground color of the button when the cell has focus
setFont(Font) - Method in class smile.plot.swing.Graphics
Set the font.
setFrameVisible(boolean) - Method in class smile.plot.swing.Axis
Set the visibility of the frame grid lines and their labels.
setGraphics(Graphics2D, int, int) - Method in class smile.plot.swing.Graphics
Set the Java2D graphics object.
setGridVisible(boolean) - Method in class smile.plot.swing.Axis
Set the visibility of the grid lines and their labels.
setLabel(String) - Method in class smile.plot.swing.Axis
Sets the label.
setLearningRate(double) - Method in class smile.classification.LogisticRegression
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.classification.Maxent
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.classification.SparseLogisticRegression
Sets the learning rate of stochastic gradient descent.
setLearningRate(double) - Method in class smile.deep.Optimizer
Sets the learning rate.
setLearningRate(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the learning rate.
setLearningRateSchedule(TimeFunction) - Method in class smile.deep.Model
Sets the learning rate schedule.
setLegendVisible(boolean) - Method in class smile.plot.swing.Canvas
Sets if legends are visible.
setLocalSearchSteps(int) - Method in class smile.gap.GeneticAlgorithm
Sets the number of iterations of local search for Lamarckian algorithm.
setMargin(double) - Method in class smile.plot.swing.Canvas
Sets the size of margin in [0.0, 0.3] on each side.
setMnemonic(int) - Method in class smile.swing.table.ButtonCellRenderer
The mnemonic to activate the button when the cell has focus
setMomentum(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the momentum factor.
setNumThreads(int) - Static method in class smile.deep.tensor.Device
Sets the number of threads used for intraop parallelism on CPU.
setPage(int) - Method in class smile.swing.table.PageTableModel
Moves to specific page and fire a data changed (all rows).
setPageSize(int) - Method in class smile.swing.table.PageTableModel
Sets the page size.
setPaint(Paint) - Method in class smile.plot.swing.Graphics
Set the paint object.
setParameters(Properties) - Method in class smile.base.mlp.MultilayerPerceptron
Sets MLP hyperparameters such as learning rate, weight decay, momentum, RMSProp, etc.
setProb(PrZ[]) - Method in class smile.neighbor.lsh.Probe
Calculate the probability of the probe.
setRequireGrad(boolean) - Method in class smile.deep.tensor.Tensor
Sets if autograd should record operations on this tensor.
setRMSProp(double, double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets RMSProp parameters.
setRotation(double) - Method in class smile.plot.swing.Axis
Sets the rotation degree of tick strings.
setSeed(int) - Method in class smile.math.random.MersenneTwister
Sets the seed of random numbers.
setSeed(int[]) - Method in class smile.math.random.MersenneTwister
Sets the seed of random numbers.
setSeed(long) - Static method in class smile.math.MathEx
Initialize the random number generator with a seed.
setSeed(long) - Method in class smile.math.random.MersenneTwister
 
setSeed(long) - Method in class smile.math.random.MersenneTwister64
 
setSeed(long) - Method in interface smile.math.random.RandomNumberGenerator
Initialize the random generator with a seed.
setSeed(long) - Method in class smile.math.Random
Initialize the random generator with a seed.
setSeed(long) - Method in class smile.math.random.UniversalGenerator
 
setSeed(long[]) - Method in class smile.math.random.MersenneTwister64
Sets the seed of random numbers.
setSelectedFont(Font) - Method in class smile.swing.FontChooser
Set the selected font.
setSelectedFontFamily(String) - Method in class smile.swing.FontChooser
Set the family name of the selected font.
setSelectedFontSize(int) - Method in class smile.swing.FontChooser
Set the size of the selected font.
setSelectedFontStyle(int) - Method in class smile.swing.FontChooser
Set the style of the selected font.
setSize(int, int) - Method in class smile.plot.swing.Projection
Sets the size of physical plot area.
setStroke(Stroke) - Method in class smile.plot.swing.Graphics
Set the stroke.
setTicks(String[], double[]) - Method in class smile.plot.swing.Axis
Add a label to the axis at given location.
setTickVisible(boolean) - Method in class smile.plot.swing.Axis
Set the visibility of the axis label.
setTitle(String) - Method in class smile.plot.swing.Canvas
Set the main title of canvas.
setTitleColor(Color) - Method in class smile.plot.swing.Canvas
Set the color for title.
setTitleFont(Font) - Method in class smile.plot.swing.Canvas
Set the font for title.
setValue(Object) - Method in class smile.swing.table.ByteArrayCellRenderer
 
setValue(Object) - Method in class smile.swing.table.DateCellRenderer
 
setValue(Object) - Method in class smile.swing.table.DoubleArrayCellRenderer
 
setValue(Object) - Method in class smile.swing.table.FloatArrayCellRenderer
 
setValue(Object) - Method in class smile.swing.table.FontCellRenderer
 
setValue(Object) - Method in class smile.swing.table.IntegerArrayCellRenderer
 
setValue(Object) - Method in class smile.swing.table.LongArrayCellRenderer
 
setValue(Object) - Method in class smile.swing.table.NumberCellRenderer
 
setValue(Object) - Method in class smile.swing.table.ShortArrayCellRenderer
 
setWeight(int, int, double) - Method in class smile.graph.AdjacencyList
 
setWeight(int, int, double) - Method in class smile.graph.AdjacencyMatrix
 
setWeight(int, int, double) - Method in class smile.graph.Graph
Sets the weight assigned to a given edge.
setWeightDecay(double) - Method in class smile.base.mlp.MultilayerPerceptron
Sets the weight decay factor.
SGD(Model, double) - Static method in class smile.deep.Optimizer
Returns a stochastic gradient descent optimizer without momentum.
SGD(Model, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
Returns a stochastic gradient descent optimizer with momentum.
shap(Stream<T>) - Method in interface smile.feature.importance.SHAP
Returns the average of absolute SHAP values over a data set.
shap(DataFrame) - Method in class smile.base.cart.CART
Returns the average of absolute SHAP values over a data frame.
shap(DataFrame) - Method in class smile.classification.GradientTreeBoost
Returns the average of absolute SHAP values over a data frame.
shap(DataFrame) - Method in interface smile.feature.importance.TreeSHAP
Returns the average of absolute SHAP values over a data frame.
shap(Tuple) - Method in class smile.base.cart.CART
 
shap(Tuple) - Method in class smile.classification.GradientTreeBoost
 
shap(Tuple) - Method in interface smile.feature.importance.TreeSHAP
 
shap(T) - Method in interface smile.feature.importance.SHAP
Returns the SHAP values.
SHAP<T> - Interface in smile.feature.importance
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.
shape() - Method in class smile.deep.tensor.Tensor
Returns the shape of the tensor.
shape(String) - Method in class smile.plot.vega.Mark
Sets the shape of the point marks.
Shape - Class in smile.plot.swing
Abstract rendering object in a PlotCanvas.
Shape() - Constructor for class smile.plot.swing.Shape
Constructor.
Shape(Color) - Constructor for class smile.plot.swing.Shape
Constructor.
ShellSort - Interface in smile.sort
Shell sort is a generalization of insertion sort.
ShepardInterpolation - Class in smile.interpolation
Shepard interpolation is a special case of normalized radial basis function interpolation if the function φ(r) goes to infinity as r → 0, and is finite for r > 0.
ShepardInterpolation(double[][], double[]) - Constructor for class smile.interpolation.ShepardInterpolation
Constructor.
ShepardInterpolation(double[][], double[], double) - Constructor for class smile.interpolation.ShepardInterpolation
Constructor.
ShepardInterpolation1D - Class in smile.interpolation
Shepard interpolation is a special case of normalized radial basis function interpolation if the function φ(r) goes to infinity as r → 0, and is finite for r > 0.
ShepardInterpolation1D(double[], double[]) - Constructor for class smile.interpolation.ShepardInterpolation1D
Constructor.
ShepardInterpolation1D(double[], double[], double) - Constructor for class smile.interpolation.ShepardInterpolation1D
Constructor.
ShepardInterpolation2D - Class in smile.interpolation
Shepard interpolation is a special case of normalized radial basis function interpolation if the function φ(r) goes to infinity as r → 0, and is finite for r > 0.
ShepardInterpolation2D(double[], double[], double[]) - Constructor for class smile.interpolation.ShepardInterpolation2D
Constructor.
ShepardInterpolation2D(double[], double[], double[], double) - Constructor for class smile.interpolation.ShepardInterpolation2D
Constructor.
shift() - Method in class smile.neighbor.lsh.Probe
This operation shifts to the right the last nonzero component if it is equal to one and if it is not the last one.
ShiftedGeometricDistribution - Class in smile.stat.distribution
The "shifted" geometric distribution is a discrete probability distribution of the number of failures before the first success, supported on the set {0, 1, 2, 3, …}.
ShiftedGeometricDistribution(double) - Constructor for class smile.stat.distribution.ShiftedGeometricDistribution
Constructor.
Short - Enum constant in enum class smile.data.type.DataType.ID
Short type ID.
shortArray() - Method in class smile.deep.tensor.Tensor
Returns the short integer array of tensor elements
ShortArrayCellRenderer - Class in smile.swing.table
Short array renderer in JTable.
ShortArrayCellRenderer() - Constructor for class smile.swing.table.ShortArrayCellRenderer
Constructor.
ShortArrayType - Static variable in class smile.data.type.DataTypes
Short Array data type.
ShortObjectType - Static variable in class smile.data.type.DataTypes
Short Object data type.
ShortType - Class in smile.data.type
Short data type.
ShortType - Static variable in class smile.data.type.DataTypes
Short data type.
shortValue() - Method in class smile.deep.tensor.Tensor
Returns the short value when the tensor holds a single value.
shortVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
shortVector(int) - Method in class smile.data.IndexDataFrame
 
shortVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
shortVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
ShortVector - Interface in smile.data.vector
An immutable short vector.
show() - Method in class smile.plot.swing.Headless
 
show() - Method in class smile.plot.vega.VegaLite
Displays the plot with the default browser.
show(boolean) - Method in class smile.plot.vega.VegaLite
Displays the plot with the default browser.
showDialog(Component) - Method in class smile.swing.FontChooser
Show font selection dialog.
SI - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
The eigenvalues of smallest imaginary part.
SI - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
The eigenvalues of smallest imaginary part.
SIB - Class in smile.clustering
The Sequential Information Bottleneck algorithm.
SIB(double, double[][], int[]) - Constructor for class smile.clustering.SIB
Constructor.
Side - Enum Class in smile.math.blas
The flag if the symmetric matrix A appears on the left or right in the matrix-matrix operation.
siftDown(double[], int, int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is decreased.
siftDown(float[], int, int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is decreased.
siftDown(int[], int, int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is decreased.
siftDown(T[], int, int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is decreased.
siftUp(double[], int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is increased.
siftUp(float[], int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is increased.
siftUp(int[], int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is increased.
siftUp(T[], int) - Static method in interface smile.sort.Sort
To restore the max-heap condition when a node's priority is increased.
sigma - Variable in class smile.stat.distribution.GaussianDistribution
The standard deviation.
sigma - Variable in class smile.stat.distribution.LogNormalDistribution
The standard deviation of normal distribution.
sigma - Variable in class smile.stat.distribution.MultivariateGaussianDistribution
The covariance matrix.
sigma() - Method in class smile.math.kernel.PearsonKernel
Returns Pearson width.
sigmoid() - Static method in interface smile.base.mlp.ActivationFunction
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
sigmoid(double) - Static method in class smile.math.MathEx
Logistic sigmoid function 1 / (1 + exp(-x)).
sigmoid(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with sigmoid activation function.
sigmoid(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with sigmoid activation function.
sigmoid(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with sigmoid activation function.
Sigmoid - Class in smile.deep.activation
Sigmoid activation function.
Sigmoid(boolean) - Constructor for class smile.deep.activation.Sigmoid
Constructor.
SIGMOID - Enum constant in enum class smile.base.mlp.OutputFunction
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
sign(String) - Static method in interface smile.data.formula.Terms
The sign(x) term.
sign(Term) - Static method in interface smile.data.formula.Terms
The sign(x) term.
SignalNoiseRatio - Record Class in smile.feature.selection
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric, which can be used as a feature selection criterion for binary classification problems.
SignalNoiseRatio(String, double) - Constructor for record class smile.feature.selection.SignalNoiseRatio
Creates an instance of a SignalNoiseRatio record class.
significance(double) - Static method in interface smile.stat.Hypothesis
Returns the significance code of p-value.
signum(String) - Static method in interface smile.data.formula.Terms
The signum(x) term.
signum(Term) - Static method in interface smile.data.formula.Terms
The signum(x) term.
silu(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with SiLU activation function.
silu(int, int, double) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with SiLU activation function.
SiLU - Class in smile.deep.activation
Sigmoid Linear Unit activation function.
SiLU(boolean) - Constructor for class smile.deep.activation.SiLU
Constructor.
SimHash<T> - Interface in smile.hash
SimHash is a technique for quickly estimating how similar two sets are.
SimpleCorpus - Class in smile.nlp
An in-memory text corpus.
SimpleCorpus() - Constructor for class smile.nlp.SimpleCorpus
Constructor.
SimpleCorpus(SentenceSplitter, Tokenizer, StopWords, Punctuations) - Constructor for class smile.nlp.SimpleCorpus
Constructor.
SimpleDictionary - Class in smile.nlp.dictionary
A simple implementation of dictionary interface.
SimpleDictionary(String) - Constructor for class smile.nlp.dictionary.SimpleDictionary
Constructor.
SimpleFileFilter(String, String) - Constructor for class smile.swing.FileChooser.SimpleFileFilter
Creates a file filter that accepts the given file type.
SimpleFileFilter(String, String...) - Constructor for class smile.swing.FileChooser.SimpleFileFilter
Creates a file filter from the given string array and description.
SimpleFileFilter(String, Collection<String>) - Constructor for class smile.swing.FileChooser.SimpleFileFilter
Creates a file filter from the given string array and description.
SimpleImputer - Class in smile.feature.imputation
Simple algorithm replaces missing values with the constant value along each column.
SimpleImputer(Map<String, Object>) - Constructor for class smile.feature.imputation.SimpleImputer
Constructor.
SimpleNormalizer - Class in smile.nlp.normalizer
A baseline normalizer for processing Unicode text.
SimpleParagraphSplitter - Class in smile.nlp.tokenizer
This is a simple paragraph splitter.
SimpleSentenceSplitter - Class in smile.nlp.tokenizer
This is a simple sentence splitter for English.
SimpleText - Class in smile.nlp
A list-of-words representation of documents.
SimpleText(String, String, String, String[]) - Constructor for class smile.nlp.SimpleText
Constructor.
SimpleTokenizer - Class in smile.nlp.tokenizer
A word tokenizer that tokenizes English sentences with some differences from TreebankWordTokenizer, notably on handling not-contractions.
SimpleTokenizer() - Constructor for class smile.nlp.tokenizer.SimpleTokenizer
Constructor.
SimpleTokenizer(boolean) - Constructor for class smile.nlp.tokenizer.SimpleTokenizer
Constructor.
sin() - Method in class smile.deep.tensor.Tensor
Returns a new tensor with the sine of the elements of input.
sin() - Method in class smile.math.Complex
Returns the complex sine.
sin(String) - Static method in interface smile.data.formula.Terms
The sin(x) term.
sin(Term) - Static method in interface smile.data.formula.Terms
The sin(x) term.
sin_() - Method in class smile.deep.tensor.Tensor
Computes the sine of the elements of input in place.
SINGLE_LINE - Enum constant in enum class smile.io.JSON.Mode
One JSON object per line.
SINGLE_POINT - Enum constant in enum class smile.gap.Crossover
Single point crossover - one crossover point is selected, binary string from beginning of chromosome to the crossover point is copied from one parent, the rest is copied from the second parent.
SingleLinkage - Class in smile.clustering.linkage
Single linkage.
SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
SingleLinkage(int, float[]) - Constructor for class smile.clustering.linkage.SingleLinkage
Constructor.
sinh(String) - Static method in interface smile.data.formula.Terms
The sinh(x) term.
sinh(Term) - Static method in interface smile.data.formula.Terms
The sinh(x) term.
size - Variable in class smile.base.cart.LeafNode
The number of samples in the node.
size - Variable in class smile.clustering.PartitionClustering
The number of observations in each cluster.
size() - Method in class smile.anomaly.IsolationForest
Returns the number of trees in the model.
size() - Method in class smile.association.FPGrowth
Returns the number transactions in the database.
size() - Method in class smile.association.FPTree
Returns the number transactions in the database.
size() - Method in class smile.base.cart.CART
Returns the number of nodes in the tree.
size() - Method in class smile.base.cart.InternalNode
 
size() - Method in class smile.base.cart.LeafNode
 
size() - Method in interface smile.base.cart.Node
Returns the number of samples in the node.
size() - Method in class smile.classification.AdaBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.classification.RandomForest
Returns the number of trees in the model.
size() - Method in class smile.clustering.linkage.Linkage
Returns the proximity matrix size.
size() - Method in interface smile.data.DataFrame
Returns the number of rows.
size() - Method in interface smile.data.Dataset
Returns the number of elements in this collection.
size() - Method in class smile.data.formula.FactorInteraction
Returns the number of factors in the interaction.
size() - Method in class smile.data.IndexDataFrame
 
size() - Method in class smile.data.measure.CategoricalMeasure
Returns the number of levels.
size() - Method in interface smile.data.vector.BaseVector
Returns the number of elements in the vector.
size() - Method in interface smile.deep.Dataset
Returns the size of dataset.
size() - Method in record class smile.graph.NearestNeighborGraph
Returns the number of vertices.
size() - Method in class smile.llm.tokenizer.Tiktoken
Returns the vocabulary size.
size() - Method in class smile.math.matrix.BandMatrix
 
size() - Method in class smile.math.matrix.BigMatrix
 
size() - Method in class smile.math.matrix.fp32.BandMatrix
 
size() - Method in class smile.math.matrix.fp32.IMatrix
Returns the number of stored matrix elements.
size() - Method in class smile.math.matrix.fp32.Matrix
 
size() - Method in class smile.math.matrix.fp32.SparseMatrix
 
size() - Method in class smile.math.matrix.fp32.SymmMatrix
 
size() - Method in class smile.math.matrix.IMatrix
Returns the number of stored matrix elements.
size() - Method in class smile.math.matrix.Matrix
 
size() - Method in class smile.math.matrix.SparseMatrix
 
size() - Method in class smile.math.matrix.SymmMatrix
 
size() - Method in interface smile.nlp.Corpus
Returns the number of words in the corpus.
size() - Method in interface smile.nlp.dictionary.Dictionary
Returns the number of words in this dictionary.
size() - Method in enum class smile.nlp.dictionary.EnglishDictionary
 
size() - Method in class smile.nlp.dictionary.EnglishPunctuations
 
size() - Method in enum class smile.nlp.dictionary.EnglishStopWords
 
size() - Method in class smile.nlp.dictionary.SimpleDictionary
 
size() - Method in class smile.nlp.SimpleCorpus
 
size() - Method in class smile.nlp.SimpleText
 
size() - Method in interface smile.nlp.TextTerms
Returns the number of words.
size() - Method in class smile.nlp.Trie
Returns the number of entries.
size() - Method in class smile.regression.GradientTreeBoost
Returns the number of trees in the model.
size() - Method in class smile.regression.RandomForest
Returns the number of trees in the model.
size() - Method in class smile.sort.HeapSelect
Returns the number of objects that have been added into heap.
size() - Method in class smile.stat.distribution.DiscreteMixture
Returns the number of components in the mixture.
size() - Method in class smile.stat.distribution.Mixture
Returns the number of components in the mixture.
size() - Method in class smile.stat.distribution.MultivariateMixture
Returns the number of components in the mixture.
size() - Method in class smile.util.DoubleArrayList
Returns the number of values in the list.
size() - Method in class smile.util.IntArrayList
Returns the number of values in the list.
size() - Method in class smile.util.IntDoubleHashMap
Returns the number of key-value mappings in this map.
size() - Method in class smile.util.IntHashSet
Returns the number of elements in this set.
size() - Method in class smile.util.IntSet
Returns the number of values.
size() - Method in class smile.util.PairingHeap
 
size() - Method in class smile.util.SparseArray
Returns the number of nonzero entries.
size() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the size record component.
size() - Method in record class smile.validation.RegressionMetrics
Returns the value of the size record component.
size() - Method in class smile.vision.ImageDataset
 
size(int) - Method in class smile.deep.tensor.Tensor
Returns the size of given dimension.
size(int) - Method in class smile.plot.vega.Mark
Sets the size of the point marks.
SKY_BLUE - Static variable in interface smile.plot.swing.Palette
 
SLATE_BLUE - Static variable in interface smile.plot.swing.Palette
 
SLATE_GRAY - Static variable in interface smile.plot.swing.Palette
 
slice(double[], int[]) - Static method in class smile.math.MathEx
Returns a slice of data for given indices.
slice(float[], int[]) - Static method in class smile.math.MathEx
Returns a slice of data for given indices.
slice(int[], int[]) - Static method in class smile.math.MathEx
Returns a slice of data for given indices.
slice(int, int) - Method in interface smile.data.DataFrame
Copies the specified range into a new data frame.
slice(int, int) - Method in record class smile.util.Bytes
Returns a copy of byte string slice.
slice(E[], int[]) - Static method in class smile.math.MathEx
Returns a slice of data for given indices.
slice(Integer, Integer) - Static method in class smile.deep.tensor.Index
Returns the slice index for [start, end) with step 1.
slice(Integer, Integer, Integer) - Static method in class smile.deep.tensor.Index
Returns the slice index for [start, end) with the given step.
slice(Long, Long) - Static method in class smile.deep.tensor.Index
Returns the slice index for [start, end) with step 1.
slice(Long, Long, Long) - Static method in class smile.deep.tensor.Index
Returns the slice index for [start, end) with the given step.
slices() - Method in class smile.plot.swing.Axis
Returns the number of slices in linear scale.
SM - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
The eigenvalues smallest in magnitude.
SM - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
The eigenvalues smallest in magnitude.
SM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
The eigenvalues smallest in magnitude.
SM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
The eigenvalues smallest in magnitude.
smile.anomaly - package smile.anomaly
Anomaly detection is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data.
smile.association - package smile.association
Frequent item set mining and association rule mining.
smile.base.cart - package smile.base.cart
Classification and regression tree base package.
smile.base.mlp - package smile.base.mlp
Multilayer perceptron neural network base package.
smile.base.rbf - package smile.base.rbf
RBF network base package.
smile.base.svm - package smile.base.svm
Support vector machine base package.
smile.classification - package smile.classification
Classification algorithms.
smile.clustering - package smile.clustering
Clustering analysis.
smile.clustering.linkage - package smile.clustering.linkage
Cluster dissimilarity measures.
smile.data - package smile.data
Data and attribute encapsulation classes.
smile.data.formula - package smile.data.formula
The formula interface symbolically specifies the predictors and the response.
smile.data.measure - package smile.data.measure
Level of measurement or scale of measure.
smile.data.transform - package smile.data.transform
Data transformations.
smile.data.type - package smile.data.type
Data types.
smile.data.vector - package smile.data.vector
Immutable named vectors.
smile.deep - package smile.deep
Deep learning.
smile.deep.activation - package smile.deep.activation
Activation functions.
smile.deep.layer - package smile.deep.layer
Neural network layers.
smile.deep.metric - package smile.deep.metric
Model validation metrics.
smile.deep.tensor - package smile.deep.tensor
A tensor is a multidimensional array.
smile.feature.extraction - package smile.feature.extraction
Feature extraction.
smile.feature.importance - package smile.feature.importance
Feature importance.
smile.feature.imputation - package smile.feature.imputation
Missing value imputation.
smile.feature.selection - package smile.feature.selection
Feature selection.
smile.feature.transform - package smile.feature.transform
Feature transformations.
smile.gap - package smile.gap
Genetic algorithm and programming.
smile.glm - package smile.glm
Generalized linear models.
smile.glm.model - package smile.glm.model
The error distribution models.
smile.graph - package smile.graph
Graphs are mathematical structures used to model pairwise relations between objects from a certain collection.
smile.hash - package smile.hash
Hashing functions.
smile.hpo - package smile.hpo
Hyperparameter optimization.
smile.ica - package smile.ica
Independent Component Analysis (ICA).
smile.interpolation - package smile.interpolation
Interpolation is the process of constructing a function that takes on specified values at specified points.
smile.interpolation.variogram - package smile.interpolation.variogram
Variogram functions.
smile.io - package smile.io
Interfaces to read/write a Dataset.
smile.llm - package smile.llm
Large language models.
smile.llm.llama - package smile.llm.llama
Meta Llama models.
smile.llm.tokenizer - package smile.llm.tokenizer
LLM Tokenization.
smile.manifold - package smile.manifold
Manifold learning finds a low-dimensional basis for describing high-dimensional data.
smile.math - package smile.math
Basic mathematical functions, complex, differentiable function interfaces, random number generators, unconstrained optimization, and raw data type (int and double) array lists, etc.
smile.math.blas - package smile.math.blas
BLAS and LAPACK interfaces.
smile.math.blas.openblas - package smile.math.blas.openblas
OpenBLAS library.
smile.math.distance - package smile.math.distance
Distance and metric measures.
smile.math.kernel - package smile.math.kernel
Mercer kernels.
smile.math.matrix - package smile.math.matrix
Matrix interface, dense and sparse (band or irregular) matrix encapsulation classes, LU, QR, Cholesky, SVD and eigen decompositions, etc.
smile.math.matrix.fp32 - package smile.math.matrix.fp32
Single-precision (32-bit) matrix.
smile.math.random - package smile.math.random
High quality random number generators as a replacement of the standard Random class of Java system.
smile.math.rbf - package smile.math.rbf
Radial basis functions.
smile.math.special - package smile.math.special
Special mathematical functions including beta, erf, and gamma.
smile.neighbor - package smile.neighbor
Nearest neighbor search.
smile.neighbor.lsh - package smile.neighbor.lsh
LSH internal classes.
smile.nlp - package smile.nlp
Natural language processing.
smile.nlp.collocation - package smile.nlp.collocation
Collocation finding algorithms.
smile.nlp.dictionary - package smile.nlp.dictionary
Common dictionaries such as stop words, punctuation, common English words, etc.
smile.nlp.embedding - package smile.nlp.embedding
Word embedding.
smile.nlp.keyword - package smile.nlp.keyword
Keyword extraction.
smile.nlp.normalizer - package smile.nlp.normalizer
Text normalization.
smile.nlp.pos - package smile.nlp.pos
Part-of-speech taggers.
smile.nlp.relevance - package smile.nlp.relevance
Term-document relevance ranking algorithms.
smile.nlp.stemmer - package smile.nlp.stemmer
English word stemmer algorithms.
smile.nlp.tokenizer - package smile.nlp.tokenizer
Sentence splitter and word tokenizer.
smile.plot.swing - package smile.plot.swing
Mathematical and statistical plots.
smile.plot.vega - package smile.plot.vega
Declarative data visualization.
smile.regression - package smile.regression
Regression analysis.
smile.sequence - package smile.sequence
Learning algorithms for sequence data.
smile.sort - package smile.sort
Sorting algorithms.
smile.stat - package smile.stat
Probability distributions and statistical hypothesis tests.
smile.stat.distribution - package smile.stat.distribution
Probability distributions.
smile.stat.hypothesis - package smile.stat.hypothesis
Statistical hypothesis tests.
smile.swing - package smile.swing
Enhanced and additional Swing components (FileChooser, FontChooser, Table, Button, AlphaIcon, and Printer).
smile.swing.table - package smile.swing.table
Enhancement to Swing JTable and cell components.
smile.swing.text - package smile.swing.text
 
smile.taxonomy - package smile.taxonomy
A taxonomy is a tree of terms (concepts) where leaves must be named but intermediary nodes can be anonymous.
smile.timeseries - package smile.timeseries
Time series analysis.
smile.util - package smile.util
Utility functions.
smile.validation - package smile.validation
Model validation and selection.
smile.validation.metric - package smile.validation.metric
Model validation metrics.
smile.vision - package smile.vision
Computer vision models.
smile.vision.layer - package smile.vision.layer
Neural network layers for computer vision tasks.
smile.vision.transform - package smile.vision.transform
Image transformations.
smile.vq - package smile.vq
Vector quantization is a lossy compression technique used in speech and image coding.
smile.vq.hebb - package smile.vq.hebb
Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell.
smile.wavelet - package smile.wavelet
Discrete wavelet transform (DWT).
smoothness() - Method in class smile.math.kernel.Matern
Returns the smoothness of kernel.
SNLSH<K,V> - Class in smile.neighbor
Locality-Sensitive Hashing for Signatures.
SNLSH(int, SimHash<K>) - Constructor for class smile.neighbor.SNLSH
Constructor.
soft() - Method in class smile.classification.AdaBoost
 
soft() - Method in interface smile.classification.Classifier
Returns true if this is a soft classifier that can estimate the posteriori probabilities of classification.
soft() - Method in class smile.classification.DecisionTree
 
soft() - Method in class smile.classification.DiscreteNaiveBayes
 
soft() - Method in class smile.classification.GradientTreeBoost
 
soft() - Method in class smile.classification.KNN
 
soft() - Method in class smile.classification.LDA
 
soft() - Method in class smile.classification.LogisticRegression
 
soft() - Method in class smile.classification.Maxent
 
soft() - Method in class smile.classification.MLP
 
soft() - Method in class smile.classification.NaiveBayes
 
soft() - Method in class smile.classification.OneVersusOne
 
soft() - Method in class smile.classification.OneVersusRest
 
soft() - Method in class smile.classification.QDA
 
soft() - Method in class smile.classification.RandomForest
 
soft() - Method in class smile.classification.SparseLogisticRegression
 
softmax(double[]) - Static method in class smile.math.MathEx
The softmax function without overflow.
softmax(double[], int) - Static method in class smile.math.MathEx
The softmax function without overflow.
softmax(int) - Method in class smile.deep.tensor.Tensor
Rescales a tensor so that the elements lie in the range [0,1] and sum to 1.
softmax(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with softmax activation function.
Softmax - Class in smile.deep.activation
Softmax activation function.
Softmax() - Constructor for class smile.deep.activation.Softmax
Constructor.
SOFTMAX - Enum constant in enum class smile.base.mlp.OutputFunction
Softmax for multi-class cross entropy objection function.
softShrink(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with soft shrink activation function.
SoftShrink - Class in smile.deep.activation
Soft Shrink activation function.
SoftShrink() - Constructor for class smile.deep.activation.SoftShrink
Constructor.
SoftShrink(double) - Constructor for class smile.deep.activation.SoftShrink
Constructor.
SOLID - Enum constant in enum class smile.plot.swing.Line.Style
 
solve(double[]) - Method in class smile.math.matrix.BandMatrix.Cholesky
Solves the linear system A * x = b.
solve(double[]) - Method in class smile.math.matrix.BandMatrix.LU
Solve A * x = b.
solve(double[]) - Method in class smile.math.matrix.BigMatrix.Cholesky
Solves the linear system A * x = b.
solve(double[]) - Method in class smile.math.matrix.BigMatrix.LU
Solve A * x = b.
solve(double[]) - Method in class smile.math.matrix.BigMatrix.QR
Solves the least squares min || B - A*X ||.
solve(double[]) - Method in class smile.math.matrix.BigMatrix.SVD
Solves the least squares min || B - A*X ||.
solve(double[]) - Method in class smile.math.matrix.Matrix.Cholesky
Solves the linear system A * x = b.
solve(double[]) - Method in class smile.math.matrix.Matrix.LU
Solve A * x = b.
solve(double[]) - Method in class smile.math.matrix.Matrix.QR
Solves the least squares min || B - A*X ||.
solve(double[]) - Method in class smile.math.matrix.Matrix.SVD
Solves the least squares min || B - A*X ||.
solve(double[]) - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
Solve A * x = b.
solve(double[]) - Method in class smile.math.matrix.SymmMatrix.Cholesky
Solves the linear system A * x = b.
solve(double[], double[]) - Method in class smile.math.matrix.IMatrix
Solves A * x = b by iterative biconjugate gradient method with Jacobi preconditioner matrix.
solve(double[], double[], double[], double[]) - Static method in class smile.math.MathEx
Solve the tridiagonal linear set which is of diagonal dominance |bi| > |ai| + |ci|.
solve(double[], double[], IMatrix.Preconditioner, double, int, int) - Method in class smile.math.matrix.IMatrix
Solves A * x = b by iterative biconjugate gradient method.
solve(float[]) - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
Solves the linear system A * x = b.
solve(float[]) - Method in class smile.math.matrix.fp32.BandMatrix.LU
Solve A * x = b.
solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.Cholesky
Solves the linear system A * x = b.
solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.LU
Solve A * x = b.
solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.QR
Solves the least squares min || B - A*X ||.
solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.SVD
Solves the least squares min || B - A*X ||.
solve(float[]) - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
Solve A * x = b.
solve(float[]) - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
Solves the linear system A * x = b.
solve(float[], float[]) - Method in class smile.math.matrix.fp32.IMatrix
Solves A * x = b by iterative biconjugate gradient method with Jacobi preconditioner matrix.
solve(float[], float[], IMatrix.Preconditioner, float, int, int) - Method in class smile.math.matrix.fp32.IMatrix
Solves A * x = b by iterative biconjugate gradient method.
solve(BigMatrix) - Method in class smile.math.matrix.BigMatrix.Cholesky
Solves the linear system A * X = B.
solve(BigMatrix) - Method in class smile.math.matrix.BigMatrix.LU
Solve A * X = B.
solve(BigMatrix) - Method in class smile.math.matrix.BigMatrix.QR
Solves the least squares min || B - A*X ||.
solve(Matrix) - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
Solves the linear system A * X = B.
solve(Matrix) - Method in class smile.math.matrix.fp32.BandMatrix.LU
Solve A * X = B.
solve(Matrix) - Method in class smile.math.matrix.fp32.Matrix.Cholesky
Solves the linear system A * X = B.
solve(Matrix) - Method in class smile.math.matrix.fp32.Matrix.LU
Solve A * X = B.
solve(Matrix) - Method in class smile.math.matrix.fp32.Matrix.QR
Solves the least squares min || B - A*X ||.
solve(Matrix) - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
Solve A * X = B.
solve(Matrix) - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
Solves the linear system A * X = B.
solve(Matrix) - Method in class smile.math.matrix.BandMatrix.Cholesky
Solves the linear system A * X = B.
solve(Matrix) - Method in class smile.math.matrix.BandMatrix.LU
Solve A * X = B.
solve(Matrix) - Method in class smile.math.matrix.Matrix.Cholesky
Solves the linear system A * X = B.
solve(Matrix) - Method in class smile.math.matrix.Matrix.LU
Solve A * X = B.
solve(Matrix) - Method in class smile.math.matrix.Matrix.QR
Solves the least squares min || B - A*X ||.
solve(Matrix) - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
Solve A * X = B.
solve(Matrix) - Method in class smile.math.matrix.SymmMatrix.Cholesky
Solves the linear system A * X = B.
SOM - Class in smile.vq
Self-Organizing Map.
SOM(double[][][], TimeFunction, Neighborhood) - Constructor for class smile.vq.SOM
Constructor.
sort() - Method in class smile.math.matrix.BigMatrix.EVD
Sorts the eigenvalues in descending order and reorders the corresponding eigenvectors.
sort() - Method in class smile.math.matrix.fp32.Matrix.EVD
Sorts the eigenvalues in descending order and reorders the corresponding eigenvectors.
sort() - Method in class smile.math.matrix.Matrix.EVD
Sorts the eigenvalues in descending order and reorders the corresponding eigenvectors.
sort() - Method in class smile.sort.DoubleHeapSelect
Sort the smallest values.
sort() - Method in class smile.sort.FloatHeapSelect
Sort the smallest values.
sort() - Method in class smile.sort.HeapSelect
Sort the smallest values.
sort() - Method in class smile.sort.IntHeapSelect
Sort the smallest values.
sort() - Method in class smile.util.SparseArray
Sorts the array elements such that the indices are in ascending order.
sort(double[]) - Static method in interface smile.sort.HeapSort
Sorts the specified array into ascending numerical order.
sort(double[]) - Static method in class smile.sort.QuickSort
Sorts the specified array into ascending numerical order.
sort(double[]) - Static method in interface smile.sort.ShellSort
Sorts the specified array into ascending numerical order.
sort(double[][]) - Static method in class smile.math.MathEx
Sorts each variable and returns the index of values in ascending order.
sort(double[], double[]) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(double[], double[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(double[], int[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(double[], int[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(double[], Object[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(double[], Object[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(float[]) - Static method in interface smile.sort.HeapSort
Sorts the specified array into ascending numerical order.
sort(float[]) - Static method in class smile.sort.QuickSort
Sorts the specified array into ascending numerical order.
sort(float[]) - Static method in interface smile.sort.ShellSort
Sorts the specified array into ascending numerical order.
sort(float[], float[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(float[], float[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(float[], int[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(float[], int[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(float[], Object[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(float[], Object[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(int[]) - Static method in interface smile.sort.HeapSort
Sorts the specified array into ascending numerical order.
sort(int[]) - Static method in class smile.sort.QuickSort
Sorts the specified array into ascending numerical order.
sort(int[]) - Static method in interface smile.sort.ShellSort
Sorts the specified array into ascending numerical order.
sort(int[], double[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(int[], double[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(int[], int[]) - Static method in class smile.sort.QuickSort
Besides sorting the array, the array b will be also rearranged as the same order of array.
sort(int[], int[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(int[], Object[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(int[], Object[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(String) - Method in class smile.plot.vega.Field
Sets the sorting property.
sort(String...) - Method in class smile.plot.vega.StackTransform
Sets the fields for sorting data objects within a window.
sort(String...) - Method in class smile.plot.vega.WindowTransform
Sets the fields for sorting data objects within a window.
sort(SortField...) - Method in class smile.plot.vega.StackTransform
Sets the fields for sorting data objects within a window.
sort(SortField...) - Method in class smile.plot.vega.WindowTransform
Sets the fields for sorting data objects within a window.
sort(T[]) - Static method in interface smile.sort.HeapSort
Sorts the specified array into ascending order.
sort(T[]) - Static method in class smile.sort.QuickSort
Sorts the specified array into ascending order.
sort(T[]) - Static method in interface smile.sort.ShellSort
Sorts the specified array into ascending order.
sort(T[], int[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(T[], int[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(T[], int[], int, Comparator<T>) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
sort(T[], Object[]) - Static method in class smile.sort.QuickSort
Besides sorting the array x, the array y will be also rearranged as the same order of x.
sort(T[], Object[], int) - Static method in class smile.sort.QuickSort
This is an efficient implementation Quick Sort algorithm without recursive.
Sort - Interface in smile.sort
Sort algorithm trait that includes useful static functions such as swap and swift up/down used in many sorting algorithms.
SortField - Record Class in smile.plot.vega
A sort field definition for sorting data objects within a window.
SortField(String, String) - Constructor for record class smile.plot.vega.SortField
Creates an instance of a SortField record class.
spacing(double) - Method in class smile.plot.vega.FacetField
Sets the spacing in pixels between facet's sub-views.
spacing(double) - Method in class smile.plot.vega.Field
For facet, row and column channels, sets the spacing in pixels between facet's sub-views.
spacing(int) - Method in class smile.plot.vega.Concat
 
spacing(int) - Method in class smile.plot.vega.Facet
 
spacing(int) - Method in class smile.plot.vega.FacetField
For the facet channel, sets the number of columns to include in the view composition layout.
spacing(int) - Method in class smile.plot.vega.Repeat
 
spacing(int) - Method in interface smile.plot.vega.ViewLayoutComposition
Sets the spacing in pixels between sub-views of the composition operator.
spacing(int, int) - Method in class smile.plot.vega.Concat
 
spacing(int, int) - Method in class smile.plot.vega.Facet
 
spacing(int, int) - Method in class smile.plot.vega.Repeat
 
spacing(int, int) - Method in interface smile.plot.vega.ViewLayoutComposition
Sets different spacing values for rows and columns.
sparse(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
Generates a sparse random projection.
sparse(int, KernelMachine<SparseArray>) - Static method in class smile.base.svm.LinearKernelMachine
Creates a linear kernel machine.
sparse(String) - Static method in interface smile.math.kernel.MercerKernel
Returns a sparse kernel function.
SparseArray - Class in smile.util
Sparse array of double values.
SparseArray() - Constructor for class smile.util.SparseArray
Constructor.
SparseArray(int) - Constructor for class smile.util.SparseArray
Constructor.
SparseArray(Collection<SparseArray.Entry>) - Constructor for class smile.util.SparseArray
Constructor.
SparseArray(Stream<SparseArray.Entry>) - Constructor for class smile.util.SparseArray
Constructor.
SparseArray.Entry - Record Class in smile.util
The entry in a sparse array of double values.
SparseBSC - Enum constant in enum class smile.deep.tensor.Layout
Sparse tensor in BSC format.
SparseBSR - Enum constant in enum class smile.deep.tensor.Layout
Sparse tensor in BSR format.
SparseChebyshevDistance - Class in smile.math.distance
Chebyshev distance (or Tchebychev distance), or L metric is a metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension.
SparseChebyshevDistance() - Constructor for class smile.math.distance.SparseChebyshevDistance
Constructor.
SparseCOO - Enum constant in enum class smile.deep.tensor.Layout
Sparse tensor in COO format.
SparseCSC - Enum constant in enum class smile.deep.tensor.Layout
Sparse tensor in CSC format.
SparseCSR - Enum constant in enum class smile.deep.tensor.Layout
Sparse tensor in CSR format.
SparseDataset<T> - Interface in smile.data
List of Lists sparse matrix format.
SparseEncoder - Class in smile.feature.extraction
Encodes numeric and categorical features into sparse array with on-hot encoding of categorical variables.
SparseEncoder(StructType, String...) - Constructor for class smile.feature.extraction.SparseEncoder
Constructor.
SparseEuclideanDistance - Class in smile.math.distance
Euclidean distance on sparse arrays.
SparseEuclideanDistance() - Constructor for class smile.math.distance.SparseEuclideanDistance
Constructor.
SparseEuclideanDistance(double[]) - Constructor for class smile.math.distance.SparseEuclideanDistance
Constructor with a given weight vector.
SparseGaussianKernel - Class in smile.math.kernel
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
SparseGaussianKernel(double) - Constructor for class smile.math.kernel.SparseGaussianKernel
Constructor.
SparseGaussianKernel(double, double, double) - Constructor for class smile.math.kernel.SparseGaussianKernel
Constructor.
SparseHyperbolicTangentKernel - Class in smile.math.kernel
The hyperbolic tangent kernel on sparse data.
SparseHyperbolicTangentKernel() - Constructor for class smile.math.kernel.SparseHyperbolicTangentKernel
Constructor with scale 1.0 and offset 0.0.
SparseHyperbolicTangentKernel(double, double) - Constructor for class smile.math.kernel.SparseHyperbolicTangentKernel
Constructor.
SparseHyperbolicTangentKernel(double, double, double[], double[]) - Constructor for class smile.math.kernel.SparseHyperbolicTangentKernel
Constructor.
SparseLaplacianKernel - Class in smile.math.kernel
Laplacian kernel, also referred as exponential kernel.
SparseLaplacianKernel(double) - Constructor for class smile.math.kernel.SparseLaplacianKernel
Constructor.
SparseLaplacianKernel(double, double, double) - Constructor for class smile.math.kernel.SparseLaplacianKernel
Constructor.
SparseLinearKernel - Class in smile.math.kernel
The linear dot product kernel on sparse arrays.
SparseLinearKernel() - Constructor for class smile.math.kernel.SparseLinearKernel
Constructor.
SparseLogisticRegression - Class in smile.classification
Logistic regression on sparse data.
SparseLogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression
Constructor.
SparseLogisticRegression.Binomial - Class in smile.classification
Binomial logistic regression.
SparseLogisticRegression.Multinomial - Class in smile.classification
Multinomial logistic regression.
SparseManhattanDistance - Class in smile.math.distance
Manhattan distance, also known as L1 distance or L1 norm, is the sum of the (absolute) differences of their coordinates.
SparseManhattanDistance() - Constructor for class smile.math.distance.SparseManhattanDistance
Constructor.
SparseManhattanDistance(double[]) - Constructor for class smile.math.distance.SparseManhattanDistance
Constructor.
SparseMaternKernel - Class in smile.math.kernel
The class of Matérn kernels is a generalization of the Gaussian/RBF.
SparseMaternKernel(double, double) - Constructor for class smile.math.kernel.SparseMaternKernel
Constructor.
SparseMaternKernel(double, double, double, double) - Constructor for class smile.math.kernel.SparseMaternKernel
Constructor.
SparseMatrix - Class in smile.math.matrix.fp32
A sparse matrix is a matrix populated primarily with zeros.
SparseMatrix - Class in smile.math.matrix
A sparse matrix is a matrix populated primarily with zeros.
SparseMatrix(double[][]) - Constructor for class smile.math.matrix.SparseMatrix
Constructor.
SparseMatrix(double[][], double) - Constructor for class smile.math.matrix.SparseMatrix
Constructor.
SparseMatrix(float[][]) - Constructor for class smile.math.matrix.fp32.SparseMatrix
Constructor.
SparseMatrix(float[][], float) - Constructor for class smile.math.matrix.fp32.SparseMatrix
Constructor.
SparseMatrix(int, int, double[], int[], int[]) - Constructor for class smile.math.matrix.SparseMatrix
Constructor.
SparseMatrix(int, int, float[], int[], int[]) - Constructor for class smile.math.matrix.fp32.SparseMatrix
Constructor.
SparseMatrix.Entry - Class in smile.math.matrix.fp32
Encapsulates an entry in a matrix for use in streaming.
SparseMatrix.Entry - Class in smile.math.matrix
Encapsulates an entry in a matrix for use in streaming.
SparseMatrixPlot - Class in smile.plot.swing
A graphical representation of sparse matrix data.
SparseMatrixPlot(SparseMatrix, Color) - Constructor for class smile.plot.swing.SparseMatrixPlot
Constructor.
SparseMatrixPlot(SparseMatrix, Color[]) - Constructor for class smile.plot.swing.SparseMatrixPlot
Constructor.
SparseMinkowskiDistance - Class in smile.math.distance
Minkowski distance of order p or Lp-norm, is a generalization of Euclidean distance that is actually L2-norm.
SparseMinkowskiDistance(int) - Constructor for class smile.math.distance.SparseMinkowskiDistance
Constructor.
SparseMinkowskiDistance(int, double[]) - Constructor for class smile.math.distance.SparseMinkowskiDistance
Constructor.
SparsePolynomialKernel - Class in smile.math.kernel
The polynomial kernel on sparse data.
SparsePolynomialKernel(int) - Constructor for class smile.math.kernel.SparsePolynomialKernel
Constructor with scale 1 and offset 0.
SparsePolynomialKernel(int, double, double) - Constructor for class smile.math.kernel.SparsePolynomialKernel
Constructor.
SparsePolynomialKernel(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.SparsePolynomialKernel
Constructor.
SparseThinPlateSplineKernel - Class in smile.math.kernel
The Thin Plate Spline kernel on sparse data.
SparseThinPlateSplineKernel(double) - Constructor for class smile.math.kernel.SparseThinPlateSplineKernel
Constructor.
SparseThinPlateSplineKernel(double, double, double) - Constructor for class smile.math.kernel.SparseThinPlateSplineKernel
Constructor.
spearman(double[], double[]) - Static method in class smile.math.MathEx
The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (i.e.
spearman(double[], double[]) - Static method in record class smile.stat.hypothesis.CorTest
Spearman rank correlation coefficient test.
spearman(float[], float[]) - Static method in class smile.math.MathEx
The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (i.e.
spearman(int[], int[]) - Static method in class smile.math.MathEx
The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (i.e.
spec() - Method in class smile.plot.vega.VegaLite
Returns the Vega-Lite specification.
spec() - Method in interface smile.plot.vega.ViewComposition
Returns the top level Vega-Lite specification.
specialToken(String) - Method in class smile.llm.tokenizer.Tiktoken
Returns the special token id.
specialTokens - Variable in class smile.llm.tokenizer.Tiktoken
Special Token -> Rank
specificity() - Method in record class smile.validation.ClassificationMetrics
Returns the value of the specificity record component.
Specificity - Class in smile.validation.metric
Specificity (SPC) or True Negative Rate is a statistical measures of the performance of a binary classification test.
Specificity() - Constructor for class smile.validation.metric.Specificity
 
SpectralClustering - Class in smile.clustering
Spectral Clustering.
SpectralClustering(double, int, int[]) - Constructor for class smile.clustering.SpectralClustering
Constructor.
SphericalVariogram - Class in smile.interpolation.variogram
Spherical variogram.
SphericalVariogram(double, double) - Constructor for class smile.interpolation.variogram.SphericalVariogram
Constructor.
SphericalVariogram(double, double, double) - Constructor for class smile.interpolation.variogram.SphericalVariogram
Constructor.
split(String) - Method in class smile.nlp.tokenizer.BreakIteratorSentenceSplitter
 
split(String) - Method in class smile.nlp.tokenizer.BreakIteratorTokenizer
 
split(String) - Method in interface smile.nlp.tokenizer.ParagraphSplitter
Splits the text into paragraphs.
split(String) - Method in class smile.nlp.tokenizer.PennTreebankTokenizer
 
split(String) - Method in interface smile.nlp.tokenizer.SentenceSplitter
Splits the text into sentences.
split(String) - Method in class smile.nlp.tokenizer.SimpleParagraphSplitter
 
split(String) - Method in class smile.nlp.tokenizer.SimpleSentenceSplitter
 
split(String) - Method in class smile.nlp.tokenizer.SimpleTokenizer
 
split(String) - Method in interface smile.nlp.tokenizer.Tokenizer
Splits the string into a list of tokens.
split(Split, PriorityQueue<Split>) - Method in class smile.base.cart.CART
Split a node into two children nodes.
Split - Class in smile.base.cart
The data about of a potential split for a leaf node.
Split(LeafNode, int, double, int, int, int, int) - Constructor for class smile.base.cart.Split
Constructor.
SplitRule - Enum Class in smile.base.cart
The criterion to choose variable to split instances.
splom(DataFrame, char, Color) - Static method in class smile.plot.swing.PlotGrid
Scatterplot Matrix (SPLOM).
splom(DataFrame, char, String) - Static method in class smile.plot.swing.PlotGrid
Scatterplot Matrix (SPLOM).
spmv(Layout, UPLO, int, double, double[], double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric packed matrix.
spmv(Layout, UPLO, int, double, double[], double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
spmv(Layout, UPLO, int, double, DoubleBuffer, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric packed matrix.
spmv(Layout, UPLO, int, double, DoubleBuffer, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
spmv(Layout, UPLO, int, float, float[], float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric packed matrix.
spmv(Layout, UPLO, int, float, float[], float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
spmv(Layout, UPLO, int, float, FloatBuffer, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric packed matrix.
spmv(Layout, UPLO, int, float, FloatBuffer, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
spr(Layout, UPLO, int, double, double[], int, double[]) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric packed matrix.
spr(Layout, UPLO, int, double, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
spr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric packed matrix.
spr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
spr(Layout, UPLO, int, float, float[], int, float[]) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric packed matrix.
spr(Layout, UPLO, int, float, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
spr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric packed matrix.
spr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
spsv(Layout, UPLO, int, int, double[], int[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
spsv(Layout, UPLO, int, int, double[], int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
spsv(Layout, UPLO, int, int, float[], int[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
spsv(Layout, UPLO, int, int, float[], int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
spsv(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
spsv(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
spsv(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
spsv(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrf(Layout, UPLO, int, double[], int[]) - Method in interface smile.math.blas.LAPACK
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
sptrf(Layout, UPLO, int, double[], int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrf(Layout, UPLO, int, float[], int[]) - Method in interface smile.math.blas.LAPACK
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
sptrf(Layout, UPLO, int, float[], int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrf(Layout, UPLO, int, DoubleBuffer, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
sptrf(Layout, UPLO, int, DoubleBuffer, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrf(Layout, UPLO, int, FloatBuffer, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
sptrf(Layout, UPLO, int, FloatBuffer, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrs(Layout, UPLO, int, int, double[], int[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
sptrs(Layout, UPLO, int, int, double[], int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrs(Layout, UPLO, int, int, float[], int[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
sptrs(Layout, UPLO, int, int, float[], int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrs(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
sptrs(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sptrs(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a system of linear equations
sptrs(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
SQL - Class in smile.data
An in-process SQL database management interface.
SQL() - Constructor for class smile.data.SQL
Constructor of in-memory database.
SQL(String) - Constructor for class smile.data.SQL
Constructor to open or create a persistent database.
sqrt(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
sqrt(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
sqrt(String) - Static method in interface smile.data.formula.Terms
The sqrt(x) term.
sqrt(Term) - Static method in interface smile.data.formula.Terms
The sqrt(x) term.
SQRT - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
I(y1, y2) / sqrt(H(y1) * H(y2))
SQRT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
I(y1, y2) / sqrt(H(y1) * H(y2))
SQRT - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with sqrt normalization.
SQRT - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with sqrt normalization.
square() - Method in class smile.math.matrix.fp32.IMatrix
Returns the square matrix of A' * A or A * A', whichever is smaller.
square() - Method in class smile.math.matrix.IMatrix
Returns the square matrix of A' * A or A * A', whichever is smaller.
squaredDistance(double[], double[]) - Static method in class smile.math.MathEx
The squared Euclidean distance.
squaredDistance(float[], float[]) - Static method in class smile.math.MathEx
The squared Euclidean distance.
squaredDistance(int[], int[]) - Static method in class smile.math.MathEx
The squared Euclidean distance on binary sparse arrays, which are the indices of nonzero elements in ascending order.
squaredDistance(SparseArray, SparseArray) - Static method in class smile.math.MathEx
The Euclidean distance on sparse arrays.
squaredDistanceWithMissingValues(double[], double[]) - Static method in class smile.math.MathEx
The squared Euclidean distance with handling missing values (represented as NaN).
SqueezeExcitation - Class in smile.vision.layer
Squeeze-and-Excitation block from "Squeeze-and-Excitation Networks".
SqueezeExcitation(int, int) - Constructor for class smile.vision.layer.SqueezeExcitation
Constructor.
SqueezeExcitation(int, int, ActivationFunction, ActivationFunction) - Constructor for class smile.vision.layer.SqueezeExcitation
Constructor.
SR - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
The eigenvalues of smallest real part.
SR - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
The eigenvalues of smallest real part.
sse - Variable in class smile.math.LevenbergMarquardt
The sum of squares due to error.
stack(String) - Method in class smile.plot.vega.Field
Sets the type of stacking offset if the field should be stacked.
stack(String, String, String...) - Method in class smile.plot.vega.Transform
Adds a stack transform.
StackTransform - Class in smile.plot.vega
The stack transform.
Staircase - Class in smile.plot.swing
This class represents a poly line in the plot.
Staircase(double[][], Color) - Constructor for class smile.plot.swing.Staircase
Constructor.
StaircasePlot - Class in smile.plot.swing
Staircase plot is a special case of line which is most useful to display empirical distribution.
StaircasePlot(Staircase...) - Constructor for class smile.plot.swing.StaircasePlot
Constructor.
StaircasePlot(Staircase[], Legend[]) - Constructor for class smile.plot.swing.StaircasePlot
Constructor.
standardize() - Method in class smile.math.matrix.BigMatrix
Standardizes the columns of matrix.
standardize() - Method in class smile.math.matrix.fp32.Matrix
Standardizes the columns of matrix.
standardize() - Method in class smile.math.matrix.Matrix
Standardizes the columns of matrix.
standardize(double[]) - Static method in class smile.math.MathEx
Standardizes an array to mean 0 and variance 1.
standardize(double[][]) - Static method in class smile.math.MathEx
Standardizes each column of a matrix to 0 mean and unit variance.
standardizer(double[]) - Static method in class smile.math.Scaler
Returns the standardize scaler to 0 mean and unit variance.
standardizer(double[], boolean) - Static method in class smile.math.Scaler
Returns the standardize scaler to 0 mean and unit variance.
Standardizer - Class in smile.feature.transform
Standardizes numeric feature to 0 mean and unit variance.
Standardizer() - Constructor for class smile.feature.transform.Standardizer
 
stateChanged(ChangeEvent) - Method in class smile.swing.Table.RowHeader
 
STEEL_BLUE - Static variable in interface smile.plot.swing.Palette
 
stem(String) - Method in class smile.nlp.stemmer.LancasterStemmer
 
stem(String) - Method in class smile.nlp.stemmer.PorterStemmer
 
stem(String) - Method in interface smile.nlp.stemmer.Stemmer
Transforms a word into its root form.
Stemmer - Interface in smile.nlp.stemmer
A Stemmer transforms a word into its root form.
step() - Method in class smile.deep.Optimizer
Updates the parameters based on the calculated gradients.
step(double) - Method in class smile.plot.vega.BinParams
Sets the exact step size between bins.
step(double) - Method in class smile.plot.vega.QuantileTransform
Sets a probability step size (default 0.01) for sampling quantile values.
step(int) - Method in class smile.plot.vega.ViewConfig
Sets the default step size for x-/y- discrete fields.
steps(double...) - Method in class smile.plot.vega.BinParams
Sets an array of allowable step sizes to choose from.
steps(int) - Method in class smile.plot.vega.DensityTransform
Sets the exact number of samples to take along the extent domain for plotting the density.
StochasticDepth - Class in smile.vision.layer
Stochastic Depth for randomly dropping residual branches of residual architectures, from "Deep Networks with Stochastic Depth".
StochasticDepth(double, String) - Constructor for class smile.vision.layer.StochasticDepth
Constructor.
stop - Enum constant in enum class smile.llm.FinishReason
A message terminated by one of the stop tokens.
stopCellEditing() - Method in class smile.swing.table.DateCellEditor
 
stopCellEditing() - Method in class smile.swing.table.DoubleArrayCellEditor
 
stopCellEditing() - Method in class smile.swing.table.DoubleCellEditor
 
stopCellEditing() - Method in class smile.swing.table.IntegerArrayCellEditor
 
stopCellEditing() - Method in class smile.swing.table.IntegerCellEditor
 
stopTokens() - Method in class smile.llm.llama.Tokenizer
Returns the stop tokens.
StopWords - Interface in smile.nlp.dictionary
A set of stop words in some language.
strata(int[]) - Static method in interface smile.stat.Sampling
Returns the strata of samples as a two-dimensional array.
stratify(int[], double) - Static method in interface smile.stat.Sampling
Stratified sampling from a population which can be partitioned into subpopulations.
stratify(int[], int) - Static method in interface smile.validation.CrossValidation
Cross validation with stratified folds.
stratify(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Repeated stratified cross validation of classification.
stratify(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Repeated stratified cross validation of classification.
stratify(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
Stratified cross validation of classification.
stratify(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
Stratified cross validation of classification.
stream() - Method in interface smile.data.DataFrame
Returns a (possibly parallel) Stream of rows.
stream() - Method in interface smile.data.Dataset
Returns a (possibly parallel) Stream with this collection as its source.
stream() - Method in class smile.data.IndexDataFrame
 
stream() - Method in interface smile.data.vector.BaseVector
Returns a stream of vector elements.
stream() - Method in class smile.util.DoubleArrayList
Returns the stream of the array list.
stream() - Method in class smile.util.IntArrayList
Returns the stream of the array list.
stream() - Method in class smile.util.SparseArray
Returns the stream of nonzero entries.
stream(String) - Static method in interface smile.io.HadoopInput
Returns the reader of a file path or URI.
stream(String) - Static method in interface smile.io.Input
Returns the input stream of a file path or URI.
stress - Variable in class smile.manifold.SammonMapping
The final stress achieved.
stress() - Method in record class smile.manifold.IsotonicMDS
Returns the value of the stress record component.
stride() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns the value of the stride record component.
stride() - Method in record class smile.vision.layer.MBConvConfig
Returns the value of the stride record component.
Strided - Enum constant in enum class smile.deep.tensor.Layout
Dense tensor.
String - Enum constant in enum class smile.data.type.DataType.ID
String type ID.
Strings - Interface in smile.util
String utility functions.
stringToValue(String) - Method in class smile.swing.text.FloatArrayFormatter
 
stringToValue(String) - Method in class smile.swing.text.IntegerArrayFormatter
 
StringType - Class in smile.data.type
String data type.
StringType - Static variable in class smile.data.type.DataTypes
String data type.
stringVector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
stringVector(int) - Method in class smile.data.IndexDataFrame
 
stringVector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
stringVector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
StringVector - Interface in smile.data.vector
An immutable string vector.
stripPluralParticiple(String) - Method in class smile.nlp.stemmer.PorterStemmer
Removes plurals and participles.
stroke(String) - Method in class smile.plot.vega.Background
Sets the stroke color.
stroke(String) - Method in class smile.plot.vega.Mark
Sets the default stroke color.
stroke(String) - Method in class smile.plot.vega.ViewConfig
Sets the stroke color.
strokeCap(String) - Method in class smile.plot.vega.Background
Sets the stroke cap for line ending style.
strokeCap(String) - Method in class smile.plot.vega.Mark
Sets the stroke cap for line ending style.
strokeCap(String) - Method in class smile.plot.vega.ViewConfig
Sets the stroke cap for line ending style.
strokeColor(String) - Method in class smile.plot.vega.Legend
Sets the border stroke color for the full legend.
strokeDash(double, double) - Method in class smile.plot.vega.Background
Sets the alternating [stroke, space] lengths for stroke dash.
strokeDash(double, double) - Method in class smile.plot.vega.Mark
Sets the alternating [stroke, space] lengths for dashed lines.
strokeDash(double, double) - Method in class smile.plot.vega.ViewConfig
Sets the alternating [stroke, space] lengths for stroke dash.
strokeDashOffset(double) - Method in class smile.plot.vega.Mark
Sets the pixel offset at which to start drawing with the dash array.
strokeDashOffset(int) - Method in class smile.plot.vega.Background
Sets the offset (in pixels) into which to begin drawing with the stroke dash array.
strokeDashOffset(int) - Method in class smile.plot.vega.ViewConfig
Sets the offset (in pixels) into which to begin drawing with the stroke dash array.
strokeJoin(String) - Method in class smile.plot.vega.Background
Sets the stroke line join method.
strokeJoin(String) - Method in class smile.plot.vega.Mark
Sets the stroke line join method.
strokeJoin(String) - Method in class smile.plot.vega.ViewConfig
Sets the stroke line join method.
strokeMiterLimit(double) - Method in class smile.plot.vega.Mark
Sets the miter limit at which to bevel a line join.
strokeMiterLimit(int) - Method in class smile.plot.vega.Background
Sets the miter limit at which to bevel a line join.
strokeMiterLimit(int) - Method in class smile.plot.vega.ViewConfig
Sets the miter limit at which to bevel a line join.
strokeOpacity(double) - Method in class smile.plot.vega.Background
Sets the stroke opacity
strokeOpacity(double) - Method in class smile.plot.vega.Mark
Sets the stroke opacity.
strokeOpacity(double) - Method in class smile.plot.vega.ViewConfig
Sets the stroke opacity
strokeWidth(double) - Method in class smile.plot.vega.Mark
Sets the stroke width of axis domain line.
strokeWidth(int) - Method in class smile.plot.vega.Background
Sets the stroke width.
strokeWidth(int) - Method in class smile.plot.vega.ViewConfig
Sets the stroke width.
struct(ResultSet) - Static method in class smile.data.type.DataTypes
Creates a struct data type from JDBC result set meta data.
struct(ResultSetMetaData, String) - Static method in class smile.data.type.DataTypes
Creates a struct data type from JDBC result set meta data.
struct(List<StructField>) - Static method in class smile.data.type.DataTypes
Creates a struct data type.
struct(StructField...) - Static method in class smile.data.type.DataTypes
Creates a struct data type.
Struct - Enum constant in enum class smile.data.type.DataType.ID
Struct type ID.
StructField - Class in smile.data.type
A field in a Struct data type.
StructField(String, DataType) - Constructor for class smile.data.type.StructField
Constructor.
StructField(String, DataType, Measure) - Constructor for class smile.data.type.StructField
Constructor.
StructType - Class in smile.data.type
Struct data type is determined by the fixed order of the fields of primitive data types in the struct.
StructType(List<StructField>) - Constructor for class smile.data.type.StructType
Constructor.
StructType(StructField...) - Constructor for class smile.data.type.StructType
Constructor.
structure() - Method in interface smile.data.DataFrame
Returns the structure of data frame.
sturges(int) - Static method in interface smile.math.Histogram
Returns the number of bins by Sturges' rule k = ceil(log2(n) + 1).
style(String...) - Method in class smile.plot.vega.Axis
Sets the custom styles to apply to the axis.
style(String...) - Method in class smile.plot.vega.Background
Sets the custom styles.
style(String...) - Method in class smile.plot.vega.Mark
Sets the style.
sub(double) - Method in class smile.deep.tensor.Tensor
Returns A -= b.
sub(double) - Method in class smile.math.matrix.BigMatrix
A -= b
sub(double) - Method in class smile.math.matrix.Matrix
A -= b
sub(double) - Method in class smile.util.Array2D
A -= x.
sub(double[], double[]) - Static method in class smile.math.MathEx
Element-wise subtraction of two arrays a -= b.
sub(float) - Method in class smile.deep.tensor.Tensor
Returns A - b.
sub(float) - Method in class smile.math.matrix.fp32.Matrix
A -= b
sub(int) - Method in class smile.util.IntArray2D
A -= x.
sub(int, int, double) - Method in class smile.math.matrix.BigMatrix
A[i,j] -= b
sub(int, int, double) - Method in class smile.math.matrix.Matrix
A[i,j] -= b
sub(int, int, double) - Method in class smile.util.Array2D
A[i, j] -= x.
sub(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
A[i,j] -= b
sub(int, int, int) - Method in class smile.util.IntArray2D
A[i, j] -= x.
sub(String, String) - Static method in interface smile.data.formula.Terms
Subtracts two terms.
sub(String, Term) - Static method in interface smile.data.formula.Terms
Subtracts two terms.
sub(Term, String) - Static method in interface smile.data.formula.Terms
Subtracts two terms.
sub(Term, Term) - Static method in interface smile.data.formula.Terms
Subtracts two terms.
sub(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A - B.
sub(Tensor, double) - Method in class smile.deep.tensor.Tensor
Returns A - alpha * B.
sub(Complex) - Method in class smile.math.Complex
Returns this - b.
sub(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Element-wise subtraction A -= B
sub(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Element-wise subtraction A -= B
sub(Matrix) - Method in class smile.math.matrix.Matrix
Element-wise subtraction A -= B
sub(Array2D) - Method in class smile.util.Array2D
A -= B.
sub(IntArray2D) - Method in class smile.util.IntArray2D
A -= B.
Sub - Class in smile.data.formula
The term of a - b expression.
Sub(Term, Term) - Constructor for class smile.data.formula.Sub
Constructor.
sub_(double) - Method in class smile.deep.tensor.Tensor
Returns A -= b.
sub_(float) - Method in class smile.deep.tensor.Tensor
Returns A - b.
sub_(Tensor) - Method in class smile.deep.tensor.Tensor
Returns A -= B.
sub_(Tensor, double) - Method in class smile.deep.tensor.Tensor
Returns A -= alpha * B.
subgraph(int[]) - Method in class smile.graph.AdjacencyList
 
subgraph(int[]) - Method in class smile.graph.AdjacencyMatrix
 
subgraph(int[]) - Method in class smile.graph.Graph
Returns a subgraph containing all given vertices.
submatrix(int, int, int, int) - Method in class smile.math.matrix.BigMatrix
Returns the submatrix which top left at (i, j) and bottom right at (k, l).
submatrix(int, int, int, int) - Method in class smile.math.matrix.fp32.Matrix
Returns the submatrix which top left at (i, j) and bottom right at (k, l).
submatrix(int, int, int, int) - Method in class smile.math.matrix.Matrix
Returns the submatrix which top left at (i, j) and bottom right at (k, l).
sum() - Method in class smile.deep.tensor.Tensor
Returns the sum of all elements in the tensor.
sum() - Method in class smile.math.matrix.BigMatrix
Returns the sum of all elements.
sum() - Method in class smile.math.matrix.fp32.Matrix
Returns the sum of all elements.
sum() - Method in class smile.math.matrix.Matrix
Returns the sum of all elements.
sum() - Method in class smile.util.Array2D
Returns the sum of all elements.
sum() - Method in class smile.util.IntArray2D
Returns the sum of all elements.
sum(byte[]) - Static method in class smile.math.MathEx
Returns the sum of an array.
sum(double[]) - Static method in class smile.math.MathEx
Returns the sum of an array.
sum(float[]) - Static method in class smile.math.MathEx
Returns the sum of an array.
sum(int[]) - Static method in class smile.math.MathEx
Returns the sum of an array.
sum(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
sum(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
SUM - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
2 * I(y1, y2) / (H(y1) + H(y2))
SUM - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
2 * I(y1, y2) / (H(y1) + H(y2))
SUM - Static variable in class smile.validation.metric.AdjustedMutualInformation
Default instance with sum normalization.
SUM - Static variable in class smile.validation.metric.NormalizedMutualInformation
Default instance with sum normalization.
SumKernel<T> - Class in smile.math.kernel
The sum kernel takes two kernels and combines them via k1(x, y) + k2(x, y)
SumKernel(MercerKernel<T>, MercerKernel<T>) - Constructor for class smile.math.kernel.SumKernel
Constructor.
summary() - Method in interface smile.data.DataFrame
Returns the statistic summary of numeric columns.
SumSquaresRatio - Record Class in smile.feature.selection
The ratio of between-groups to within-groups sum of squares is a univariate feature ranking metric, which can be used as a feature selection criterion for multi-class classification problems.
SumSquaresRatio(String, double) - Constructor for record class smile.feature.selection.SumSquaresRatio
Creates an instance of a SumSquaresRatio record class.
support() - Method in record class smile.association.AssociationRule
Returns the value of the support record component.
support() - Method in record class smile.association.ItemSet
Returns the value of the support record component.
SupportVector<T> - Class in smile.base.svm
Support vector.
SupportVector(int, T, int, double, double, double, double, double) - Constructor for class smile.base.svm.SupportVector
Constructor.
Surface - Class in smile.plot.swing
A surface object gives 3D information e.g.
Surface(double[][][]) - Constructor for class smile.plot.swing.Surface
Constructor for irregular mesh grid.
Surface(double[][][], Color[]) - Constructor for class smile.plot.swing.Surface
Constructor for irregular mesh surface.
svd() - Method in class smile.math.matrix.BigMatrix
Singular Value Decomposition.
svd() - Method in class smile.math.matrix.fp32.Matrix
Singular Value Decomposition.
svd() - Method in class smile.math.matrix.Matrix
Singular Value Decomposition.
svd(boolean, boolean) - Method in class smile.math.matrix.BigMatrix
Singular Value Decomposition.
svd(boolean, boolean) - Method in class smile.math.matrix.fp32.Matrix
Singular Value Decomposition.
svd(boolean, boolean) - Method in class smile.math.matrix.Matrix
Singular Value Decomposition.
svd(IMatrix, int) - Static method in class smile.math.matrix.fp32.ARPACK
Computes k-largest approximate singular triples of a matrix.
svd(IMatrix, int, int, float) - Static method in class smile.math.matrix.fp32.ARPACK
Computes k-largest approximate singular triples of a matrix.
svd(IMatrix, int) - Static method in class smile.math.matrix.ARPACK
Computes k-largest approximate singular triples of a matrix.
svd(IMatrix, int, int, double) - Static method in class smile.math.matrix.ARPACK
Computes k-largest approximate singular triples of a matrix.
SVD(double[], Matrix, Matrix) - Constructor for class smile.math.matrix.Matrix.SVD
Constructor.
SVD(float[], Matrix, Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.SVD
Constructor.
SVD(int, int, double[]) - Constructor for class smile.math.matrix.Matrix.SVD
Constructor.
SVD(int, int, float[]) - Constructor for class smile.math.matrix.fp32.Matrix.SVD
Constructor.
SVD(int, int, DoublePointer) - Constructor for class smile.math.matrix.BigMatrix.SVD
Constructor.
SVD(DoublePointer, BigMatrix, BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.SVD
Constructor.
SVDImputer - Interface in smile.feature.imputation
Missing value imputation with singular value decomposition.
SVDJob - Enum Class in smile.math.blas
The option if computing singular vectors.
SVM<T> - Class in smile.anomaly
One-class support vector machines for novelty detection.
SVM<T> - Class in smile.classification
Support vector machines for classification.
SVM - Class in smile.regression
Epsilon support vector regression.
SVM() - Constructor for class smile.regression.SVM
 
SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.anomaly.SVM
Constructor.
SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.classification.SVM
Constructor.
SVR<T> - Class in smile.base.svm
Epsilon support vector regression.
SVR(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.SVR
Constructor.
swap(double[], double[]) - Method in interface smile.math.blas.BLAS
Swaps two vectors.
swap(double[], double[]) - Static method in class smile.math.MathEx
Swap two arrays.
swap(double[], int, int) - Static method in class smile.math.MathEx
Swap two elements of an array.
swap(double[], int, int) - Static method in interface smile.sort.Sort
Swap two positions.
swap(float[], float[]) - Method in interface smile.math.blas.BLAS
Swaps two vectors.
swap(float[], float[]) - Static method in class smile.math.MathEx
Swap two arrays.
swap(float[], int, int) - Static method in class smile.math.MathEx
Swap two elements of an array.
swap(float[], int, int) - Static method in interface smile.sort.Sort
Swap two positions.
swap(int[], int[]) - Static method in class smile.math.MathEx
Swap two arrays.
swap(int[], int, int) - Static method in class smile.math.MathEx
Swap two elements of an array.
swap(int[], int, int) - Static method in interface smile.sort.Sort
Swap two positions.
swap(int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
Swaps two vectors.
swap(int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
swap(int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
Swaps two vectors.
swap(int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
swap(E[], E[]) - Static method in class smile.math.MathEx
Swap two arrays.
swap(Object[], int, int) - Static method in class smile.math.MathEx
Swap two elements of an array.
swap(Object[], int, int) - Static method in interface smile.sort.Sort
Swap two positions.
syev(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syev(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
syev(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syev(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
syev(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syev(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
syev(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syev(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
syev(IMatrix, ARPACK.SymmOption, int) - Static method in class smile.math.matrix.fp32.ARPACK
Computes NEV eigenvalues of a symmetric single precision matrix.
syev(IMatrix, ARPACK.SymmOption, int, int, float) - Static method in class smile.math.matrix.fp32.ARPACK
Computes NEV eigenvalues of a symmetric single precision matrix.
syev(IMatrix, ARPACK.SymmOption, int) - Static method in class smile.math.matrix.ARPACK
Computes NEV eigenvalues of a symmetric double precision matrix.
syev(IMatrix, ARPACK.SymmOption, int, int, double) - Static method in class smile.math.matrix.ARPACK
Computes NEV eigenvalues of a symmetric double precision matrix.
syevd(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevd(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevd(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevd(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevd(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevd(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevd(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevd(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevd(Layout, EVDJob, UPLO, int, DoublePointer, int, DoublePointer) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevd(Layout, EVDJob, UPLO, int, DoublePointer, int, DoublePointer) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevr(Layout, EVDJob, EigenRange, UPLO, int, double[], int, double, double, int, int, double, int[], double[], double[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevr(Layout, EVDJob, EigenRange, UPLO, int, double[], int, double, double, int, int, double, int[], double[], double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevr(Layout, EVDJob, EigenRange, UPLO, int, float[], int, float, float, int, int, float, int[], float[], float[], int, int[]) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevr(Layout, EVDJob, EigenRange, UPLO, int, float[], int, float, float, int, int, float, int[], float[], float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevr(Layout, EVDJob, EigenRange, UPLO, int, DoubleBuffer, int, double, double, int, int, double, IntBuffer, DoubleBuffer, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevr(Layout, EVDJob, EigenRange, UPLO, int, DoubleBuffer, int, double, double, int, int, double, IntBuffer, DoubleBuffer, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
syevr(Layout, EVDJob, EigenRange, UPLO, int, FloatBuffer, int, float, float, int, int, float, IntBuffer, FloatBuffer, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
syevr(Layout, EVDJob, EigenRange, UPLO, int, FloatBuffer, int, float, float, int, int, float, IntBuffer, FloatBuffer, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
 
SYM - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Symbol.
symbolLimit(int) - Method in class smile.plot.vega.Legend
Sets the maximum number of allowed entries for a symbol legend.
SymletWavelet - Class in smile.wavelet
Symlet wavelets.
SymletWavelet(int) - Constructor for class smile.wavelet.SymletWavelet
Constructor.
symm(Layout, Side, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation where the matrix A is symmetric.
symm(Layout, Side, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symm(Layout, Side, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation where the matrix A is symmetric.
symm(Layout, Side, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symm(Layout, Side, UPLO, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation where the matrix A is symmetric.
symm(Layout, Side, UPLO, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symm(Layout, Side, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation where one input matrix is symmetric.
symm(Layout, Side, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symm(Layout, Side, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-matrix operation where one input matrix is symmetric.
symm(Layout, Side, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
SymmMatrix - Class in smile.math.matrix.fp32
The symmetric matrix in packed storage.
SymmMatrix - Class in smile.math.matrix
The symmetric matrix in packed storage.
SymmMatrix(UPLO, double[][]) - Constructor for class smile.math.matrix.SymmMatrix
Constructor.
SymmMatrix(UPLO, float[][]) - Constructor for class smile.math.matrix.fp32.SymmMatrix
Constructor.
SymmMatrix(UPLO, int) - Constructor for class smile.math.matrix.fp32.SymmMatrix
Constructor.
SymmMatrix(UPLO, int) - Constructor for class smile.math.matrix.SymmMatrix
Constructor.
SymmMatrix.BunchKaufman - Class in smile.math.matrix.fp32
The LU decomposition.
SymmMatrix.BunchKaufman - Class in smile.math.matrix
The LU decomposition.
SymmMatrix.Cholesky - Class in smile.math.matrix.fp32
The Cholesky decomposition of a symmetric, positive-definite matrix.
SymmMatrix.Cholesky - Class in smile.math.matrix
The Cholesky decomposition of a symmetric, positive-definite matrix.
symv(Layout, UPLO, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric matrix.
symv(Layout, UPLO, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symv(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric matrix.
symv(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symv(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric matrix.
symv(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symv(Layout, UPLO, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric matrix.
symv(Layout, UPLO, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
symv(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a symmetric matrix.
symv(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
syr(Layout, UPLO, int, double, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric matrix.
syr(Layout, UPLO, int, double, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
syr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric matrix.
syr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
syr(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric matrix.
syr(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
syr(Layout, UPLO, int, float, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric matrix.
syr(Layout, UPLO, int, float, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
syr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the rank-1 update operation to symmetric matrix.
syr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
system - Enum constant in enum class smile.llm.Role
System instructions.
sysv(Layout, UPLO, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
sysv(Layout, UPLO, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sysv(Layout, UPLO, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
sysv(Layout, UPLO, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sysv(Layout, UPLO, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
sysv(Layout, UPLO, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sysv(Layout, UPLO, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
sysv(Layout, UPLO, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
sysv(Layout, UPLO, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Solves a real system of linear equations.
sysv(Layout, UPLO, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 

T

t - Variable in class smile.base.mlp.MultilayerPerceptron
The training iterations.
t - Variable in class smile.feature.extraction.GHA
The training iterations.
t() - Method in record class smile.stat.hypothesis.CorTest
Returns the value of the t record component.
t() - Method in record class smile.stat.hypothesis.TTest
Returns the value of the t record component.
T - Variable in class smile.vq.BIRCH
THe maximum radius of a sub-cluster.
table - Variable in class smile.validation.metric.ContingencyTable
The contingency table.
Table - Class in smile.swing
Customized JTable with optional row number header.
Table() - Constructor for class smile.swing.Table
Constructs a default JTable that is initialized with a default data model, a default column model, and a default selection model.
Table(int, int) - Constructor for class smile.swing.Table
Constructs a JTable with numRows and numColumns of empty cells using DefaultTableModel.
Table(Object[][], Object[]) - Constructor for class smile.swing.Table
Constructs a JTable to display the values in the two-dimensional array, rowData, with column names, columnNames.
Table(TableModel) - Constructor for class smile.swing.Table
Constructs a JTable that is initialized with dm as the data model, a default column model, and a default selection model.
Table(TableModel, TableColumnModel) - Constructor for class smile.swing.Table
Constructs a JTable that is initialized with dm as the data model, cm as the column model, and a default selection model.
Table(TableModel, TableColumnModel, ListSelectionModel) - Constructor for class smile.swing.Table
Constructs a JTable that is initialized with dm as the data model, cm as the column model, and sm as the selection model
Table.RowHeader - Class in smile.swing
Use a JTable as a renderer for row numbers of the main table.
TableColumnSettings - Class in smile.swing.table
Table column settings.
TableColumnSettings(String) - Constructor for class smile.swing.table.TableColumnSettings
Constructor.
TableCopyPasteAdapter - Class in smile.swing.table
TableCopyPasteAdapter enables Copy-Paste Clipboard functionality on JTables.
tables() - Method in class smile.data.SQL
Returns the tables in the database.
tag(String[]) - Method in class smile.nlp.pos.HMMPOSTagger
 
tag(String[]) - Method in interface smile.nlp.pos.POSTagger
Tags the sentence in the form of a sequence of words.
tan() - Method in class smile.math.Complex
Returns the complex tangent.
tan(String) - Static method in interface smile.data.formula.Terms
The tan(x) term.
tan(Term) - Static method in interface smile.data.formula.Terms
The tan(x) term.
tanh() - Static method in interface smile.base.mlp.ActivationFunction
Hyperbolic tangent activation function.
tanh(int) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with hyperbolic tangent activation function.
tanh(int, double) - Static method in class smile.base.mlp.Layer
Returns a hidden layer with hyperbolic tangent activation function.
tanh(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with tanh activation function.
tanh(String) - Static method in interface smile.data.formula.Terms
The tanh(x) term.
tanh(Term) - Static method in interface smile.data.formula.Terms
The tanh(x) term.
Tanh - Class in smile.deep.activation
Hyperbolic Tangent activation function.
Tanh(boolean) - Constructor for class smile.deep.activation.Tanh
Constructor.
tanhShrink(int, int) - Static method in interface smile.deep.layer.Layer
Returns a fully connected layer with tanh shrink activation function.
TanhShrink - Class in smile.deep.activation
Hyperbolic Tangent Shrink activation function.
TanhShrink() - Constructor for class smile.deep.activation.TanhShrink
Constructor.
target - Variable in class smile.base.mlp.MultilayerPerceptron
The buffer to store desired target value of training instance.
target() - Method in record class smile.deep.SampleBatch
Returns the value of the target record component.
tau - Variable in class smile.math.matrix.BigMatrix.QR
The scalar factors of the elementary reflectors
tau - Variable in class smile.math.matrix.fp32.Matrix.QR
The scalar factors of the elementary reflectors
tau - Variable in class smile.math.matrix.Matrix.QR
The scalar factors of the elementary reflectors
TaxonomicDistance - Class in smile.taxonomy
The distance between concepts in a taxonomy.
TaxonomicDistance(Taxonomy) - Constructor for class smile.taxonomy.TaxonomicDistance
Constructor.
Taxonomy - Class in smile.taxonomy
A taxonomy is a tree of terms (aka concept) where leaves must be named but intermediary nodes can be anonymous.
Taxonomy(String...) - Constructor for class smile.taxonomy.Taxonomy
Constructor.
TDistribution - Class in smile.stat.distribution
Student's t-distribution (or simply the t-distribution) is a probability distribution that arises in the problem of estimating the mean of a normally distributed population when the sample size is small.
TDistribution(int) - Constructor for class smile.stat.distribution.TDistribution
Constructor.
tension(double) - Method in class smile.plot.vega.Mark
Depending on the interpolation type, sets the tension parameter (for line and area marks).
Tensor - Class in smile.deep.tensor
A Tensor is a multidimensional array containing elements of a single data type.
Tensor(Tensor) - Constructor for class smile.deep.tensor.Tensor
Constructor.
Tensor.Options - Class in smile.deep.tensor
A class that encapsulates the construction axes of a tensor.
Term - Interface in smile.data.formula
An abstract term in the formula.
termCount() - Method in interface smile.nlp.Corpus
Returns the number of unique terms in the corpus.
termCount() - Method in class smile.nlp.SimpleCorpus
 
terms() - Method in interface smile.nlp.Corpus
Returns the iterator over the terms in the corpus.
terms() - Method in class smile.nlp.SimpleCorpus
 
Terms - Interface in smile.data.formula
Predefined terms.
terrain(int) - Static method in interface smile.plot.swing.Palette
Generate terrain color palette.
terrain(int, float) - Static method in interface smile.plot.swing.Palette
Generate terrain color palette.
test(double[], double) - Static method in interface smile.stat.Hypothesis.t
Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis.
test(double[], double) - Static method in record class smile.stat.hypothesis.TTest
Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis.
test(double[], double[]) - Static method in interface smile.stat.Hypothesis.cor
Pearson correlation test.
test(double[], double[]) - Static method in interface smile.stat.Hypothesis.F
Test if the arrays x and y have significantly different variances.
test(double[], double[]) - Static method in record class smile.stat.hypothesis.FTest
Test if the arrays x and y have significantly different variances.
test(double[], double[]) - Static method in interface smile.stat.Hypothesis.KS
The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution.
test(double[], double[]) - Static method in record class smile.stat.hypothesis.KSTest
The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution.
test(double[], double[]) - Static method in interface smile.stat.Hypothesis.t
Test if the arrays x and y have significantly different means.
test(double[], double[]) - Static method in record class smile.stat.hypothesis.TTest
Test if the arrays x and y have significantly different means.
test(double[], double[], boolean) - Static method in record class smile.stat.hypothesis.TTest
Test if the arrays x and y have significantly different means.
test(double[], double[], String) - Static method in interface smile.stat.Hypothesis.cor
Correlation test.
test(double[], double[], String) - Static method in interface smile.stat.Hypothesis.t
Test if the arrays x and y have significantly different means.
test(double[], Distribution) - Static method in interface smile.stat.Hypothesis.KS
The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution.
test(double[], Distribution) - Static method in record class smile.stat.hypothesis.KSTest
The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution.
test(double, int) - Static method in interface smile.stat.Hypothesis.t
Test whether the Pearson correlation coefficient, the slope of a regression line, differs significantly from 0.
test(double, int) - Static method in record class smile.stat.hypothesis.TTest
Test whether the Pearson correlation coefficient, the slope of a regression line, differs significantly from 0.
test(int[][]) - Static method in interface smile.stat.Hypothesis.chisq
Given a two-dimensional contingency table in the form of an array of integers, returns Chi-square test for independence.
test(int[][]) - Static method in record class smile.stat.hypothesis.ChiSqTest
Independence test on a two-dimensional contingency table.
test(int[], double[]) - Static method in interface smile.stat.Hypothesis.chisq
One-sample chisq test.
test(int[], double[]) - Static method in record class smile.stat.hypothesis.ChiSqTest
One-sample Pearson's chi-square test.
test(int[], double[]) - Static method in record class smile.stat.hypothesis.FTest
One-way analysis of variance (ANOVA) between a categorical independent variable (with two or more categories) and a normally distributed interval dependent variable to test for differences in the means of the dependent variable broken down by the levels of the independent variable.
test(int[], double[], int) - Static method in interface smile.stat.Hypothesis.chisq
One-sample chisq test.
test(int[], double[], int) - Static method in record class smile.stat.hypothesis.ChiSqTest
One-sample Pearson's chi-square test.
test(int[], int[]) - Static method in interface smile.stat.Hypothesis.chisq
Two-sample chisq test.
test(int[], int[]) - Static method in record class smile.stat.hypothesis.ChiSqTest
Two-sample Pearson's chi-square test.
test(int[], int[], int) - Static method in interface smile.stat.Hypothesis.chisq
Two-sample chisq test.
test(int[], int[], int) - Static method in record class smile.stat.hypothesis.ChiSqTest
Two-sample Pearson's chi-square test.
test(DataFrame) - Method in class smile.classification.AdaBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.classification.RandomForest
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.GradientTreeBoost
Test the model on a validation dataset.
test(DataFrame) - Method in class smile.regression.RandomForest
Test the model on a validation dataset.
testPaired(double[], double[]) - Static method in record class smile.stat.hypothesis.TTest
Given the paired arrays x and y, test if they have significantly different means.
text - Variable in class smile.nlp.relevance.Relevance
The document to rank.
text() - Static method in interface smile.hash.SimHash
Returns the SimHash for string tokens.
text(Path) - Static method in class smile.math.matrix.fp32.SparseMatrix
Reads a sparse matrix from a text file.
text(Path) - Static method in class smile.math.matrix.SparseMatrix
Reads a sparse matrix from a text file.
Text - Class in smile.nlp
A minimal interface of text in the corpus.
Text(String) - Constructor for class smile.nlp.Text
Constructor.
Text(String, String) - Constructor for class smile.nlp.Text
Constructor.
Text(String, String, String) - Constructor for class smile.nlp.Text
Constructor.
TextPlot - Class in smile.plot.swing
The scatter plot of texts.
TextPlot(Label...) - Constructor for class smile.plot.swing.TextPlot
Constructor.
TextTerms - Interface in smile.nlp
The terms in a text.
tf(String) - Method in class smile.nlp.SimpleText
 
tf(String) - Method in interface smile.nlp.TextTerms
Returns the term frequency.
TFIDF - Class in smile.nlp.relevance
The tf-idf weight (term frequency-inverse document frequency) is a weight often used in information retrieval and text mining.
TFIDF() - Constructor for class smile.nlp.relevance.TFIDF
Constructor.
TFIDF(double) - Constructor for class smile.nlp.relevance.TFIDF
Constructor.
theta - Variable in class smile.stat.distribution.GammaDistribution
The scale parameter.
theta(double) - Method in class smile.plot.vega.Mark
For arc marks, sets the arc length in radians if theta2 is not specified, otherwise the start arc angle.
theta2(double) - Method in class smile.plot.vega.Mark
Sets the end angle of arc marks in radians.
theta2Offset(double) - Method in class smile.plot.vega.Mark
Sets the offset for theta2.
thetaOffset(double) - Method in class smile.plot.vega.Mark
Sets the offset for theta.
ThinPlateRadialBasis - Class in smile.math.rbf
Thin plate RBF.
ThinPlateRadialBasis() - Constructor for class smile.math.rbf.ThinPlateRadialBasis
Constructor.
ThinPlateRadialBasis(double) - Constructor for class smile.math.rbf.ThinPlateRadialBasis
Constructor.
ThinPlateSpline - Class in smile.math.kernel
The Thin Plate Spline kernel.
ThinPlateSpline(double, double, double) - Constructor for class smile.math.kernel.ThinPlateSpline
Constructor.
ThinPlateSplineKernel - Class in smile.math.kernel
The Thin Plate Spline kernel.
ThinPlateSplineKernel(double) - Constructor for class smile.math.kernel.ThinPlateSplineKernel
Constructor.
ThinPlateSplineKernel(double, double, double) - Constructor for class smile.math.kernel.ThinPlateSplineKernel
Constructor.
tickBand(String) - Method in class smile.plot.vega.Axis
For band scales, sets if ticks and grid lines should be placed at the "center" of a band or at the band "extent"s to indicate intervals.
tickCap(String) - Method in class smile.plot.vega.Axis
Sets the stroke cap for tick lines' ending style.
tickColor(String) - Method in class smile.plot.vega.Axis
Sets the color of the axis's tick.
tickCount(int) - Method in class smile.plot.vega.Axis
Sets a desired number of ticks, for axes visualizing quantitative scales.
tickCount(int) - Method in class smile.plot.vega.Legend
Sets the desired number of tick values for quantitative legends.
tickCount(String) - Method in class smile.plot.vega.Legend
Sets the desired number of tick values for quantitative legends.
ticks(boolean) - Method in class smile.plot.vega.Axis
Sets whether the axis should include ticks.
tiktoken(String, Pattern) - Static method in interface smile.llm.tokenizer.Tokenizer
Loads a tiktoken model with default BOS token () and EOS token ().
tiktoken(String, Pattern, String, String, String...) - Static method in interface smile.llm.tokenizer.Tokenizer
Loads a tiktoken model.
Tiktoken - Class in smile.llm.tokenizer
tiktoken is a fast BPE tokenizer by OpenAI.
Tiktoken(Pattern, Map<Bytes, Integer>, String, String, String...) - Constructor for class smile.llm.tokenizer.Tiktoken
Constructor.
time(String) - Static method in class smile.data.type.DataTypes
Time data type with customized format.
Time - Enum constant in enum class smile.data.type.DataType.ID
Time type ID.
TIME - Static variable in interface smile.util.Regex
Time regular expression pattern.
timeFormat(String) - Method in class smile.plot.vega.FormatConfig
Sets custom time format.
timeFormatType(String) - Method in class smile.plot.vega.FormatConfig
Sets custom time format type.
TimeFunction - Interface in smile.math
A time-dependent function.
TimeSeries - Interface in smile.timeseries
Time series utility functions.
TimeType - Class in smile.data.type
Time data type.
TimeType - Static variable in class smile.data.type.DataTypes
Time data type with ISO format.
TimeType(String) - Constructor for class smile.data.type.TimeType
Constructor.
timeUnit(String) - Method in class smile.plot.vega.FacetField
Sets the time unit for a temporal field.
timeUnit(String) - Method in class smile.plot.vega.Field
Sets the time unit for a temporal field.
timeUnit(String) - Method in class smile.plot.vega.Predicate
Sets the time unit for a temporal field.
timeUnit(String, String, String) - Method in class smile.plot.vega.Transform
Adds a time unit transform.
title - Variable in class smile.nlp.Text
The title of document;
title(String) - Method in class smile.plot.vega.Axis
Sets a descriptive title.
title(String) - Method in class smile.plot.vega.Concat
 
title(String) - Method in class smile.plot.vega.Facet
 
title(String) - Method in class smile.plot.vega.Field
Sets the title for the field.
title(String) - Method in class smile.plot.vega.Legend
Sets a descriptive title.
title(String) - Method in class smile.plot.vega.Repeat
 
title(String) - Method in class smile.plot.vega.VegaLite
Sets a descriptive title to a chart.
title(String) - Method in class smile.plot.vega.View
 
tm(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Returns matrix multiplication A' * B.
tm(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Returns matrix multiplication A' * B.
tm(Matrix) - Method in class smile.math.matrix.Matrix
Returns matrix multiplication A' * B.
to(Device) - Method in interface smile.deep.layer.Layer
Moves the layer block to a device.
to(Device) - Method in class smile.deep.layer.LayerBlock
 
to(Device) - Method in class smile.deep.Model
Moves the model to a device.
to(Device) - Method in class smile.deep.tensor.Tensor
Clone the tensor to a device.
to(Device) - Method in class smile.llm.PositionalEncoding
Moves the encoder to a device.
to(Device, ScalarType) - Method in interface smile.deep.layer.Layer
Moves the layer block to a device.
to(Device, ScalarType) - Method in class smile.deep.layer.LayerBlock
 
to(Device, ScalarType) - Method in class smile.deep.Model
Moves the model to a device.
to(Device, ScalarType) - Method in class smile.deep.tensor.Tensor
Clone the tensor to a device with a different data type.
to(ScalarType) - Method in class smile.deep.tensor.Tensor
Clone the tensor with a different data type.
TO - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
to.
toArray() - Method in interface smile.data.vector.Vector
Returns the array of elements.
toArray() - Method in class smile.graph.AdjacencyMatrix
Returns the adjacency matrix.
toArray() - Method in class smile.math.matrix.BigMatrix
Return the two-dimensional array of matrix.
toArray() - Method in class smile.math.matrix.fp32.Matrix
Return the two-dimensional array of matrix.
toArray() - Method in class smile.math.matrix.Matrix
Return the two-dimensional array of matrix.
toArray() - Method in class smile.sort.HeapSelect
Returns the array back the heap.
toArray() - Method in class smile.util.DoubleArrayList
Returns an array containing all the values in this list in proper sequence (from first to last value).
toArray() - Method in class smile.util.IntArrayList
Returns an array containing all the values in this list in proper sequence (from first to last value).
toArray() - Method in class smile.util.IntHashSet
Returns the elements as an array.
toArray() - Method in class smile.util.PairingHeap
 
toArray(boolean, CategoricalEncoder, String...) - Method in interface smile.data.DataFrame
Return an array obtained by converting the columns in a data frame to numeric mode and then binding them together as the columns of a matrix.
toArray(boolean, CategoricalEncoder, String...) - Method in interface smile.data.Tuple
Return an array obtained by converting the fields to numeric mode.
toArray(double[]) - Method in class smile.util.DoubleArrayList
Returns an array containing all the values in this list in proper sequence (from first to last value).
toArray(int[]) - Method in class smile.util.IntArrayList
Returns an array containing all the values in this list in proper sequence (from first to last value).
toArray(String...) - Method in interface smile.data.DataFrame
Return an array obtained by converting the columns in a data frame to numeric mode and then binding them together as the columns of a matrix.
toArray(String...) - Method in interface smile.data.Tuple
Return an array obtained by converting the fields to numeric mode.
toArray(T[]) - Method in class smile.sort.HeapSelect
Returns the array back the heap.
toArray(T[]) - Method in class smile.util.PairingHeap
 
toBufferedImage(int, int) - Method in class smile.plot.swing.Canvas
Exports the plot to an image.
toDate() - Method in interface smile.data.vector.Vector
Returns a vector of LocalDate.
toDate(String) - Method in interface smile.data.vector.StringVector
Returns a vector of LocalDate.
toDate(DateTimeFormatter) - Method in interface smile.data.vector.StringVector
Returns a vector of LocalDate.
toDateTime() - Method in interface smile.data.vector.Vector
Returns a vector of LocalDateTime.
toDateTime(String) - Method in interface smile.data.vector.StringVector
Returns a vector of LocalDateTime.
toDateTime(DateTimeFormatter) - Method in interface smile.data.vector.StringVector
Returns a vector of LocalDateTime.
toDoubleArray() - Method in interface smile.data.vector.BaseVector
Returns a double array of this vector.
toDoubleArray(double[]) - Method in interface smile.data.vector.BaseVector
Copies the vector value as double to the given array.
toeplitz(double[]) - Static method in class smile.math.matrix.BigMatrix
Returns a symmetric Toeplitz matrix in which each descending diagonal from left to right is constant.
toeplitz(double[]) - Static method in class smile.math.matrix.Matrix
Returns a symmetric Toeplitz matrix in which each descending diagonal from left to right is constant.
toeplitz(double[], double[]) - Static method in class smile.math.matrix.BigMatrix
Returns a Toeplitz matrix in which each descending diagonal from left to right is constant.
toeplitz(double[], double[]) - Static method in class smile.math.matrix.Matrix
Returns a Toeplitz matrix in which each descending diagonal from left to right is constant.
toeplitz(float[]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a symmetric Toeplitz matrix in which each descending diagonal from left to right is constant.
toeplitz(float[], float[]) - Static method in class smile.math.matrix.fp32.Matrix
Returns a Toeplitz matrix in which each descending diagonal from left to right is constant.
ToFloatFunction<T> - Interface in smile.util
Represents a function that produces a float-valued result.
toGraph(int) - Method in class smile.neighbor.RandomProjectionForest
Returns a k-nearest neighbor graph.
toIntArray() - Method in interface smile.data.vector.BaseVector
Returns an int array of this vector.
toIntArray(int[]) - Method in interface smile.data.vector.BaseVector
Copies the vector value as int to the given array.
tokenize(String) - Method in class smile.llm.tokenizer.SentencePiece
 
tokenize(String) - Method in class smile.llm.tokenizer.Tiktoken
 
tokenize(String) - Method in interface smile.llm.tokenizer.Tokenizer
Segments text into tokens.
Tokenizer - Class in smile.llm.llama
Custom tokenizer for Llama 3 models.
Tokenizer - Interface in smile.llm.tokenizer
Tokenizing and encoding/decoding text.
Tokenizer - Interface in smile.nlp.tokenizer
A token is a string of characters, categorized according to the rules as a symbol.
Tokenizer(Map<Bytes, Integer>) - Constructor for class smile.llm.llama.Tokenizer
Constructor with default BOS, EOS, and special tokens.
Tokenizer(Map<Bytes, Integer>, String, String, String...) - Constructor for class smile.llm.llama.Tokenizer
Constructor.
toList() - Method in interface smile.data.DataFrame
Returns the List of rows.
toList() - Method in interface smile.data.Dataset
Returns the List of data items.
toMatrix() - Method in interface smile.data.BinarySparseDataset
Returns the Harwell-Boeing column-compressed sparse matrix.
toMatrix() - Method in interface smile.data.DataFrame
Return a matrix obtained by converting all the variables in a data frame to numeric mode and then binding them together as the columns of a matrix.
toMatrix() - Method in interface smile.data.SparseDataset
Convert into Harwell-Boeing column-compressed sparse matrix format.
toMatrix() - Method in class smile.graph.AdjacencyList
 
toMatrix() - Method in class smile.graph.AdjacencyMatrix
 
toMatrix() - Method in class smile.graph.Graph
Returns the (dense or sparse) matrix representation of the graph.
toMatrix(boolean, CategoricalEncoder, String) - Method in interface smile.data.DataFrame
Return a matrix obtained by converting all the variables in a data frame to numeric mode and then binding them together as the columns of a matrix.
toNode(Node, Node) - Method in class smile.base.cart.NominalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.OrdinalSplit
 
toNode(Node, Node) - Method in class smile.base.cart.Split
Returns an internal node with the feature, value, and score of this split.
toolbar() - Method in class smile.plot.swing.Plot
Returns an optional list of components in toolbar to control the plot.
tooltip(boolean) - Method in class smile.plot.vega.Mark
Turns on/off the tooltip.
tooltip(double[]) - Method in class smile.plot.swing.BoxPlot
 
tooltip(double[]) - Method in class smile.plot.swing.Heatmap
 
tooltip(double[]) - Method in class smile.plot.swing.Hexmap
 
tooltip(double[]) - Method in class smile.plot.swing.Plot
Returns an optional tooltip for the object at given coordinates.
tooltip(String) - Method in class smile.plot.vega.Mark
Sets the tooltip text string to show upon mouse hover or which fields should the tooltip be derived from.
tooltipFormat() - Method in class smile.plot.vega.Config
Define custom format configuration for tooltips.
topk(int) - Method in class smile.deep.tensor.Tensor
Returns the k largest elements.
topk(int, int, boolean, boolean) - Method in class smile.deep.tensor.Tensor
Returns the k largest elements along a given dimension.
topo(int) - Static method in interface smile.plot.swing.Palette
Generate topo color palette.
topo(int, float) - Static method in interface smile.plot.swing.Palette
Generate topo color palette.
topojson(String, String, String) - Method in class smile.plot.vega.Data
Loads a JSON file using the TopoJSON format.
topp(double) - Method in class smile.deep.tensor.Tensor
Performs top-p (nucleus) sampling on a probability distribution.
toPrettyString() - Method in class smile.plot.vega.Axis
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Background
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Config
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Data
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.DensityTransform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.FacetField
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Field
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.FormatConfig
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.ImputeTransform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Legend
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.LoessTransform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.LookupData
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Mark
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.PivotTransform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Projection
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.QuantileTransform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.RegressionTransform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.StackTransform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.Transform
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.VegaLite
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.ViewConfig
Returns the specification in pretty print.
toPrettyString() - Method in class smile.plot.vega.WindowTransform
Returns the specification in pretty print.
toString() - Method in record class smile.association.AssociationRule
Returns a string representation of this record class.
toString() - Method in record class smile.association.ItemSet
Returns a string representation of this record class.
toString() - Method in class smile.base.cart.CART
Returns a text representation of the tree in R's rpart format.
toString() - Method in class smile.base.cart.Split
 
toString() - Method in class smile.base.mlp.HiddenLayer
 
toString() - Method in class smile.base.mlp.HiddenLayerBuilder
 
toString() - Method in class smile.base.mlp.InputLayer
 
toString() - Method in class smile.base.mlp.MultilayerPerceptron
 
toString() - Method in class smile.base.mlp.OutputLayer
 
toString() - Method in class smile.base.mlp.OutputLayerBuilder
 
toString() - Method in class smile.base.svm.KernelMachine
 
toString() - Method in class smile.classification.IsotonicRegressionScaling
 
toString() - Method in class smile.clustering.CentroidClustering
 
toString() - Method in class smile.clustering.linkage.CompleteLinkage
 
toString() - Method in class smile.clustering.linkage.SingleLinkage
 
toString() - Method in class smile.clustering.linkage.UPGMALinkage
 
toString() - Method in class smile.clustering.linkage.UPGMCLinkage
 
toString() - Method in class smile.clustering.linkage.WardLinkage
 
toString() - Method in class smile.clustering.linkage.WPGMALinkage
 
toString() - Method in class smile.clustering.linkage.WPGMCLinkage
 
toString() - Method in class smile.clustering.MEC
 
toString() - Method in class smile.clustering.PartitionClustering
 
toString() - Method in class smile.data.AbstractTuple
 
toString() - Method in class smile.data.formula.AbstractBiFunction
 
toString() - Method in class smile.data.formula.AbstractFunction
 
toString() - Method in class smile.data.formula.Date
 
toString() - Method in class smile.data.formula.Delete
 
toString() - Method in class smile.data.formula.Dot
 
toString() - Method in class smile.data.formula.FactorCrossing
 
toString() - Method in class smile.data.formula.FactorInteraction
 
toString() - Method in class smile.data.formula.Formula
 
toString() - Method in record class smile.data.formula.Intercept
Returns a string representation of this record class.
toString() - Method in class smile.data.formula.Operator
 
toString() - Method in record class smile.data.formula.Variable
Returns a string representation of this record class.
toString() - Method in class smile.data.IndexDataFrame
 
toString() - Method in class smile.data.measure.IntervalScale
 
toString() - Method in class smile.data.measure.NominalScale
 
toString() - Method in class smile.data.measure.OrdinalScale
 
toString() - Method in class smile.data.measure.RatioScale
 
toString() - Method in record class smile.data.SampleInstance
Returns a string representation of this record class.
toString() - Method in class smile.data.SQL
 
toString() - Method in class smile.data.transform.ColumnTransform
 
toString() - Method in class smile.data.type.ArrayType
 
toString() - Method in class smile.data.type.BooleanType
 
toString() - Method in class smile.data.type.ByteType
 
toString() - Method in class smile.data.type.CharType
 
toString() - Method in class smile.data.type.DateTimeType
 
toString() - Method in class smile.data.type.DateType
 
toString() - Method in class smile.data.type.DecimalType
 
toString() - Method in class smile.data.type.DoubleType
 
toString() - Method in class smile.data.type.FloatType
 
toString() - Method in class smile.data.type.IntegerType
 
toString() - Method in class smile.data.type.LongType
 
toString() - Method in class smile.data.type.ObjectType
 
toString() - Method in class smile.data.type.ShortType
 
toString() - Method in class smile.data.type.StringType
 
toString() - Method in class smile.data.type.StructField
 
toString() - Method in class smile.data.type.StructType
 
toString() - Method in class smile.data.type.TimeType
 
toString() - Method in class smile.deep.layer.LayerBlock
 
toString() - Method in class smile.deep.metric.Accuracy
 
toString() - Method in class smile.deep.metric.Precision
 
toString() - Method in class smile.deep.metric.Recall
 
toString() - Method in class smile.deep.Model
 
toString() - Method in record class smile.deep.SampleBatch
Returns a string representation of this record class.
toString() - Method in class smile.deep.tensor.Device
 
toString() - Method in class smile.deep.tensor.Tensor
 
toString() - Method in class smile.feature.imputation.SimpleImputer
 
toString() - Method in record class smile.feature.selection.InformationValue
Returns a string representation of this record class.
toString() - Method in record class smile.feature.selection.SignalNoiseRatio
Returns a string representation of this record class.
toString() - Method in record class smile.feature.selection.SumSquaresRatio
Returns a string representation of this record class.
toString() - Method in class smile.feature.transform.Normalizer
 
toString() - Method in class smile.gap.BitString
 
toString() - Method in class smile.glm.GLM
 
toString() - Method in class smile.graph.AdjacencyList
 
toString() - Method in class smile.graph.AdjacencyMatrix
 
toString() - Method in record class smile.graph.Graph.Edge
Returns a string representation of this record class.
toString() - Method in record class smile.graph.NearestNeighborGraph
Returns a string representation of this record class.
toString() - Method in class smile.interpolation.BicubicInterpolation
 
toString() - Method in class smile.interpolation.BilinearInterpolation
 
toString() - Method in class smile.interpolation.CubicSplineInterpolation1D
 
toString() - Method in class smile.interpolation.CubicSplineInterpolation2D
 
toString() - Method in class smile.interpolation.KrigingInterpolation
 
toString() - Method in class smile.interpolation.KrigingInterpolation1D
 
toString() - Method in class smile.interpolation.KrigingInterpolation2D
 
toString() - Method in class smile.interpolation.LaplaceInterpolation
 
toString() - Method in class smile.interpolation.LinearInterpolation
 
toString() - Method in class smile.interpolation.RBFInterpolation
 
toString() - Method in class smile.interpolation.RBFInterpolation1D
 
toString() - Method in class smile.interpolation.RBFInterpolation2D
 
toString() - Method in class smile.interpolation.ShepardInterpolation
 
toString() - Method in class smile.interpolation.ShepardInterpolation1D
 
toString() - Method in class smile.interpolation.ShepardInterpolation2D
 
toString() - Method in class smile.interpolation.variogram.ExponentialVariogram
 
toString() - Method in class smile.interpolation.variogram.GaussianVariogram
 
toString() - Method in class smile.interpolation.variogram.PowerVariogram
 
toString() - Method in class smile.interpolation.variogram.SphericalVariogram
 
toString() - Method in record class smile.llm.CompletionPrediction
Returns a string representation of this record class.
toString() - Method in class smile.llm.llama.Llama
 
toString() - Method in record class smile.llm.llama.ModelArgs
Returns a string representation of this record class.
toString() - Method in record class smile.llm.Message
Returns a string representation of this record class.
toString() - Method in record class smile.manifold.IsotonicMDS
Returns a string representation of this record class.
toString() - Method in record class smile.manifold.MDS
Returns a string representation of this record class.
toString() - Method in class smile.math.Complex
 
toString() - Method in class smile.math.distance.ChebyshevDistance
 
toString() - Method in class smile.math.distance.CorrelationDistance
 
toString() - Method in class smile.math.distance.DynamicTimeWarping
 
toString() - Method in class smile.math.distance.EditDistance
 
toString() - Method in class smile.math.distance.EuclideanDistance
 
toString() - Method in class smile.math.distance.HammingDistance
 
toString() - Method in class smile.math.distance.JaccardDistance
 
toString() - Method in class smile.math.distance.JensenShannonDistance
 
toString() - Method in class smile.math.distance.LeeDistance
 
toString() - Method in class smile.math.distance.MahalanobisDistance
 
toString() - Method in class smile.math.distance.ManhattanDistance
 
toString() - Method in class smile.math.distance.MinkowskiDistance
 
toString() - Method in class smile.math.distance.SparseChebyshevDistance
 
toString() - Method in class smile.math.distance.SparseEuclideanDistance
 
toString() - Method in class smile.math.distance.SparseManhattanDistance
 
toString() - Method in class smile.math.distance.SparseMinkowskiDistance
 
toString() - Method in class smile.math.kernel.BinarySparseLinearKernel
 
toString() - Method in class smile.math.kernel.Gaussian
 
toString() - Method in class smile.math.kernel.HellingerKernel
 
toString() - Method in class smile.math.kernel.HyperbolicTangent
 
toString() - Method in class smile.math.kernel.Laplacian
 
toString() - Method in class smile.math.kernel.LinearKernel
 
toString() - Method in class smile.math.kernel.Matern
 
toString() - Method in class smile.math.kernel.PearsonKernel
 
toString() - Method in class smile.math.kernel.Polynomial
 
toString() - Method in class smile.math.kernel.SparseLinearKernel
 
toString() - Method in class smile.math.kernel.ThinPlateSpline
 
toString() - Method in class smile.math.matrix.fp32.IMatrix
 
toString() - Method in class smile.math.matrix.fp32.SparseMatrix.Entry
 
toString() - Method in class smile.math.matrix.IMatrix
 
toString() - Method in class smile.math.matrix.SparseMatrix.Entry
 
toString() - Method in class smile.math.rbf.GaussianRadialBasis
 
toString() - Method in class smile.math.rbf.InverseMultiquadricRadialBasis
 
toString() - Method in class smile.math.rbf.MultiquadricRadialBasis
 
toString() - Method in class smile.math.rbf.ThinPlateRadialBasis
 
toString() - Method in class smile.neighbor.BKTree
 
toString() - Method in class smile.neighbor.CoverTree
 
toString() - Method in class smile.neighbor.KDTree
 
toString() - Method in class smile.neighbor.LinearSearch
 
toString() - Method in record class smile.neighbor.lsh.PrH
Returns a string representation of this record class.
toString() - Method in record class smile.neighbor.lsh.PrZ
Returns a string representation of this record class.
toString() - Method in class smile.neighbor.LSH
 
toString() - Method in class smile.neighbor.MPLSH
 
toString() - Method in record class smile.neighbor.Neighbor
Returns a string representation of this record class.
toString() - Method in class smile.nlp.Bigram
 
toString() - Method in class smile.nlp.collocation.Bigram
 
toString() - Method in class smile.nlp.collocation.NGram
 
toString() - Method in class smile.nlp.NGram
 
toString() - Method in class smile.nlp.SimpleText
 
toString() - Method in class smile.plot.swing.Base
 
toString() - Method in class smile.plot.vega.Axis
 
toString() - Method in class smile.plot.vega.Background
 
toString() - Method in class smile.plot.vega.Config
 
toString() - Method in class smile.plot.vega.Data
 
toString() - Method in class smile.plot.vega.DensityTransform
 
toString() - Method in class smile.plot.vega.FacetField
 
toString() - Method in class smile.plot.vega.Field
 
toString() - Method in class smile.plot.vega.FormatConfig
 
toString() - Method in class smile.plot.vega.ImputeTransform
 
toString() - Method in class smile.plot.vega.Legend
 
toString() - Method in class smile.plot.vega.LoessTransform
 
toString() - Method in class smile.plot.vega.LookupData
 
toString() - Method in class smile.plot.vega.Mark
 
toString() - Method in class smile.plot.vega.PivotTransform
 
toString() - Method in class smile.plot.vega.Projection
 
toString() - Method in class smile.plot.vega.QuantileTransform
 
toString() - Method in class smile.plot.vega.RegressionTransform
 
toString() - Method in record class smile.plot.vega.SortField
Returns a string representation of this record class.
toString() - Method in class smile.plot.vega.StackTransform
 
toString() - Method in class smile.plot.vega.Transform
 
toString() - Method in class smile.plot.vega.VegaLite
 
toString() - Method in class smile.plot.vega.ViewConfig
 
toString() - Method in class smile.plot.vega.WindowTransform
 
toString() - Method in record class smile.plot.vega.WindowTransformField
Returns a string representation of this record class.
toString() - Method in class smile.regression.GaussianProcessRegression.JointPrediction
 
toString() - Method in class smile.regression.GaussianProcessRegression
 
toString() - Method in class smile.regression.LinearModel
 
toString() - Method in class smile.sequence.CRFLabeler
 
toString() - Method in class smile.sequence.HMM
 
toString() - Method in class smile.sequence.HMMLabeler
 
toString() - Method in class smile.stat.distribution.BernoulliDistribution
 
toString() - Method in class smile.stat.distribution.BetaDistribution
 
toString() - Method in class smile.stat.distribution.BinomialDistribution
 
toString() - Method in class smile.stat.distribution.ChiSquareDistribution
 
toString() - Method in record class smile.stat.distribution.DiscreteMixture.Component
Returns a string representation of this record class.
toString() - Method in class smile.stat.distribution.DiscreteMixture
 
toString() - Method in class smile.stat.distribution.EmpiricalDistribution
 
toString() - Method in class smile.stat.distribution.ExponentialDistribution
 
toString() - Method in class smile.stat.distribution.FDistribution
 
toString() - Method in class smile.stat.distribution.GammaDistribution
 
toString() - Method in class smile.stat.distribution.GaussianDistribution
 
toString() - Method in class smile.stat.distribution.GeometricDistribution
 
toString() - Method in class smile.stat.distribution.HyperGeometricDistribution
 
toString() - Method in class smile.stat.distribution.LogisticDistribution
 
toString() - Method in class smile.stat.distribution.LogNormalDistribution
 
toString() - Method in record class smile.stat.distribution.Mixture.Component
Returns a string representation of this record class.
toString() - Method in class smile.stat.distribution.Mixture
 
toString() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
 
toString() - Method in record class smile.stat.distribution.MultivariateMixture.Component
Returns a string representation of this record class.
toString() - Method in class smile.stat.distribution.MultivariateMixture
 
toString() - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
toString() - Method in class smile.stat.distribution.PoissonDistribution
 
toString() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
toString() - Method in class smile.stat.distribution.TDistribution
 
toString() - Method in class smile.stat.distribution.WeibullDistribution
 
toString() - Method in record class smile.stat.hypothesis.ChiSqTest
Returns a string representation of this record class.
toString() - Method in record class smile.stat.hypothesis.CorTest
Returns a string representation of this record class.
toString() - Method in record class smile.stat.hypothesis.FTest
Returns a string representation of this record class.
toString() - Method in record class smile.stat.hypothesis.KSTest
Returns a string representation of this record class.
toString() - Method in record class smile.stat.hypothesis.TTest
Returns a string representation of this record class.
toString() - Method in record class smile.swing.AlphaIcon
Returns a string representation of this record class.
toString() - Method in class smile.taxonomy.Concept
 
toString() - Method in class smile.taxonomy.TaxonomicDistance
 
toString() - Method in class smile.timeseries.AR
 
toString() - Method in class smile.timeseries.ARMA
 
toString() - Method in class smile.timeseries.BoxTest
 
toString() - Method in class smile.util.Array2D
 
toString() - Method in record class smile.util.Bytes
Returns a string representation of this record class.
toString() - Method in class smile.util.DoubleArrayList
 
toString() - Method in class smile.util.IntArray2D
 
toString() - Method in class smile.util.IntArrayList
 
toString() - Method in record class smile.util.IntPair
Returns a string representation of this record class.
toString() - Method in record class smile.util.SparseArray.Entry
Returns a string representation of this record class.
toString() - Method in class smile.util.SparseArray
 
toString() - Method in record class smile.util.Tuple2
Returns a string representation of this record class.
toString() - Method in record class smile.validation.Bag
Returns a string representation of this record class.
toString() - Method in record class smile.validation.ClassificationMetrics
Returns a string representation of this record class.
toString() - Method in class smile.validation.ClassificationValidation
 
toString() - Method in class smile.validation.ClassificationValidations
 
toString() - Method in class smile.validation.metric.Accuracy
 
toString() - Method in class smile.validation.metric.AdjustedMutualInformation
 
toString() - Method in class smile.validation.metric.AdjustedRandIndex
 
toString() - Method in class smile.validation.metric.AUC
 
toString() - Method in record class smile.validation.metric.ConfusionMatrix
Returns a string representation of this record class.
toString() - Method in class smile.validation.metric.Error
 
toString() - Method in class smile.validation.metric.Fallout
 
toString() - Method in class smile.validation.metric.FDR
 
toString() - Method in class smile.validation.metric.FScore
 
toString() - Method in class smile.validation.metric.LogLoss
 
toString() - Method in class smile.validation.metric.MAD
 
toString() - Method in class smile.validation.metric.MatthewsCorrelation
 
toString() - Method in class smile.validation.metric.MSE
 
toString() - Method in class smile.validation.metric.MutualInformation
 
toString() - Method in class smile.validation.metric.NormalizedMutualInformation
 
toString() - Method in class smile.validation.metric.Precision
 
toString() - Method in class smile.validation.metric.R2
 
toString() - Method in class smile.validation.metric.RandIndex
 
toString() - Method in class smile.validation.metric.Recall
 
toString() - Method in class smile.validation.metric.RMSE
 
toString() - Method in class smile.validation.metric.RSS
 
toString() - Method in class smile.validation.metric.Sensitivity
 
toString() - Method in class smile.validation.metric.Specificity
 
toString() - Method in record class smile.validation.RegressionMetrics
Returns a string representation of this record class.
toString() - Method in class smile.validation.RegressionValidation
 
toString() - Method in class smile.validation.RegressionValidations
 
toString() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
Returns a string representation of this record class.
toString() - Method in class smile.vision.layer.Conv2dNormActivation
 
toString() - Method in record class smile.vision.layer.MBConvConfig
Returns a string representation of this record class.
toString(boolean) - Method in class smile.math.matrix.fp32.IMatrix
Returns the string representation of matrix.
toString(boolean) - Method in class smile.math.matrix.IMatrix
Returns the string representation of matrix.
toString(boolean) - Method in class smile.util.Array2D
Returns the string representation of matrix.
toString(boolean) - Method in class smile.util.IntArray2D
Returns the string representation of matrix.
toString(int) - Method in interface smile.data.DataFrame
Returns the string representation of top rows.
toString(int) - Method in interface smile.data.Dataset
Returns the string representation of the dataset.
toString(int) - Method in class smile.data.measure.CategoricalMeasure
Returns the string value of a level.
toString(int) - Method in interface smile.data.Tuple
Returns the string representation of the value at position i.
toString(int) - Method in interface smile.data.vector.BooleanVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.ByteVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.CharVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.DoubleVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.FloatVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.IntVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.LongVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.ShortVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.StringVector
Returns the string representation of vector.
toString(int) - Method in interface smile.data.vector.Vector
Returns the string representation of vector.
toString(int, boolean) - Method in interface smile.data.DataFrame
Returns the string representation of top rows.
toString(int, int) - Method in interface smile.data.DataFrame
Returns the string representation of the value at position (i, j).
toString(int, int) - Method in class smile.math.matrix.fp32.IMatrix
Returns the string representation of matrix.
toString(int, int) - Method in class smile.math.matrix.IMatrix
Returns the string representation of matrix.
toString(int, int) - Method in class smile.util.Array2D
Returns the string representation of matrix.
toString(int, int) - Method in class smile.util.IntArray2D
Returns the string representation of matrix.
toString(int, String) - Method in interface smile.data.DataFrame
Returns the string representation of the field value.
toString(Object) - Method in class smile.data.measure.CategoricalMeasure
 
toString(Object) - Method in interface smile.data.measure.Measure
Returns the string representation of an object in the measure.
toString(Object) - Method in class smile.data.measure.NumericalMeasure
 
toString(Object) - Method in class smile.data.type.ArrayType
 
toString(Object) - Method in interface smile.data.type.DataType
Returns the string representation of a value of the type.
toString(Object) - Method in class smile.data.type.DateTimeType
 
toString(Object) - Method in class smile.data.type.DateType
 
toString(Object) - Method in class smile.data.type.DoubleType
 
toString(Object) - Method in class smile.data.type.FloatType
 
toString(Object) - Method in class smile.data.type.ObjectType
 
toString(Object) - Method in class smile.data.type.StructField
Returns the string representation of the field object.
toString(Object) - Method in class smile.data.type.StructType
 
toString(Object) - Method in class smile.data.type.TimeType
 
toString(String) - Method in interface smile.data.Tuple
Returns the string representation of the field value.
toString(StructType, boolean) - Method in class smile.base.cart.InternalNode
Returns the string representation of branch.
toString(StructType, boolean) - Method in class smile.base.cart.NominalNode
 
toString(StructType, boolean) - Method in class smile.base.cart.OrdinalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.DecisionNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.InternalNode
 
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in interface smile.base.cart.Node
Adds the string representation (R's rpart format) to a collection.
toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.RegressionNode
 
toString(InformationValue[]) - Static method in record class smile.feature.selection.InformationValue
Returns a string representation of the array of information values.
toStringArray() - Method in interface smile.data.vector.BaseVector
Returns a string array of this vector.
toStringArray(String[]) - Method in interface smile.data.vector.BaseVector
Copies the vector value as string to the given array.
toStrings(int) - Method in interface smile.data.DataFrame
Returns the string representation of top rows.
toStrings(int, boolean) - Method in interface smile.data.DataFrame
Returns the string representation of top rows.
toTensor(float[], float[], BufferedImage...) - Method in interface smile.vision.transform.Transform
Returns the tensor with NCHW shape [samples, channels, height, width] of the images.
toTime() - Method in interface smile.data.vector.Vector
Returns a vector of LocalTime.
toTime(String) - Method in interface smile.data.vector.StringVector
Returns a vector of LocalTime.
toTime(DateTimeFormatter) - Method in interface smile.data.vector.StringVector
Returns a vector of LocalDate.
toTransform(InformationValue[]) - Static method in record class smile.feature.selection.InformationValue
Returns the data transformation that covert feature value to its weight of evidence.
Tournament(int, double) - Static method in interface smile.gap.Selection
Tournament Selection.
tpmv(Layout, UPLO, Transpose, Diag, int, double[], double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular packed matrix.
tpmv(Layout, UPLO, Transpose, Diag, int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
tpmv(Layout, UPLO, Transpose, Diag, int, float[], float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular packed matrix.
tpmv(Layout, UPLO, Transpose, Diag, int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
tpmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular packed matrix.
tpmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
tpmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular packed matrix.
tpmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trace() - Method in class smile.math.matrix.fp32.IMatrix
Returns the matrix trace.
trace() - Method in class smile.math.matrix.IMatrix
Returns the matrix trace.
train() - Method in class smile.deep.layer.LayerBlock
Sets the layer block in the training mode.
train() - Method in class smile.deep.Model
Sets the model in the training mode.
train(int, Optimizer, Loss, Dataset) - Method in class smile.deep.Model
Trains the model.
train(int, Optimizer, Loss, Dataset, Dataset, String, Metric...) - Method in class smile.deep.Model
Trains the model.
transform() - Method in class smile.plot.vega.VegaLite
Returns the data transformation object.
transform() - Method in class smile.vision.VisionModel
Returns the associated image transform.
transform(double[]) - Method in class smile.base.mlp.HiddenLayer
 
transform(double[]) - Method in class smile.base.mlp.InputLayer
 
transform(double[]) - Method in class smile.base.mlp.Layer
The activation or output function.
transform(double[]) - Method in class smile.base.mlp.OutputLayer
 
transform(double[]) - Method in class smile.wavelet.Wavelet
Discrete wavelet transform.
Transform - Class in smile.plot.vega
View-level data transformations such as filter and new field calculation.
Transform - Interface in smile.data.transform
Data transformation interface.
Transform - Interface in smile.vision.transform
Transformation from image to tensor.
Transformer - Class in smile.llm.llama
The Transformer model.
Transformer(ModelArgs, Device) - Constructor for class smile.llm.llama.Transformer
Constructor.
TransformerBlock - Class in smile.llm.llama
A block in Transformer model.
TransformerBlock(int, ModelArgs) - Constructor for class smile.llm.llama.TransformerBlock
Constructor.
translate(double) - Method in class smile.plot.vega.Axis
Sets the coordinate space translation offset for axis layout.
translate(double, double) - Method in class smile.plot.vega.Projection
Sets the projection's translation offset.
transpose() - Method in class smile.math.matrix.BigMatrix
Returns the transpose of matrix.
transpose() - Method in class smile.math.matrix.fp32.Matrix
Returns the transpose of matrix.
transpose() - Method in class smile.math.matrix.fp32.SparseMatrix
Returns the transpose of matrix.
transpose() - Method in class smile.math.matrix.Matrix
Returns the transpose of matrix.
transpose() - Method in class smile.math.matrix.SparseMatrix
Returns the transpose of matrix.
transpose(boolean) - Method in class smile.math.matrix.BigMatrix
Returns the transpose of matrix.
transpose(boolean) - Method in class smile.math.matrix.fp32.Matrix
Returns the transpose of matrix.
transpose(boolean) - Method in class smile.math.matrix.Matrix
Returns the transpose of matrix.
transpose(double[][]) - Static method in class smile.math.MathEx
Returns the matrix transpose.
transpose(long, long) - Method in class smile.deep.tensor.Tensor
Returns a tensor that is a transposed version of input.
Transpose - Enum Class in smile.math.blas
Matrix transpose.
TRANSPOSE - Enum constant in enum class smile.math.blas.Transpose
Transpose operation on the matrix.
tree - Variable in class smile.classification.RandomForest.Model
The decision tree.
tree - Variable in class smile.regression.RandomForest.Model
The decision tree.
tree() - Method in class smile.clustering.HierarchicalClustering
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering.
trees() - Method in class smile.anomaly.IsolationForest
Returns the isolation trees in the model.
trees() - Method in class smile.classification.AdaBoost
Returns the decision trees.
trees() - Method in class smile.classification.GradientTreeBoost
Returns the regression trees.
trees() - Method in class smile.classification.RandomForest
 
trees() - Method in interface smile.feature.importance.TreeSHAP
Returns the decision trees.
trees() - Method in class smile.regression.GradientTreeBoost
 
trees() - Method in class smile.regression.RandomForest
 
TreeSHAP - Interface in smile.feature.importance
SHAP of ensemble tree methods.
triangular() - Method in class smile.math.matrix.BigMatrix
Gets the flag if a triangular matrix has unit diagonal elements.
triangular() - Method in class smile.math.matrix.fp32.Matrix
Gets the flag if a triangular matrix has unit diagonal elements.
triangular() - Method in class smile.math.matrix.Matrix
Gets the flag if a triangular matrix has unit diagonal elements.
triangular(Diag) - Method in class smile.math.matrix.BigMatrix
Sets/unsets if the matrix is triangular.
triangular(Diag) - Method in class smile.math.matrix.fp32.Matrix
Sets/unsets if the matrix is triangular.
triangular(Diag) - Method in class smile.math.matrix.Matrix
Sets/unsets if the matrix is triangular.
Trie<K,V> - Class in smile.nlp
A trie, also called digital tree or prefix tree, is an ordered tree data structure that is used to store a dynamic set or associative array where the keys are usually strings.
Trie() - Constructor for class smile.nlp.Trie
Constructor.
Trie(int) - Constructor for class smile.nlp.Trie
Constructor.
Trie.Node - Class in smile.nlp
The nodes in the trie.
trim() - Method in class smile.util.DoubleArrayList
Trims the capacity to be the list's current size.
trim() - Method in class smile.util.IntArrayList
Trims the capacity to be the list's current size.
trim(int) - Method in class smile.classification.AdaBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.classification.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.GradientTreeBoost
Trims the tree model set to a smaller size in case of over-fitting.
trim(int) - Method in class smile.regression.RandomForest
Trims the tree model set to a smaller size in case of over-fitting.
tripleMarginRanking(Tensor, Tensor, Tensor) - Static method in interface smile.deep.Loss
Triplet Margin Ranking Loss Function.
triu(long) - Method in class smile.deep.tensor.Tensor
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
triu_(long) - Method in class smile.deep.tensor.Tensor
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
trmv(Layout, UPLO, Transpose, Diag, int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular matrix.
trmv(Layout, UPLO, Transpose, Diag, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trmv(Layout, UPLO, Transpose, Diag, int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular matrix.
trmv(Layout, UPLO, Transpose, Diag, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular matrix.
trmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular matrix.
trmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trmv(Layout, UPLO, Transpose, Diag, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.BLAS
Performs the matrix-vector operation using a triangular matrix.
trmv(Layout, UPLO, Transpose, Diag, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trtrs(Layout, UPLO, Transpose, Diag, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
Solves a triangular system of the form
trtrs(Layout, UPLO, Transpose, Diag, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trtrs(Layout, UPLO, Transpose, Diag, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
Solves a triangular system of the form
trtrs(Layout, UPLO, Transpose, Diag, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trtrs(Layout, UPLO, Transpose, Diag, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a triangular system of the form
trtrs(Layout, UPLO, Transpose, Diag, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trtrs(Layout, UPLO, Transpose, Diag, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
Solves a triangular system of the form
trtrs(Layout, UPLO, Transpose, Diag, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trtrs(Layout, UPLO, Transpose, Diag, int, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
Solves a triangular system of the form
trtrs(Layout, UPLO, Transpose, Diag, int, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
 
trueChild() - Method in class smile.base.cart.InternalNode
Returns the true branch child.
truth - Variable in class smile.validation.ClassificationValidation
The true class labels of validation data.
truth - Variable in class smile.validation.RegressionValidation
The true response variable of validation data.
tryDecode(int[]) - Method in class smile.llm.tokenizer.Tiktoken
 
tryDecode(int[]) - Method in interface smile.llm.tokenizer.Tokenizer
Try to decode a list of token IDs into a string.
TSNE - Class in smile.manifold
The t-distributed stochastic neighbor embedding.
TSNE(double[][], int) - Constructor for class smile.manifold.TSNE
Constructor.
TSNE(double[][], int, double, double, int) - Constructor for class smile.manifold.TSNE
Constructor.
tsp() - Method in class smile.graph.Graph
Returns the optimal travelling salesman problem (TSP) tour with branch and bound algorithm.
tsv(String, Map<String, String>) - Method in class smile.plot.vega.Data
Loads a tab-separated values (TSV) file
tt(BigMatrix) - Method in class smile.math.matrix.BigMatrix
Returns matrix multiplication A' * B'.
tt(Matrix) - Method in class smile.math.matrix.fp32.Matrix
Returns matrix multiplication A' * B'.
tt(Matrix) - Method in class smile.math.matrix.Matrix
Returns matrix multiplication A' * B'.
ttest() - Method in class smile.regression.LinearModel
Returns the t-test of the coefficients (including intercept).
ttest() - Method in class smile.timeseries.AR
Returns the t-test of the coefficients (including intercept).
ttest() - Method in class smile.timeseries.ARMA
Returns the t-test of the coefficients (including intercept).
TTest - Record Class in smile.stat.hypothesis
Student's t test.
TTest(String, double, double, double) - Constructor for record class smile.stat.hypothesis.TTest
Creates an instance of a TTest record class.
Tuple - Interface in smile.data
A tuple is an immutable finite ordered list (sequence) of elements.
Tuple2<T1,T2> - Record Class in smile.util
A tuple of 2 elements.
Tuple2(T1, T2) - Constructor for record class smile.util.Tuple2
Creates an instance of a Tuple2 record class.
TURQUOISE - Static variable in interface smile.plot.swing.Palette
 
tv(double[]) - Method in class smile.math.matrix.IMatrix
Returns Matrix-vector multiplication A' * x.
tv(double[], double[]) - Method in class smile.math.matrix.IMatrix
Matrix-vector multiplication y = A' * x.
tv(double[], int, int) - Method in class smile.math.matrix.BandMatrix
 
tv(double[], int, int) - Method in class smile.math.matrix.BigMatrix
 
tv(double[], int, int) - Method in class smile.math.matrix.IMatrix
Matrix-vector multiplication A' * x.
tv(double[], int, int) - Method in class smile.math.matrix.Matrix
 
tv(double[], int, int) - Method in class smile.math.matrix.SparseMatrix
 
tv(double[], int, int) - Method in class smile.math.matrix.SymmMatrix
 
tv(double, double[], double, double[]) - Method in class smile.math.matrix.IMatrix
Matrix-vector multiplication.
tv(float[]) - Method in class smile.math.matrix.fp32.IMatrix
Returns Matrix-vector multiplication A' * x.
tv(float[], float[]) - Method in class smile.math.matrix.fp32.IMatrix
Matrix-vector multiplication y = A' * x.
tv(float[], int, int) - Method in class smile.math.matrix.fp32.BandMatrix
 
tv(float[], int, int) - Method in class smile.math.matrix.fp32.IMatrix
Matrix-vector multiplication A' * x.
tv(float[], int, int) - Method in class smile.math.matrix.fp32.Matrix
 
tv(float[], int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
 
tv(float[], int, int) - Method in class smile.math.matrix.fp32.SymmMatrix
 
tv(float, float[], float, float[]) - Method in class smile.math.matrix.fp32.IMatrix
Matrix-vector multiplication.
TWCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
Transformed Weight-normalized Complement Naive Bayes.
TWO_POINT - Enum constant in enum class smile.gap.Crossover
Two point crossover - two crossover point are selected, binary string from beginning of chromosome to the first crossover point is copied from one parent, the part from the first to the second crossover point is copied from the second parent and the rest is copied from the first parent.
type - Variable in class smile.data.type.StructField
Field data type.
type - Variable in class smile.timeseries.BoxTest
The type of test.
type() - Method in class smile.data.measure.CategoricalMeasure
Returns the data type that is suitable for this measure scale.
type() - Method in interface smile.data.vector.BaseVector
Returns the data type of elements.
type() - Method in interface smile.data.vector.BooleanVector
 
type() - Method in interface smile.data.vector.ByteVector
 
type() - Method in interface smile.data.vector.CharVector
 
type() - Method in interface smile.data.vector.DoubleVector
 
type() - Method in interface smile.data.vector.FloatVector
 
type() - Method in interface smile.data.vector.IntVector
 
type() - Method in interface smile.data.vector.LongVector
 
type() - Method in interface smile.data.vector.ShortVector
 
type() - Method in class smile.deep.tensor.Device
Returns the device type.
type(int) - Method in class smile.data.type.StructType
Returns the field data type.
type(String) - Method in class smile.plot.vega.FacetField
Sets the field's type of measurement.
type(String) - Method in class smile.plot.vega.Field
Sets the field's type of measurement.
type(String) - Method in class smile.plot.vega.Legend
Sets the type of the legend.
types() - Method in interface smile.data.DataFrame
Returns the column data types.
types() - Method in interface smile.data.Tuple
Returns the field data types.
types() - Method in class smile.data.type.StructType
Returns the field data types.

U

u() - Method in record class smile.graph.Graph.Edge
Returns the value of the u record component.
u() - Method in record class smile.neighbor.lsh.PrH
Returns the value of the u record component.
U - Variable in class smile.math.matrix.BigMatrix.SVD
The left singular vectors U.
U - Variable in class smile.math.matrix.fp32.Matrix.SVD
The left singular vectors U.
U - Variable in class smile.math.matrix.Matrix.SVD
The left singular vectors U.
UH - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Interjection.
ulp(String) - Static method in interface smile.data.formula.Terms
The ulp(x) term.
ulp(Term) - Static method in interface smile.data.formula.Terms
The ulp(x) term.
UMAP - Class in smile.manifold
Uniform Manifold Approximation and Projection.
UMAP() - Constructor for class smile.manifold.UMAP
 
umatrix() - Method in class smile.vq.SOM
Calculates the unified distance matrix (u-matrix) for visualization.
unboxed() - Method in interface smile.data.type.DataType
Returns the unboxed data type if this is a boxed primitive type.
unboxed() - Method in class smile.data.type.StructType
Updates the field type to the primitive one.
unescape(String) - Static method in interface smile.util.Strings
Unescapes a string that contains standard Java escape sequences.
UNIFORM - Enum constant in enum class smile.gap.Crossover
Uniform crossover - bits are randomly copied from the first or from the second parent.
union(DataFrame...) - Method in interface smile.data.DataFrame
Unions data frames vertically by rows.
union(DataFrame...) - Method in class smile.data.IndexDataFrame
 
unique() - Method in class smile.nlp.SimpleText
 
unique() - Method in interface smile.nlp.TextTerms
Returns the iterator of unique words.
unique(int[]) - Static method in class smile.math.MathEx
Find unique elements of vector.
unique(String[]) - Static method in class smile.math.MathEx
Find unique elements of vector.
UNIT - Enum constant in enum class smile.math.blas.Diag
Unit triangular.
unitize() - Method in interface smile.data.SparseDataset
Unitize each row so that L2 norm of x = 1.
unitize(double[]) - Static method in class smile.math.MathEx
Unitize an array so that L2 norm of array = 1.
unitize1() - Method in interface smile.data.SparseDataset
Unitize each row so that L1 norm of x is 1.
unitize1(double[]) - Static method in class smile.math.MathEx
Unitize an array so that L1 norm of array is 1.
unitize2(double[]) - Static method in class smile.math.MathEx
Unitize an array so that L2 norm of array = 1.
UniversalGenerator - Class in smile.math.random
The so-called "Universal Generator" based on multiplicative congruential method, which originally appeared in "Toward a Universal Random Number Generator" by Marsaglia, Zaman and Tsang.
UniversalGenerator() - Constructor for class smile.math.random.UniversalGenerator
Initialize Random with default seed.
UniversalGenerator(int) - Constructor for class smile.math.random.UniversalGenerator
Initialize Random with a specified integer seed
UniversalGenerator(long) - Constructor for class smile.math.random.UniversalGenerator
Initialize Random with a specified long seed
unsqueeze(long) - Method in class smile.deep.tensor.Tensor
Returns a new tensor with a dimension of size one inserted at the specified position.
update(double) - Method in class smile.math.matrix.SparseMatrix.Entry
Update the entry value in the matrix.
update(double[]) - Method in class smile.feature.extraction.GHA
Update the model with a new sample.
update(double[]) - Method in class smile.vq.BIRCH
 
update(double[]) - Method in class smile.vq.GrowingNeuralGas
 
update(double[]) - Method in class smile.vq.NeuralGas
 
update(double[]) - Method in class smile.vq.NeuralMap
 
update(double[]) - Method in class smile.vq.SOM
 
update(double[]) - Method in interface smile.vq.VectorQuantizer
Update the codebook with a new observation.
update(double[][]) - Method in class smile.feature.extraction.GHA
Update the model with a set of samples.
update(double[][], double[]) - Method in class smile.regression.MLP
Updates the model with a mini-batch.
update(double[][], int[]) - Method in class smile.classification.MLP
Updates the model with a mini-batch.
update(double[], double) - Method in class smile.regression.LinearModel
Growing window recursive least squares with lambda = 1.
update(double[], double) - Method in class smile.regression.MLP
Updates the model with a single sample.
update(double[], double) - Method in class smile.vq.hebb.Neuron
Updates the reference vector by w += eps * (x - w).
update(double[], double, double) - Method in class smile.regression.LinearModel
Recursive least squares.
update(double[], int) - Method in class smile.classification.LogisticRegression.Binomial
 
update(double[], int) - Method in class smile.classification.LogisticRegression.Multinomial
 
update(double[], int) - Method in class smile.classification.MLP
Updates the model with a single sample.
update(double[], E) - Method in class smile.neighbor.MutableLSH
Update an entry with new key.
update(float) - Method in class smile.math.matrix.fp32.SparseMatrix.Entry
Update the entry value in the matrix.
update(int) - Method in class smile.base.mlp.MultilayerPerceptron
Updates the weights for mini-batch training.
update(int) - Method in class smile.manifold.TSNE
Performs additional iterations.
update(int[][], int) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(int[][], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(int[], int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(int[], int) - Method in class smile.classification.Maxent.Binomial
 
update(int[], int) - Method in class smile.classification.Maxent.Multinomial
 
update(int, double) - Method in class smile.math.Complex.Array
Sets the i-th element with a real value.
update(int, double, double, double, double, double) - Method in class smile.base.mlp.InputLayer
 
update(int, double, double, double, double, double) - Method in class smile.base.mlp.Layer
Adjust network weights by back-propagation algorithm.
update(int, int, double) - Method in class smile.math.matrix.IMatrix
Sets A[i,j] = x for Scala users.
update(int, int, float) - Method in class smile.math.matrix.fp32.IMatrix
Sets A[i,j] = x for Scala users.
update(int, Complex) - Method in class smile.math.Complex.Array
Sets the i-th element.
update(String) - Method in class smile.data.SQL
Executes an INSERT, UPDATE, or DELETE statement.
update(DataFrame) - Method in class smile.feature.extraction.GHA
Update the model with a new data frame.
update(DataFrame) - Method in class smile.regression.LinearModel
Online update the regression model with a new data frame.
update(Dataset<T, Double>) - Method in interface smile.regression.Regression
Updates the model with a mini-batch of new samples.
update(Dataset<T, Integer>) - Method in interface smile.classification.Classifier
Updates the model with a mini-batch of new samples.
update(Tuple) - Method in class smile.feature.extraction.GHA
Update the model with a new sample.
update(Tuple) - Method in class smile.regression.LinearModel
Online update the regression model with a new training instance.
update(Tensor, Tensor) - Method in class smile.deep.metric.Accuracy
 
update(Tensor, Tensor) - Method in interface smile.deep.metric.Metric
Updates the metric states with input data.
update(Tensor, Tensor) - Method in class smile.deep.metric.Precision
 
update(Tensor, Tensor) - Method in class smile.deep.metric.Recall
 
update(ArrayElementFunction) - Method in class smile.util.SparseArray
Updates each nonzero entry.
update(SparseArray[], int[]) - Method in class smile.classification.DiscreteNaiveBayes
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
update(SparseArray, int) - Method in class smile.classification.DiscreteNaiveBayes
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Binomial
 
update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Multinomial
 
update(T[][], int) - Method in class smile.sequence.HMMLabeler
Updates the HMM by the Baum-Welch algorithm.
update(T[][], int, ToIntFunction<T>) - Method in class smile.sequence.HMM
Updates the HMM by the Baum-Welch algorithm.
update(T[], double[]) - Method in interface smile.regression.Regression
Updates the model with a mini-batch of new samples.
update(T[], int[]) - Method in interface smile.classification.Classifier
Updates the model with a mini-batch of new samples.
update(T, double) - Method in interface smile.regression.Regression
Online update the classifier with a new training instance.
update(T, int) - Method in interface smile.classification.Classifier
Online update the classifier with a new training instance.
updateEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyList
 
updateEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyMatrix
 
updateEdges(int, ArrayElementFunction) - Method in class smile.graph.Graph
Updates the edge weights of a vertex.
UPGMALinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method with Arithmetic mean (also known as average linkage).
UPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMALinkage
Constructor.
UPGMCLinkage - Class in smile.clustering.linkage
Unweighted Pair Group Method using Centroids (also known as centroid linkage).
UPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.
UPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
Constructor.
uplo() - Method in class smile.math.matrix.BandMatrix
Gets the format of packed matrix.
uplo() - Method in class smile.math.matrix.BigMatrix
Gets the format of packed matrix.
uplo() - Method in class smile.math.matrix.fp32.BandMatrix
Gets the format of packed matrix.
uplo() - Method in class smile.math.matrix.fp32.Matrix
Gets the format of packed matrix.
uplo() - Method in class smile.math.matrix.fp32.SymmMatrix
Gets the format of packed matrix.
uplo() - Method in class smile.math.matrix.Matrix
Gets the format of packed matrix.
uplo() - Method in class smile.math.matrix.SymmMatrix
Gets the format of packed matrix.
uplo(UPLO) - Method in class smile.math.matrix.BandMatrix
Sets the format of symmetric band matrix.
uplo(UPLO) - Method in class smile.math.matrix.BigMatrix
Sets the format of packed matrix.
uplo(UPLO) - Method in class smile.math.matrix.fp32.BandMatrix
Sets the format of symmetric band matrix.
uplo(UPLO) - Method in class smile.math.matrix.fp32.Matrix
Sets the format of packed matrix.
uplo(UPLO) - Method in class smile.math.matrix.Matrix
Sets the format of packed matrix.
UPLO - Enum Class in smile.math.blas
The format of packed matrix storage.
UPPER - Enum constant in enum class smile.math.blas.UPLO
Upper triangle is stored.
url(String) - Method in class smile.plot.vega.Data
Sets the url of the data source.
URL - Static variable in interface smile.util.Regex
Internet URLs.
user - Enum constant in enum class smile.llm.Role
End user.
usermeta(JsonNode) - Method in class smile.plot.vega.Concat
 
usermeta(JsonNode) - Method in class smile.plot.vega.Facet
 
usermeta(JsonNode) - Method in class smile.plot.vega.Repeat
 
usermeta(JsonNode) - Method in class smile.plot.vega.VegaLite
Optional metadata that will be passed to Vega.
usermeta(JsonNode) - Method in class smile.plot.vega.View
 
usermeta(Object) - Method in class smile.plot.vega.Concat
 
usermeta(Object) - Method in class smile.plot.vega.Facet
 
usermeta(Object) - Method in class smile.plot.vega.Repeat
 
usermeta(Object) - Method in class smile.plot.vega.VegaLite
Optional metadata that will be passed to Vega.
usermeta(Object) - Method in class smile.plot.vega.View
 

V

v() - Method in record class smile.graph.Graph.Edge
Returns the value of the v record component.
V - Variable in class smile.math.matrix.BigMatrix.SVD
The right singular vectors V.
V - Variable in class smile.math.matrix.fp32.Matrix.SVD
The right singular vectors V.
V - Variable in class smile.math.matrix.Matrix.SVD
The right singular vectors V.
V2L() - Static method in class smile.vision.EfficientNet
EfficientNet-V2_L (largest) model.
V2L(String) - Static method in class smile.vision.EfficientNet
EfficientNet-V2_L (largest) model.
V2M() - Static method in class smile.vision.EfficientNet
EfficientNet-V2_M (larger) model.
V2M(String) - Static method in class smile.vision.EfficientNet
EfficientNet-V2_M (larger) model.
V2S() - Static method in class smile.vision.EfficientNet
EfficientNet-V2_S (baseline) model.
V2S(String) - Static method in class smile.vision.EfficientNet
EfficientNet-V2_S (baseline) model.
val(boolean) - Static method in interface smile.data.formula.Terms
Returns a constant boolean term.
val(byte) - Static method in interface smile.data.formula.Terms
Returns a constant byte term.
val(char) - Static method in interface smile.data.formula.Terms
Returns a constant char term.
val(double) - Static method in interface smile.data.formula.Terms
Returns a constant double precision floating number term.
val(float) - Static method in interface smile.data.formula.Terms
Returns a constant single precision floating number term.
val(int) - Static method in interface smile.data.formula.Terms
Returns a constant integer term.
val(long) - Static method in interface smile.data.formula.Terms
Returns a constant long integer term.
val(short) - Static method in interface smile.data.formula.Terms
Returns a constant short integer term.
val(Object) - Static method in interface smile.data.formula.Terms
Returns a constant object term.
valid(String) - Static method in class smile.plot.vega.Predicate
Test if a field is valid, meaning it is neither null nor NaN.
value - Variable in class smile.util.MutableInt
The integer value.
value() - Method in enum class smile.deep.tensor.DeviceType
Returns the byte value of device type, which is compatible with PyTorch.
value() - Method in record class smile.neighbor.Neighbor
Returns the value of the value record component.
value() - Method in record class smile.util.SparseArray.Entry
Returns the value of the value record component.
value(JsonNode) - Method in class smile.plot.vega.ImputeTransform
Sets the field value to use when the imputation method is "value".
VALUE - Enum constant in enum class smile.math.blas.EigenRange
All eigenvalues in the half-open interval (VL,VU] will be found.
valueOf(int) - Method in class smile.util.IntSet
Maps an index to the corresponding value.
valueOf(String) - Static method in enum class smile.base.cart.Loss.Type
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in interface smile.base.cart.Loss
Parses the loss.
valueOf(String) - Static method in enum class smile.base.cart.SplitRule
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.base.mlp.Cost
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.base.mlp.OutputFunction
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.data.CategoricalEncoder
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.data.formula.DateFeature
Returns the enum constant of this class with the specified name.
valueOf(String) - Method in class smile.data.measure.CategoricalMeasure
 
valueOf(String) - Method in interface smile.data.measure.Measure
Returns a measurement value object represented by the argument string s.
valueOf(String) - Method in class smile.data.measure.NumericalMeasure
 
valueOf(String) - Method in class smile.data.type.ArrayType
 
valueOf(String) - Method in class smile.data.type.BooleanType
 
valueOf(String) - Method in class smile.data.type.ByteType
 
valueOf(String) - Method in class smile.data.type.CharType
 
valueOf(String) - Static method in enum class smile.data.type.DataType.ID
Returns the enum constant of this class with the specified name.
valueOf(String) - Method in interface smile.data.type.DataType
Returns the value from its string representation.
valueOf(String) - Method in class smile.data.type.DateTimeType
 
valueOf(String) - Method in class smile.data.type.DateType
 
valueOf(String) - Method in class smile.data.type.DecimalType
 
valueOf(String) - Method in class smile.data.type.DoubleType
 
valueOf(String) - Method in class smile.data.type.FloatType
 
valueOf(String) - Method in class smile.data.type.IntegerType
 
valueOf(String) - Method in class smile.data.type.LongType
 
valueOf(String) - Method in class smile.data.type.ObjectType
 
valueOf(String) - Method in class smile.data.type.ShortType
 
valueOf(String) - Method in class smile.data.type.StringType
 
valueOf(String) - Method in class smile.data.type.StructField
Returns the object value of string.
valueOf(String) - Method in class smile.data.type.StructType
 
valueOf(String) - Method in class smile.data.type.TimeType
 
valueOf(String) - Static method in enum class smile.deep.metric.Averaging
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.deep.tensor.DeviceType
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.deep.tensor.Layout
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.deep.tensor.ScalarType
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.feature.transform.Normalizer.Norm
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.gap.Crossover
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.io.JSON.Mode
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.llm.FinishReason
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.llm.Role
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.Diag
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.EigenRange
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.EVDJob
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.Layout
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.Side
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.SVDJob
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.Transpose
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.blas.UPLO
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.matrix.ARPACK.AsymmOption
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.matrix.ARPACK.SymmOption
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.math.matrix.fp32.ARPACK.SymmOption
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.nlp.dictionary.EnglishDictionary
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.nlp.dictionary.EnglishStopWords
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.nlp.pos.PennTreebankPOS
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.plot.swing.Line.Style
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.timeseries.AR.Method
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.timeseries.BoxTest.Type
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.validation.metric.Averaging
Returns the enum constant of this class with the specified name.
valueOf(String) - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
Returns the enum constant of this class with the specified name.
values - Variable in class smile.util.IntSet
Map of index to original values.
values() - Static method in enum class smile.base.cart.Loss.Type
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.base.cart.SplitRule
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.base.mlp.Cost
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.base.mlp.OutputFunction
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.data.CategoricalEncoder
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.data.formula.DateFeature
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Method in class smile.data.measure.CategoricalMeasure
Returns the valid value set.
values() - Static method in enum class smile.data.type.DataType.ID
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.deep.metric.Averaging
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.deep.tensor.DeviceType
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.deep.tensor.Layout
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.deep.tensor.ScalarType
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.feature.transform.Normalizer.Norm
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.gap.Crossover
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.io.JSON.Mode
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.llm.FinishReason
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.llm.Role
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.Diag
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.EigenRange
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.EVDJob
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.Layout
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.Side
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.SVDJob
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.Transpose
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.blas.UPLO
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.matrix.ARPACK.AsymmOption
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.matrix.ARPACK.SymmOption
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.math.matrix.fp32.ARPACK.SymmOption
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Method in class smile.neighbor.MutableLSH
Returns the values.
values() - Static method in enum class smile.nlp.dictionary.EnglishDictionary
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.nlp.dictionary.EnglishStopWords
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.nlp.pos.PennTreebankPOS
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.plot.swing.Line.Style
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.timeseries.AR.Method
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.timeseries.BoxTest.Type
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.validation.metric.Averaging
Returns an array containing the constants of this enum class, in the order they are declared.
values() - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
Returns an array containing the constants of this enum class, in the order they are declared.
values(String) - Method in class smile.plot.vega.Data
Sets an array describing the data source.
values(String...) - Method in class smile.plot.vega.Legend
Sets the explicitly set the visible legend values.
values(List<T>) - Method in class smile.plot.vega.Data
Sets a list describing the data source.
values(T[]) - Method in class smile.plot.vega.Data
Sets an array describing the data source.
valueStream() - Method in class smile.util.SparseArray
Returns the stream of the values of nonzero entries.
valueToString(Object) - Method in class smile.swing.text.FloatArrayFormatter
 
valueToString(Object) - Method in class smile.swing.text.IntegerArrayFormatter
 
var - Variable in class smile.neighbor.lsh.NeighborHashValueModel
The variance of hash values of neighbors.
var(double[]) - Static method in class smile.math.MathEx
Returns the variance of an array.
var(float[]) - Static method in class smile.math.MathEx
Returns the variance of an array.
var(int[]) - Static method in class smile.math.MathEx
Returns the variance of an array.
Variable - Record Class in smile.data.formula
A variable in the formula.
Variable(String) - Constructor for record class smile.data.formula.Variable
Creates an instance of a Variable record class.
variables() - Method in class smile.data.formula.AbstractBiFunction
 
variables() - Method in class smile.data.formula.AbstractFunction
 
variables() - Method in class smile.data.formula.Constant
 
variables() - Method in class smile.data.formula.Date
 
variables() - Method in class smile.data.formula.Delete
 
variables() - Method in class smile.data.formula.Dot
 
variables() - Method in class smile.data.formula.FactorCrossing
 
variables() - Method in class smile.data.formula.FactorInteraction
 
variables() - Method in record class smile.data.formula.Intercept
 
variables() - Method in interface smile.data.formula.Term
Returns the set of variables used in this term.
variables() - Method in record class smile.data.formula.Variable
 
variance() - Method in class smile.feature.extraction.PCA
Returns the principal component variances, ordered from largest to smallest, which are the eigenvalues of the covariance or correlation matrix of learning data.
variance() - Method in class smile.feature.extraction.ProbabilisticPCA
Returns the variance of noise.
variance() - Method in class smile.stat.distribution.BernoulliDistribution
 
variance() - Method in class smile.stat.distribution.BetaDistribution
 
variance() - Method in class smile.stat.distribution.BinomialDistribution
 
variance() - Method in class smile.stat.distribution.ChiSquareDistribution
 
variance() - Method in class smile.stat.distribution.DiscreteMixture
 
variance() - Method in interface smile.stat.distribution.Distribution
Returns the variance of distribution.
variance() - Method in class smile.stat.distribution.EmpiricalDistribution
 
variance() - Method in class smile.stat.distribution.ExponentialDistribution
 
variance() - Method in class smile.stat.distribution.FDistribution
 
variance() - Method in class smile.stat.distribution.GammaDistribution
 
variance() - Method in class smile.stat.distribution.GaussianDistribution
 
variance() - Method in class smile.stat.distribution.GeometricDistribution
 
variance() - Method in class smile.stat.distribution.HyperGeometricDistribution
 
variance() - Method in class smile.stat.distribution.KernelDensity
 
variance() - Method in class smile.stat.distribution.LogisticDistribution
 
variance() - Method in class smile.stat.distribution.LogNormalDistribution
 
variance() - Method in class smile.stat.distribution.Mixture
 
variance() - Method in class smile.stat.distribution.NegativeBinomialDistribution
 
variance() - Method in class smile.stat.distribution.PoissonDistribution
 
variance() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
 
variance() - Method in class smile.stat.distribution.TDistribution
 
variance() - Method in class smile.stat.distribution.WeibullDistribution
 
variance() - Method in class smile.timeseries.AR
Returns the residual variance.
variance() - Method in class smile.timeseries.ARMA
Returns the residual variance.
variance(double) - Method in interface smile.glm.model.Model
The variance function.
varianceProportion() - Method in class smile.feature.extraction.PCA
Returns the proportion of variance contained in each principal component, ordered from largest to smallest.
variances() - Method in class smile.manifold.KPCA
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
Variogram - Interface in smile.interpolation.variogram
In spatial statistics the theoretical variogram 2γ(x,y) is a function describing the degree of spatial dependence of a spatial random field or stochastic process Z(x).
VB - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Verb, base form.
VBD - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Verb, past tense.
VBG - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Verb, gerund or present participle.
VBN - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Verb, past participle.
VBP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Verb, non-3rd person singular present.
VBZ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Verb, 3rd person singular present.
vector(int) - Method in interface smile.data.DataFrame
Selects column based on the column index.
vector(int) - Method in class smile.data.IndexDataFrame
 
vector(Enum<?>) - Method in interface smile.data.DataFrame
Selects column using an enum value.
vector(String) - Method in interface smile.data.DataFrame
Selects column based on the column name.
Vector<T> - Interface in smile.data.vector
An immutable generic vector.
VectorQuantizer - Interface in smile.vq
Vector quantizer with competitive learning.
vectors - Variable in class smile.nlp.embedding.Word2Vec
The vector space.
vectors() - Method in class smile.base.svm.KernelMachine
Returns the support vectors of kernel machines.
VECTORS - Enum constant in enum class smile.math.blas.EVDJob
Both eigen values and vectors are computed.
VegaLite - Class in smile.plot.vega
Vega-Lite specifications are JSON objects that describe a diverse range of interactive visualizations.
VegaLite() - Constructor for class smile.plot.vega.VegaLite
Constructor.
VertexVisitor - Interface in smile.graph
A visitor is encapsulation of some operation on graph vertices during traveling graph (DFS or BFS).
vertical(VegaLite...) - Static method in class smile.plot.vega.Concat
Returns a vertical concatenation of views.
view(long...) - Method in class smile.deep.tensor.Tensor
Returns a view tensor that shares the same underlying data with this base tensor.
View - Class in smile.plot.vega
Single view specification, which describes a view that uses a single mark type to visualize the data.
View() - Constructor for class smile.plot.vega.View
Constructor.
View(String) - Constructor for class smile.plot.vega.View
Constructor.
viewAsComplex() - Method in class smile.deep.tensor.Tensor
Returns a view of tensor as a complex tensor.
viewAsReal() - Method in class smile.deep.tensor.Tensor
Returns a view of tensor as a real tensor.
ViewComposition - Interface in smile.plot.vega
All view composition specifications (layer, facet, concat, and repeat) can have the resolve property for scale, axes, and legend resolution.
viewConfig() - Method in class smile.plot.vega.VegaLite
Returns the configuration object defining the style of a single view visualization.
ViewConfig - Class in smile.plot.vega
The style of a single view visualization.
ViewLayoutComposition - Interface in smile.plot.vega
All view layout composition (facet, concat, and repeat) can have the following layout properties: align, bounds, center, spacing.
VIOLET_RED - Static variable in interface smile.plot.swing.Palette
 
VisionModel - Class in smile.vision
The computer vision models.
VisionModel(LayerBlock, Transform) - Constructor for class smile.vision.VisionModel
Constructor.
viterbi(Tuple[]) - Method in class smile.sequence.CRF
Labels sequence with Viterbi algorithm.
viterbi(T[]) - Method in class smile.sequence.CRFLabeler
Labels sequence with Viterbi algorithm.
Vl - Variable in class smile.math.matrix.BigMatrix.EVD
The left eigenvectors.
Vl - Variable in class smile.math.matrix.fp32.Matrix.EVD
The left eigenvectors.
Vl - Variable in class smile.math.matrix.Matrix.EVD
The left eigenvectors.
vocabSize() - Method in record class smile.llm.llama.ModelArgs
Returns the value of the vocabSize record component.
vote(Tuple, double[]) - Method in class smile.classification.RandomForest
Predict and estimate the probability by voting.
Vr - Variable in class smile.math.matrix.BigMatrix.EVD
The right eigenvectors.
Vr - Variable in class smile.math.matrix.fp32.Matrix.EVD
The right eigenvectors.
Vr - Variable in class smile.math.matrix.Matrix.EVD
The right eigenvectors.
vstack(Tensor...) - Static method in class smile.deep.tensor.Tensor
Stacks tensors in sequence vertically (row wise).

W

w - Variable in class smile.neighbor.LSH
The width of projection.
w - Variable in class smile.regression.GaussianProcessRegression
The linear weights.
w - Variable in class smile.vq.hebb.Neuron
The reference vector.
w1 - Variable in class smile.nlp.Bigram
Immutable first word of bigram.
w2 - Variable in class smile.nlp.Bigram
Immutable second word of bigram.
walkin(File, List<File>) - Static method in class smile.nlp.pos.HMMPOSTagger
Recursive function to descend into the directory tree and find all the files that end with ".POS"
WardLinkage - Class in smile.clustering.linkage
Ward's linkage.
WardLinkage(double[][]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
WardLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WardLinkage
Constructor.
Wavelet - Class in smile.wavelet
A wavelet is a wave-like oscillation with an amplitude that starts out at zero, increases, and then decreases back to zero.
Wavelet(double[]) - Constructor for class smile.wavelet.Wavelet
Constructor.
WaveletShrinkage - Interface in smile.wavelet
The wavelet shrinkage is a signal denoising technique based on the idea of thresholding the wavelet coefficients.
WCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
Weight-normalized Complement Naive Bayes.
WDT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Wh-determiner.
WEEK_OF_MONTH - Enum constant in enum class smile.data.formula.DateFeature
The count of weeks within the month.
WEEK_OF_YEAR - Enum constant in enum class smile.data.formula.DateFeature
The count of weeks within the year.
WeibullDistribution - Class in smile.stat.distribution
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering.
WeibullDistribution(double) - Constructor for class smile.stat.distribution.WeibullDistribution
Constructor.
WeibullDistribution(double, double) - Constructor for class smile.stat.distribution.WeibullDistribution
Constructor.
weight - Variable in class smile.base.mlp.Layer
The affine transformation matrix.
weight - Variable in class smile.classification.RandomForest.Model
The weight of tree, which can be used when aggregating tree votes.
weight() - Method in record class smile.graph.Graph.Edge
Returns the value of the weight record component.
Weighted - Enum constant in enum class smile.deep.metric.Averaging
Weighted macro for imbalanced classes.
Weighted - Enum constant in enum class smile.validation.metric.Averaging
Weighted macro for imbalanced classes.
weightGradient - Variable in class smile.base.mlp.Layer
The weight gradient.
weightGradientMoment1 - Variable in class smile.base.mlp.Layer
The first moment of weight gradient.
weightGradientMoment2 - Variable in class smile.base.mlp.Layer
The second moment of weight gradient.
weights() - Method in class smile.base.svm.KernelMachine
Returns the weights of instances.
weightUpdate - Variable in class smile.base.mlp.Layer
The weight update.
where(Tensor, double, double) - Static method in class smile.deep.tensor.Tensor
Returns a tensor of elements selected from either input or other, depending on condition.
where(Tensor, int, int) - Static method in class smile.deep.tensor.Tensor
Returns a tensor of elements selected from either input or other, depending on condition.
where(Tensor, Tensor, Tensor) - Static method in class smile.deep.tensor.Tensor
Returns a tensor of elements selected from either input or other, depending on condition.
whichMax(double[]) - Static method in class smile.math.MathEx
Returns the index of maximum value of an array.
whichMax(double[][]) - Static method in class smile.math.MathEx
Returns the index of maximum value of a matrix.
whichMax(float[]) - Static method in class smile.math.MathEx
Returns the index of maximum value of an array.
whichMax(int[]) - Static method in class smile.math.MathEx
Returns the index of maximum value of an array.
whichMin(double[]) - Static method in class smile.math.MathEx
Returns the index of minimum value of an array.
whichMin(double[][]) - Static method in class smile.math.MathEx
Returns the index of minimum value of a matrix.
whichMin(float[]) - Static method in class smile.math.MathEx
Returns the index of minimum value of an array.
whichMin(int[]) - Static method in class smile.math.MathEx
Returns the index of minimum value of an array.
WHITE - Static variable in interface smile.plot.swing.Palette
 
wi - Variable in class smile.math.matrix.BigMatrix.EVD
The imaginary part of eigenvalues.
wi - Variable in class smile.math.matrix.fp32.Matrix.EVD
The imaginary part of eigenvalues.
wi - Variable in class smile.math.matrix.Matrix.EVD
The imaginary part of eigenvalues.
width - Variable in class smile.plot.swing.Projection
The width of canvas in Java2D coordinate space.
width(double) - Method in class smile.plot.vega.Mark
Sets the width of the marks.
width(int) - Method in class smile.plot.vega.Layer
 
width(int) - Method in class smile.plot.vega.View
Sets the width of a plot with a continuous x-field, or the fixed width of a plot a discrete x-field or no x-field.
width(String) - Method in class smile.plot.vega.Layer
 
width(String) - Method in class smile.plot.vega.View
To enable responsive sizing on width.
widthStep(int) - Method in class smile.plot.vega.Layer
 
widthStep(int) - Method in class smile.plot.vega.View
For a discrete x-field, sets the width per discrete step.
window() - Method in class smile.plot.swing.Canvas
Shows the plot in a window.
window() - Method in class smile.plot.swing.PlotGrid
Shows the plot group in a window.
window() - Method in class smile.plot.swing.PlotPanel
Shows the plot in a window.
window(WindowTransformField...) - Method in class smile.plot.vega.Transform
Creates a data specification object.
WindowTransform - Class in smile.plot.vega
The window transform performs calculations over sorted groups of data objects.
WindowTransformField - Record Class in smile.plot.vega
A sort field definition for sorting data objects within a window.
WindowTransformField(String, String, double, String) - Constructor for record class smile.plot.vega.WindowTransformField
Creates an instance of a WindowTransformField record class.
winsor(double[]) - Static method in class smile.math.Scaler
Returns the scaler that map the values into the range [0, 1].
winsor(double[], double, double) - Static method in class smile.math.Scaler
Returns the scaler that map the values into the range [0, 1].
WinsorScaler - Class in smile.feature.transform
Scales all numeric variables into the range [0, 1].
WinsorScaler() - Constructor for class smile.feature.transform.WinsorScaler
 
Wireframe - Class in smile.plot.swing
A wire frame model specifies each edge of the physical object where two mathematically continuous smooth surfaces meet, or by connecting an object's constituent vertices using straight lines or curves.
Wireframe(double[][], int[][], Color) - Constructor for class smile.plot.swing.Wireframe
Constructor.
woe() - Method in record class smile.feature.selection.InformationValue
Returns the value of the woe record component.
Word2Vec - Class in smile.nlp.embedding
Word2vec is a group of related models that are used to produce word embeddings.
Word2Vec(String[], float[][]) - Constructor for class smile.nlp.embedding.Word2Vec
Constructor.
words - Variable in class smile.nlp.embedding.Word2Vec
The vocabulary.
words - Variable in class smile.nlp.NGram
Immutable word sequences.
words() - Method in class smile.nlp.SimpleText
 
words() - Method in interface smile.nlp.TextTerms
Returns the iterator of the words of the document.
WP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Wh-pronoun.
WP$ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Possessive wh-pronoun.
WPGMALinkage - Class in smile.clustering.linkage
Weighted Pair Group Method with Arithmetic mean.
WPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMALinkage
Constructor.
WPGMCLinkage - Class in smile.clustering.linkage
Weighted Pair Group Method using Centroids (also known as median linkage).
WPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.
WPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
Constructor.
wr - Variable in class smile.math.matrix.BigMatrix.EVD
The real part of eigenvalues.
wr - Variable in class smile.math.matrix.fp32.Matrix.EVD
The real part of eigenvalues.
wr - Variable in class smile.math.matrix.Matrix.EVD
The real part of eigenvalues.
WRB - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
Wh-adverb.
write(DataFrame, Path) - Method in class smile.io.Arrow
Writes the data frame to an arrow file.
write(DataFrame, Path) - Method in class smile.io.CSV
Writes the data frame to a csv file with UTF-8 encoding.
write(DataFrame, Path, String) - Static method in class smile.io.Arff
Writes the data frame to an ARFF file.
Write - Interface in smile.io
Writes data to external storage systems.

X

x - Variable in class smile.base.cart.CART
The training data.
x - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
The value.
x - Variable in class smile.math.matrix.SparseMatrix.Entry
The value.
x - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
The query points where the GP is evaluated.
x() - Method in record class smile.data.SampleInstance
Returns the value of the x record component.
x() - Method in class smile.timeseries.AR
Returns the time series.
x() - Method in class smile.timeseries.ARMA
Returns the time series.
x(double) - Method in class smile.plot.vega.Legend
Sets the custom x-position for legend with orient "none".
x(double) - Method in class smile.plot.vega.Mark
Sets the X coordinates of the marks.
x(String) - Method in class smile.plot.vega.Mark
Sets the width of horizontal "bar" and "area" without specified x2 or width.
x(DataFrame) - Method in class smile.data.formula.Formula
Returns a data frame of predictors.
x(Tuple) - Method in class smile.data.formula.Formula
Apply the formula on a tuple to generate the predictor data.
x2(double) - Method in class smile.plot.vega.Mark
Sets the X2 coordinates for ranged "area", "bar", "rect", and "rule".
x2(String) - Method in class smile.plot.vega.Mark
Sets the width.
x2Offset(double) - Method in class smile.plot.vega.Mark
Sets the offset for x2-position.
xAx(double[]) - Method in class smile.math.matrix.BigMatrix
Returns the quadratic form x' * A * x.
xAx(double[]) - Method in class smile.math.matrix.Matrix
Returns the quadratic form x' * A * x.
xAx(float[]) - Method in class smile.math.matrix.fp32.Matrix
Returns the quadratic form x' * A * x.
XMeans - Class in smile.clustering
X-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters based on BIC scores.
XMeans(double, double[][], int[]) - Constructor for class smile.clustering.XMeans
Constructor.
xOffset(double) - Method in class smile.plot.vega.Mark
Sets the offset for x-position.

Y

y - Variable in class smile.classification.ClassLabels
The sample class id in [0, k).
y - Variable in class smile.clustering.PartitionClustering
The cluster labels of data.
y() - Method in record class smile.data.SampleInstance
Returns the value of the y record component.
y(double) - Method in class smile.plot.vega.Legend
Sets the custom y-position for legend with orient "none".
y(double) - Method in class smile.plot.vega.Mark
Sets the Y coordinates of the marks.
y(String) - Method in class smile.plot.vega.Mark
Sets the height of horizontal "bar" and "area" without specified x2 or width.
y(DataFrame) - Method in class smile.data.formula.Formula
Returns the response vector.
y(Tuple) - Method in class smile.data.formula.Formula
Returns the real-valued response value.
y2(double) - Method in class smile.plot.vega.Mark
Sets the Y2 coordinates for ranged "area", "bar", "rect", and "rule".
y2(String) - Method in class smile.plot.vega.Mark
Sets the width.
y2Offset(double) - Method in class smile.plot.vega.Mark
Sets the offset for y2-position.
YEAR - Enum constant in enum class smile.data.formula.DateFeature
The year represented by an integer.
YELLOW - Static variable in interface smile.plot.swing.Palette
 
yint(Tuple) - Method in class smile.data.formula.Formula
Returns the integer-valued response value.
yOffset(double) - Method in class smile.plot.vega.Mark
Sets the offset for y-position.
YuleWalker - Enum constant in enum class smile.timeseries.AR.Method
Yule-Walker method.
YYYYMMDD - Static variable in class smile.swing.table.DateCellEditor
 
YYYYMMDD - Static variable in class smile.swing.table.DateCellRenderer
 
YYYYMMDD_HHMM - Static variable in class smile.swing.table.DateCellEditor
 
YYYYMMDD_HHMM - Static variable in class smile.swing.table.DateCellRenderer
 
YYYYMMDD_HHMMSS - Static variable in class smile.swing.table.DateCellEditor
 
YYYYMMDD_HHMMSS - Static variable in class smile.swing.table.DateCellRenderer
 

Z

zero(boolean) - Method in class smile.plot.vega.Field
If true, ensures that a zero baseline value is included in the scale domain.
zeros(long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with all zeros.
zeros(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
Returns a tensor filled with all zeros.
zindex(int) - Method in class smile.plot.vega.Axis
Sets a non-negative integer indicating the z-index of the axis.
zindex(int) - Method in class smile.plot.vega.Legend
Sets a non-negative integer indicating the z-index of the legend.
zipWithIndex(double[]) - Static method in class smile.plot.swing.Line
Returns a 2-dimensional array with the index as the x coordinate.
zoom(boolean) - Method in class smile.plot.swing.PlotPanel
Zooms in/out the plot.
ztest - Variable in class smile.glm.GLM
The coefficients, their standard errors, z-scores, and p-values.
ztest() - Method in class smile.glm.GLM
Returns the z-test of the coefficients (including intercept).

_

_1() - Method in record class smile.util.IntPair
Returns the value of the _1 record component.
_1() - Method in record class smile.util.Tuple2
Returns the value of the _1 record component.
_2() - Method in record class smile.util.IntPair
Returns the value of the _2 record component.
_2() - Method in record class smile.util.Tuple2
Returns the value of the _2 record component.
$ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form