Index
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
$
- $ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation $
- $(String) - Static method in interface smile.data.formula.Terms
-
Creates a variable.
A
- a - Variable in class smile.validation.metric.ContingencyTable
-
The row sum of contingency table.
- aat() - Method in class smile.math.matrix.BigMatrix
-
Returns
A * A'
. - aat() - Method in class smile.math.matrix.fp32.Matrix
-
Returns
A * A'
. - aat() - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns
A * A'
. - aat() - Method in class smile.math.matrix.Matrix
-
Returns
A * A'
. - aat() - Method in class smile.math.matrix.SparseMatrix
-
Returns
A * A'
. - Abbreviations - Interface in smile.nlp.dictionary
-
A dictionary interface for abbreviations.
- abs() - Method in class smile.math.Complex
-
Returns the abs/modulus/magnitude.
- abs(String) - Static method in interface smile.data.formula.Terms
-
The
abs(x)
term. - abs(Term) - Static method in interface smile.data.formula.Terms
-
The
abs(x)
term. - Abs - Class in smile.data.formula
-
The term of abs function.
- Abs(Term) - Constructor for class smile.data.formula.Abs
-
Constructor.
- AbstractBiFunction - Class in smile.data.formula
-
This class provides a skeletal implementation of the bi-function term.
- AbstractBiFunction(String, Term, Term) - Constructor for class smile.data.formula.AbstractBiFunction
-
Constructor.
- AbstractClassifier<T> - Class in smile.classification
-
Abstract base class of classifiers.
- AbstractClassifier(int[]) - Constructor for class smile.classification.AbstractClassifier
-
Constructor.
- AbstractClassifier(BaseVector<?, ?, ?>) - Constructor for class smile.classification.AbstractClassifier
-
Constructor.
- AbstractClassifier(IntSet) - Constructor for class smile.classification.AbstractClassifier
-
Constructor.
- AbstractFunction - Class in smile.data.formula
-
This class provides a skeletal implementation of the function term.
- AbstractFunction(String, Term) - Constructor for class smile.data.formula.AbstractFunction
-
Constructor.
- AbstractInterpolation - Class in smile.interpolation
-
Abstract base class of one-dimensional interpolation methods.
- AbstractInterpolation(double[], double[]) - Constructor for class smile.interpolation.AbstractInterpolation
-
Constructor.
- AbstractTuple - Class in smile.data
-
Abstract tuple base class.
- AbstractTuple() - Constructor for class smile.data.AbstractTuple
- accept(int) - Method in interface smile.graph.VertexVisitor
-
Performs some operations on the currently-visiting vertex during DFS or BFS.
- accept(int, int, double) - Method in interface smile.math.matrix.DoubleConsumer
-
Accepts one matrix element and performs the operation on the given arguments.
- accept(int, int, float) - Method in interface smile.math.matrix.fp32.FloatConsumer
-
Accepts one matrix element and performs the operation on the given arguments.
- accept(File) - Method in class smile.swing.FileChooser.SimpleFileFilter
- accuracy() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
accuracy
record component. - Accuracy - Class in smile.deep.metric
-
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
- Accuracy - Class in smile.validation.metric
-
The accuracy is the proportion of true results (both true positives and true negatives) in the population.
- Accuracy() - Constructor for class smile.deep.metric.Accuracy
-
Constructor.
- Accuracy() - Constructor for class smile.validation.metric.Accuracy
- Accuracy(double) - Constructor for class smile.deep.metric.Accuracy
-
Constructor.
- acf(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Autocorrelation function.
- acos() - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor with the arccosine of the elements of input.
- acos(String) - Static method in interface smile.data.formula.Terms
-
The
acos(x)
term. - acos(Term) - Static method in interface smile.data.formula.Terms
-
The
acos(x)
term. - acos_() - Method in class smile.deep.tensor.Tensor
-
Computes the arccosine of the elements of input in place.
- actionPerformed(ActionEvent) - Method in class smile.plot.swing.PlotGrid
- actionPerformed(ActionEvent) - Method in class smile.swing.table.ButtonCellRenderer
- actionPerformed(ActionEvent) - Method in class smile.swing.table.ColorCellEditor
- actionPerformed(ActionEvent) - Method in class smile.swing.table.FontCellEditor
- actionPerformed(ActionEvent) - Method in class smile.swing.table.TableCopyPasteAdapter
-
This method is activated on the Keystrokes we are listening to in this implementation.
- activation() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
activation
record component. - ActivationFunction - Class in smile.deep.activation
-
The activation function.
- ActivationFunction - Interface in smile.base.mlp
-
The activation function in hidden layers.
- ActivationFunction(String, boolean) - Constructor for class smile.deep.activation.ActivationFunction
-
Constructor.
- AdaBoost - Class in smile.classification
-
AdaBoost (Adaptive Boosting) classifier with decision trees.
- AdaBoost(Formula, int, DecisionTree[], double[], double[], double[]) - Constructor for class smile.classification.AdaBoost
-
Constructor.
- AdaBoost(Formula, int, DecisionTree[], double[], double[], double[], IntSet) - Constructor for class smile.classification.AdaBoost
-
Constructor.
- Adam(Model, double) - Static method in class smile.deep.Optimizer
-
Returns an Adam optimizer.
- Adam(Model, double, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
-
Returns an Adam optimizer.
- AdamW(Model, double) - Static method in class smile.deep.Optimizer
-
Returns an AdamW optimizer.
- AdamW(Model, double, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
-
Returns an AdamW optimizer.
- adaptiveAvgPool2d(int) - Static method in interface smile.deep.layer.Layer
-
Returns an adaptive average pooling layer.
- AdaptiveAvgPool2dLayer - Class in smile.deep.layer
-
An adaptive average pooling that reduces a tensor by combining cells.
- AdaptiveAvgPool2dLayer(int) - Constructor for class smile.deep.layer.AdaptiveAvgPool2dLayer
-
Constructor.
- AdaptiveAvgPool2dLayer(int, int) - Constructor for class smile.deep.layer.AdaptiveAvgPool2dLayer
-
Constructor.
- adb(Transpose, BigMatrix, double[], Transpose, BigMatrix) - Static method in class smile.math.matrix.BigMatrix
-
Returns
A * D * B
, where D is a diagonal matrix. - adb(Transpose, Matrix, float[], Transpose, Matrix) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns
A * D * B
, where D is a diagonal matrix. - adb(Transpose, Matrix, double[], Transpose, Matrix) - Static method in class smile.math.matrix.Matrix
-
Returns
A * D * B
, where D is a diagonal matrix. - add(double) - Method in class smile.deep.tensor.Tensor
-
Returns A + b.
- add(double) - Method in class smile.math.matrix.BigMatrix
-
A += b
- add(double) - Method in class smile.math.matrix.Matrix
-
A += b
- add(double) - Method in class smile.sort.DoubleHeapSelect
-
Assimilate a new value from the stream.
- add(double) - Method in class smile.sort.IQAgent
-
Assimilate a new value from the stream.
- add(double) - Method in class smile.util.Array2D
-
A += x.
- add(double) - Method in class smile.util.DoubleArrayList
-
Appends the specified value to the end of this list.
- add(double...) - Method in class smile.plot.swing.Isoline
-
Add a point to the contour line.
- add(double[]) - Method in class smile.util.DoubleArrayList
-
Appends an array to the end of this list.
- add(double[], double[]) - Static method in class smile.math.MathEx
-
Element-wise sum of two arrays y = x + y.
- add(double, double[], double[]) - Method in class smile.math.matrix.BigMatrix
-
Rank-1 update A += alpha * x * y'
- add(double, double[], double[]) - Method in class smile.math.matrix.Matrix
-
Rank-1 update A += alpha * x * y'
- add(double, double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise addition A = alpha * A + beta * B
- add(double, double, Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise addition A = alpha * A + beta * B
- add(double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise addition A += beta * B
- add(double, BigMatrix, double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise addition C = alpha * A + beta * B
- add(double, Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise addition A += beta * B
- add(double, Matrix, double, Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise addition C = alpha * A + beta * B
- add(float) - Method in class smile.deep.tensor.Tensor
-
Returns A + b.
- add(float) - Method in class smile.math.matrix.fp32.Matrix
-
A += b
- add(float) - Method in class smile.sort.FloatHeapSelect
-
Assimilate a new value from the stream.
- add(float, float[], float[]) - Method in class smile.math.matrix.fp32.Matrix
-
Rank-1 update A += alpha * x * y'
- add(float, float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise addition A = alpha * A + beta * B
- add(float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise addition A += beta * B
- add(float, Matrix, float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise addition C = alpha * A + beta * B
- add(int) - Method in class smile.neighbor.lsh.Bucket
-
Adds a point to bucket.
- add(int) - Method in class smile.sort.IntHeapSelect
-
Assimilate a new value from the stream.
- add(int) - Method in class smile.util.IntArray2D
-
A += x.
- add(int) - Method in class smile.util.IntArrayList
-
Appends the specified value to the end of this list.
- add(int) - Method in class smile.util.IntHashSet
-
Adds the specified element to this set if it is not already present.
- add(int...) - Method in class smile.util.IntArrayList
-
Appends an array to the end of this list.
- add(int, double[]) - Method in class smile.neighbor.lsh.Hash
-
Insert an item into the hash table.
- add(int, double[]) - Method in class smile.neighbor.lsh.MultiProbeHash
- add(int, int, double) - Method in class smile.math.matrix.BigMatrix
-
A[i,j] += b
- add(int, int, double) - Method in class smile.math.matrix.Matrix
-
A[i,j] += b
- add(int, int, double) - Method in class smile.util.Array2D
-
A[i, j] += x.
- add(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
-
A[i,j] += b
- add(int, int, int) - Method in class smile.util.IntArray2D
-
A[i, j] += x.
- add(E) - Method in class smile.util.PairingHeap
- add(String, double) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, double[]) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, double, double) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, double, double, double) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int[]) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int, int) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, int, int, int) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, String) - Static method in interface smile.data.formula.Terms
-
Adds two terms.
- add(String, String) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, String[]) - Method in class smile.hpo.Hyperparameters
-
Adds a parameter.
- add(String, Module) - Method in class smile.deep.layer.LayerBlock
-
Adds a sub-layer.
- add(String, Term) - Static method in interface smile.data.formula.Terms
-
Adds two terms.
- add(String, Layer) - Method in class smile.deep.layer.LayerBlock
-
Adds a sub-layer.
- add(String, T) - Method in class smile.hash.PerfectMap.Builder
-
Add a new key-value pair.
- add(Map<K, V>) - Method in class smile.neighbor.BKTree
-
Adds a dataset into BK-tree.
- add(K, V) - Method in class smile.neighbor.BKTree
-
Adds a datum into the BK-tree.
- add(Term, String) - Static method in interface smile.data.formula.Terms
-
Adds two terms.
- add(Term, Term) - Static method in interface smile.data.formula.Terms
-
Adds two terms.
- add(Layer) - Method in class smile.deep.layer.SequentialBlock
-
Adds a layer to the sequential block.
- add(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A + B.
- add(Tensor, double) - Method in class smile.deep.tensor.Tensor
-
Returns A + alpha * B.
- add(Complex) - Method in class smile.math.Complex
-
Returns this + b.
- add(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise addition A += B
- add(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise addition A += B
- add(Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise addition A += B
- add(Text) - Method in class smile.nlp.SimpleCorpus
-
Adds a document to the corpus.
- add(Plot) - Method in class smile.plot.swing.Canvas
-
Add a graphical shape to the canvas.
- add(PlotPanel) - Method in class smile.plot.swing.PlotGrid
-
Add a plot into the frame.
- add(Shape) - Method in class smile.plot.swing.Canvas
-
Add a graphical shape to the canvas.
- add(Array2D) - Method in class smile.util.Array2D
-
A += B.
- add(IntArray2D) - Method in class smile.util.IntArray2D
-
A += B.
- add(IntArrayList) - Method in class smile.util.IntArrayList
-
Appends an array to the end of this list.
- add(T) - Method in class smile.sort.HeapSelect
-
Assimilate a new value from the stream.
- add(T) - Method in class smile.util.AutoScope
-
Adds resource to this scope.
- Add - Class in smile.data.formula
-
The term of
a + b
expression. - Add(Term, Term) - Constructor for class smile.data.formula.Add
-
Constructor.
- add_(double) - Method in class smile.deep.tensor.Tensor
-
Returns A += b.
- add_(float) - Method in class smile.deep.tensor.Tensor
-
Returns A += b.
- add_(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A += B.
- add_(Tensor, double) - Method in class smile.deep.tensor.Tensor
-
Returns A += alpha * B.
- add2(double, double, BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise addition A = alpha * A + beta * B^2
- add2(double, double, Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise addition A = alpha * A + beta * B^2
- add2(float, float, Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise addition A = alpha * A + beta * B^2
- addAll(Collection<? extends E>) - Method in class smile.util.PairingHeap
- addAnchor(String) - Method in interface smile.nlp.AnchorText
-
Adds a link label to the anchor text.
- addAnchor(String) - Method in class smile.nlp.SimpleText
- addChild(String) - Method in class smile.taxonomy.Concept
-
Adds a child to this node.
- addChild(K[], V, int) - Method in class smile.nlp.Trie.Node
-
Adds a child.
- addChild(Concept) - Method in class smile.taxonomy.Concept
-
Adds a child to this node.
- addDiag(double) - Method in class smile.math.matrix.BigMatrix
-
A[i, i] += b
- addDiag(double) - Method in class smile.math.matrix.Matrix
-
A[i, i] += b
- addDiag(double[]) - Method in class smile.math.matrix.BigMatrix
-
A[i, i] += b[i]
- addDiag(double[]) - Method in class smile.math.matrix.Matrix
-
A[i, i] += b[i]
- addDiag(float) - Method in class smile.math.matrix.fp32.Matrix
-
A[i, i] += b
- addDiag(float[]) - Method in class smile.math.matrix.fp32.Matrix
-
A[i, i] += b[i]
- addEdge(int, int) - Method in class smile.graph.Graph
-
Creates a new edge in this graph, going from the source vertex to the target vertex, and returns the created edge.
- addEdge(int, int, double) - Method in class smile.graph.Graph
-
Creates a new edge in this graph, going from the source vertex to the target vertex, and returns the created edge.
- addEdge(Neuron) - Method in class smile.vq.hebb.Neuron
-
Adds an edge.
- addEdge(Neuron, int) - Method in class smile.vq.hebb.Neuron
-
Adds an edge.
- addEdges(Collection<Graph.Edge>) - Method in class smile.graph.Graph
-
Adds a set of edges to the graph.
- addExtension(String) - Method in class smile.swing.FileChooser.SimpleFileFilter
-
Adds a file type "dot" extension to filter against.
- addKeywords(String...) - Method in class smile.taxonomy.Concept
-
Adds a list of synomym to the concept synset.
- addNode(E) - Method in class smile.util.PairingHeap
-
Adds a new element to the pairing heap.
- addNotify() - Method in class smile.swing.Table.RowHeader
- addPropertyChangeListener(PropertyChangeListener) - Method in class smile.plot.swing.Canvas
-
Add a PropertyChangeListener to the listener list.
- AdjacencyList - Class in smile.graph
-
An adjacency list representation of a graph.
- AdjacencyList(int) - Constructor for class smile.graph.AdjacencyList
-
Constructor.
- AdjacencyList(int, boolean) - Constructor for class smile.graph.AdjacencyList
-
Constructor.
- AdjacencyMatrix - Class in smile.graph
-
An adjacency matrix representation of a graph.
- AdjacencyMatrix(int) - Constructor for class smile.graph.AdjacencyMatrix
-
Constructor.
- AdjacencyMatrix(int, boolean) - Constructor for class smile.graph.AdjacencyMatrix
-
Constructor.
- AdjustedMutualInformation - Class in smile.validation.metric
-
Adjusted Mutual Information (AMI) for comparing clustering.
- AdjustedMutualInformation(AdjustedMutualInformation.Method) - Constructor for class smile.validation.metric.AdjustedMutualInformation
-
Constructor.
- AdjustedMutualInformation.Method - Enum Class in smile.validation.metric
-
The normalization method.
- adjustedR2() - Method in class smile.timeseries.AR
-
Returns adjusted R2 statistic.
- adjustedR2() - Method in class smile.timeseries.ARMA
-
Returns adjusted R2 statistic.
- AdjustedRandIndex - Class in smile.validation.metric
-
Adjusted Rand Index.
- AdjustedRandIndex() - Constructor for class smile.validation.metric.AdjustedRandIndex
- adjustedRSquared() - Method in class smile.regression.LinearModel
-
Returns adjusted R2 statistic.
- age - Variable in class smile.vq.hebb.Edge
-
The age of the edges.
- age() - Method in class smile.vq.hebb.Neuron
-
Increments the age of all edges emanating from the neuron.
- aggregate(String) - Method in class smile.plot.vega.Field
-
Sets the aggregation function for the field (e.g., "mean", "sum", "median", "min", "max", "count").
- aggregate(String, String, String, String...) - Method in class smile.plot.vega.Transform
-
Aggregate summarizes a table as one record for each group.
- AIC() - Method in class smile.classification.LogisticRegression
-
Returns the AIC score.
- AIC() - Method in class smile.classification.Maxent
-
Returns the AIC score.
- AIC() - Method in class smile.classification.SparseLogisticRegression
-
Returns the AIC score.
- AIC() - Method in class smile.glm.GLM
-
Returns the AIC score.
- AIC(double, int) - Static method in interface smile.validation.ModelSelection
-
Akaike information criterion.
- align(String) - Method in class smile.plot.vega.Concat
- align(String) - Method in class smile.plot.vega.Facet
- align(String) - Method in class smile.plot.vega.FacetField
-
Sets the alignment to apply to row/column facet's subplot.
- align(String) - Method in class smile.plot.vega.Repeat
- align(String) - Method in interface smile.plot.vega.ViewLayoutComposition
-
Sets the alignment to apply to grid rows and columns.
- align(String, String) - Method in class smile.plot.vega.Concat
- align(String, String) - Method in class smile.plot.vega.Facet
- align(String, String) - Method in class smile.plot.vega.Repeat
- align(String, String) - Method in interface smile.plot.vega.ViewLayoutComposition
-
Sets different alignments for rows and columns.
- all() - Method in class smile.deep.tensor.Tensor
-
Tests if all elements in the tensor are true.
- ALL - Enum constant in enum class smile.math.blas.EigenRange
-
All eigenvalues will be found.
- ALL - Enum constant in enum class smile.math.blas.SVDJob
-
All left (or right) singular vectors are returned in supplied matrix U (or Vt).
- allocate(long) - Static method in class smile.io.Arrow
-
Creates the root allocator.
- allowSpecialTokens(boolean) - Method in class smile.llm.tokenizer.Tiktoken
-
Sets how special tokens will be encoded.
- alpha - Variable in class smile.stat.distribution.BetaDistribution
-
The shape parameter.
- alpha() - Method in class smile.stat.distribution.BetaDistribution
-
Returns the shape parameter alpha.
- alpha() - Method in record class smile.swing.AlphaIcon
-
Returns the value of the
alpha
record component. - AlphaIcon - Record Class in smile.swing
-
An Icon wrapper that paints the contained icon with a specified transparency.
- AlphaIcon(Icon, float) - Constructor for record class smile.swing.AlphaIcon
-
Creates an instance of a
AlphaIcon
record class. - anchor(double) - Method in class smile.plot.vega.BinParams
-
Sets the value in the binned domain at which to anchor the bins, shifting the bin boundaries if necessary to ensure that a boundary aligns with the anchor value.
- AnchorText - Interface in smile.nlp
-
The anchor text is the visible, clickable text in a hyperlink.
- and(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns logical AND of two boolean tensors.
- and(Predicate...) - Static method in class smile.plot.vega.Predicate
-
Logical AND composition to combine predicates.
- and_(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns logical AND of two boolean tensors.
- andThen(Transform) - Method in interface smile.data.transform.Transform
-
Returns a composed function that first applies this function to its input, and then applies the
after
function to the result. - angular(double[], double[]) - Static method in class smile.math.MathEx
-
Returns the angular distance.
- angular(float[], float[]) - Static method in class smile.math.MathEx
-
Returns the angular distance.
- antecedent() - Method in record class smile.association.AssociationRule
-
Returns the value of the
antecedent
record component. - anyNull() - Method in interface smile.data.Tuple
-
Returns true if there are any NULL values in this tuple.
- anyNull() - Method in interface smile.data.vector.Vector
-
Returns true if there are any NULL values in this row.
- append(int, double) - Method in class smile.util.SparseArray
-
Append an entry to the array, optimizing for the case where the index is greater than all existing indices in the array.
- apply(double) - Method in interface smile.math.Function
-
Computes the value of the function at x.
- apply(double) - Method in interface smile.math.kernel.DotProductKernel
-
Computes the kernel function.
- apply(double) - Method in interface smile.math.kernel.IsotropicKernel
-
Computes the kernel function.
- apply(double[]) - Method in class smile.feature.extraction.KernelPCA
- apply(double[]) - Method in class smile.feature.extraction.Projection
-
Project a data point to the feature space.
- apply(double...) - Method in interface smile.math.MultivariateFunction
-
Computes the value of the function at x.
- apply(double[][]) - Method in class smile.feature.extraction.Projection
-
Project a set of data to the feature space.
- apply(double, FPTree) - Static method in class smile.association.ARM
-
Mines the association rules.
- apply(int) - Method in interface smile.data.DataFrame
-
Returns the row at the specified index.
- apply(int) - Method in interface smile.data.Dataset
-
Returns the index at the specified index.
- apply(int) - Method in interface smile.data.Tuple
-
Returns the value at position i.
- apply(int) - Method in interface smile.data.vector.BaseVector
-
Returns the value at position i, which may be null.
- apply(int) - Method in class smile.math.Complex.Array
-
Returns the i-th element.
- apply(int) - Method in interface smile.math.IntFunction
-
Computes the value of the function at x.
- apply(int) - Method in interface smile.math.TimeFunction
-
Returns the function value at time step t.
- apply(int...) - Method in interface smile.data.vector.BaseVector
-
Returns a new vector with selected entries.
- apply(int, double) - Method in interface smile.util.ArrayElementConsumer
-
Performs this operation on the given element.
- apply(int, double) - Method in interface smile.util.ArrayElementFunction
-
Performs this operation on the given element.
- apply(int, int) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns
A[i,j]
. - apply(int, int) - Method in class smile.math.matrix.IMatrix
-
Returns
A[i,j]
for Scala users. - apply(int, int) - Method in class smile.util.Array2D
-
Returns A[i, j].
- apply(int, int) - Method in class smile.util.IntArray2D
-
Returns A[i, j].
- apply(int, int, int, Fitness<BitString>) - Method in class smile.feature.selection.GAFE
-
Genetic algorithm based feature selection for classification.
- apply(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- apply(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name and return it as a Column.
- apply(String) - Method in interface smile.data.Tuple
-
Returns the value by field name.
- apply(String) - Method in class smile.feature.extraction.BagOfWords
-
Returns the bag-of-words features of a document.
- apply(String) - Method in class smile.feature.extraction.HashEncoder
-
Returns the bag-of-words features of a document.
- apply(String) - Method in class smile.nlp.embedding.Word2Vec
-
Returns the embedding vector of a word.
- apply(String) - Method in interface smile.nlp.stemmer.Stemmer
- apply(String) - Method in interface smile.nlp.tokenizer.Tokenizer
- apply(JTable) - Method in class smile.swing.table.TableColumnSettings
-
Apply this column settings to given table.
- apply(JTable) - Static method in class smile.swing.table.TableCopyPasteAdapter
-
Creates and attaches a copy-paste adapter for a table.
- apply(FPTree) - Static method in class smile.association.FPGrowth
-
Mines the frequent item sets.
- apply(DataFrame) - Method in interface smile.data.formula.Feature
-
Applies the term on a data frame.
- apply(DataFrame) - Method in class smile.data.transform.ColumnTransform
- apply(DataFrame) - Method in interface smile.data.transform.Transform
-
Applies this transform to the given argument.
- apply(DataFrame) - Method in class smile.feature.extraction.BinaryEncoder
-
Generates the compact representation of sparse binary features for a data frame.
- apply(DataFrame) - Method in class smile.feature.extraction.Projection
- apply(DataFrame) - Method in class smile.feature.extraction.SparseEncoder
-
Generates the sparse representation of a data frame.
- apply(DataFrame) - Method in class smile.feature.imputation.SimpleImputer
- apply(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a tuple.
- apply(Tuple) - Method in class smile.data.formula.Formula
-
Apply the formula on a tuple to generate the model data.
- apply(Tuple) - Method in class smile.data.transform.ColumnTransform
- apply(Tuple) - Method in class smile.feature.extraction.BagOfWords
- apply(Tuple) - Method in class smile.feature.extraction.BinaryEncoder
-
Generates the compact representation of sparse binary features for given object.
- apply(Tuple) - Method in class smile.feature.extraction.Projection
- apply(Tuple) - Method in class smile.feature.extraction.SparseEncoder
-
Generates the sparse representation of given object.
- apply(Tuple) - Method in class smile.feature.imputation.KMedoidsImputer
- apply(Tuple) - Method in class smile.feature.imputation.KNNImputer
- apply(Tuple) - Method in class smile.feature.imputation.SimpleImputer
- apply(Tuple) - Method in class smile.feature.transform.Normalizer
- apply(Tensor) - Method in interface smile.deep.layer.Layer
- apply(Tensor) - Method in class smile.deep.Model
- apply(Tensor, Tensor, Tensor) - Static method in interface smile.llm.RotaryPositionalEncoding
-
Applies rotary embeddings to the input query and key tensors.
- apply(BitString, BitString) - Method in enum class smile.gap.Crossover
-
Returns a pair of offsprings by crossovering parent chromosomes.
- apply(T) - Method in class smile.manifold.KPCA
- apply(T[]) - Method in interface smile.gap.Selection
-
Select a chromosome with replacement from the population based on their fitness.
- apply(T[]) - Method in class smile.manifold.KPCA
-
Project a set of data to the feature space.
- apply(T, T) - Method in interface smile.math.distance.Distance
-
Returns the distance measure between two objects.
- apply(T, T) - Method in interface smile.math.kernel.MercerKernel
-
Kernel function.
- applyAsBoolean(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces a boolean-valued result.
- applyAsByte(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces a byte-valued result.
- applyAsChar(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces a char-valued result.
- applyAsDouble(double[]) - Method in interface smile.math.MultivariateFunction
- applyAsDouble(double[], double[]) - Method in interface smile.validation.metric.RegressionMetric
- applyAsDouble(int[], int[]) - Method in interface smile.validation.metric.ClassificationMetric
- applyAsDouble(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces a double-valued result.
- applyAsDouble(T) - Method in interface smile.classification.Classifier
- applyAsDouble(T) - Method in interface smile.regression.Regression
- applyAsDouble(T, T) - Method in interface smile.math.distance.Distance
- applyAsDouble(T, T) - Method in interface smile.math.kernel.MercerKernel
- applyAsFloat(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces a float-valued result.
- applyAsFloat(T) - Method in interface smile.util.ToFloatFunction
-
Applies this function to the given argument.
- applyAsInt(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces an int-valued result.
- applyAsInt(T) - Method in interface smile.classification.Classifier
- applyAsLong(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces a long-valued result.
- applyAsShort(Tuple) - Method in interface smile.data.formula.Feature
-
Applies the term on a data object and produces a short-valued result.
- ar() - Method in class smile.timeseries.AR
-
Returns the linear coefficients of AR (without intercept).
- ar() - Method in class smile.timeseries.ARMA
-
Returns the linear coefficients of AR(p).
- AR - Class in smile.timeseries
-
Autoregressive model.
- AR(double[], double[], double, AR.Method) - Constructor for class smile.timeseries.AR
-
Constructor.
- AR.Method - Enum Class in smile.timeseries
-
The fitting method.
- arange(long, long, long) - Static method in class smile.deep.tensor.Tensor
-
Returns a 1-D tensor of size (end - start) / step with values from the interval [start, end) taken with common difference step beginning from start.
- arbitraryInsertion() - Method in class smile.graph.Graph
-
Returns the approximate solution to TSP with the arbitrary insertion heuristic.
- arff(String) - Static method in interface smile.io.Read
-
Reads an ARFF file.
- arff(Path) - Static method in interface smile.io.Read
-
Reads an ARFF file.
- arff(DataFrame, Path, String) - Static method in interface smile.io.Write
-
Writes the data frame to an ARFF file.
- Arff - Class in smile.io
-
Weka ARFF (attribute relation file format) is an ASCII text file format that is essentially a CSV file with a header that describes the meta-data.
- Arff(Reader) - Constructor for class smile.io.Arff
-
Constructor.
- Arff(String) - Constructor for class smile.io.Arff
-
Constructor.
- Arff(String, Charset) - Constructor for class smile.io.Arff
-
Constructor.
- Arff(Path) - Constructor for class smile.io.Arff
-
Constructor.
- Arff(Path, Charset) - Constructor for class smile.io.Arff
-
Constructor.
- argmax(int, boolean) - Method in class smile.deep.tensor.Tensor
-
Returns the indices of the maximum value of a tensor across a dimension.
- aria(boolean) - Method in class smile.plot.vega.Axis
-
Sets if ARIA attributes should be included (SVG output only).
- aria(boolean) - Method in class smile.plot.vega.Legend
-
Sets if ARIA attributes should be included (SVG output only).
- aria(boolean) - Method in class smile.plot.vega.Mark
-
Sets the aria.
- ARM - Class in smile.association
-
Association Rule Mining.
- ARMA - Class in smile.timeseries
-
Autoregressive moving-average model.
- ARMA(double[], double[], double[], double, double[], double[]) - Constructor for class smile.timeseries.ARMA
-
Constructor.
- ARPACK - Class in smile.math.matrix
-
ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
- ARPACK - Class in smile.math.matrix.fp32
-
ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems.
- ARPACK.AsymmOption - Enum Class in smile.math.matrix
-
Which eigenvalues of asymmetric matrix to compute.
- ARPACK.AsymmOption - Enum Class in smile.math.matrix.fp32
-
Which eigenvalues of asymmetric matrix to compute.
- ARPACK.SymmOption - Enum Class in smile.math.matrix
-
Which eigenvalues of symmetric matrix to compute.
- ARPACK.SymmOption - Enum Class in smile.math.matrix.fp32
-
Which eigenvalues of symmetric matrix to compute.
- array() - Method in interface smile.data.vector.BaseVector
-
Returns the array that backs this vector.
- array() - Method in interface smile.data.vector.BooleanVector
- array() - Method in interface smile.data.vector.ByteVector
- array() - Method in interface smile.data.vector.CharVector
- array() - Method in interface smile.data.vector.DoubleVector
- array() - Method in interface smile.data.vector.FloatVector
- array() - Method in interface smile.data.vector.IntVector
- array() - Method in interface smile.data.vector.LongVector
- array() - Method in interface smile.data.vector.ShortVector
- array() - Method in record class smile.util.Bytes
-
Returns the value of the
array
record component. - array(DataType) - Static method in class smile.data.type.DataTypes
-
Creates an array data type.
- Array - Enum constant in enum class smile.data.type.DataType.ID
-
Array type ID.
- Array(int) - Constructor for class smile.math.Complex.Array
-
Constructor.
- Array2D - Class in smile.util
-
2-dimensional array of doubles.
- Array2D(double[][]) - Constructor for class smile.util.Array2D
-
Constructor.
- Array2D(int, int) - Constructor for class smile.util.Array2D
-
Constructor of all-zero matrix.
- Array2D(int, int, double) - Constructor for class smile.util.Array2D
-
Constructor.
- Array2D(int, int, double[]) - Constructor for class smile.util.Array2D
-
Constructor.
- ArrayElementConsumer - Interface in smile.util
-
Represents an operation that accepts an array element of double value and returns no result.
- ArrayElementFunction - Interface in smile.util
-
Represents a function that accepts an array element of double value and produces a result.
- ArrayType - Class in smile.data.type
-
Array of primitive data type.
- arrow(String) - Static method in interface smile.io.Read
-
Reads an Apache Arrow file.
- arrow(Path) - Static method in interface smile.io.Read
-
Reads an Apache Arrow file.
- arrow(DataFrame, Path) - Static method in interface smile.io.Write
-
Writes an Apache Arrow file.
- Arrow - Class in smile.io
-
Apache Arrow is a cross-language development platform for in-memory data.
- Arrow() - Constructor for class smile.io.Arrow
-
Constructor.
- Arrow(int) - Constructor for class smile.io.Arrow
-
Constructor.
- as() - Method in record class smile.plot.vega.WindowTransformField
-
Returns the value of the
as
record component. - as(String...) - Method in class smile.plot.vega.DensityTransform
-
Sets the output fields for the sample value and corresponding density estimate.
- as(String...) - Method in class smile.plot.vega.LoessTransform
-
Sets the output field names for the smoothed points generated by the loess transform.
- as(String...) - Method in class smile.plot.vega.QuantileTransform
-
Sets the output field names for the probability and quantile values.
- as(String...) - Method in class smile.plot.vega.RegressionTransform
-
Sets the output field names for the smoothed points generated by the loess transform.
- asin() - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor with the arcsine of the elements of input.
- asin(String) - Static method in interface smile.data.formula.Terms
-
The
asin(x)
term. - asin(Term) - Static method in interface smile.data.formula.Terms
-
The
asin(x)
term. - asin_() - Method in class smile.deep.tensor.Tensor
-
Computes the arcsine of the elements of input in place.
- asolve(double[], double[]) - Method in interface smile.math.matrix.IMatrix.Preconditioner
-
Solve P * x = b for the preconditioner matrix P.
- asolve(float[], float[]) - Method in interface smile.math.matrix.fp32.IMatrix.Preconditioner
-
Solve P * x = b for the preconditioner matrix P.
- assistant - Enum constant in enum class smile.llm.Role
-
AI assistant.
- AssociationRule - Record Class in smile.association
-
Association rule object.
- AssociationRule(int[], int[], double, double, double, double) - Constructor for record class smile.association.AssociationRule
-
Creates an instance of a
AssociationRule
record class. - asTorch() - Method in class smile.deep.activation.ActivationFunction
- asTorch() - Method in class smile.deep.layer.AdaptiveAvgPool2dLayer
- asTorch() - Method in class smile.deep.layer.AvgPool2dLayer
- asTorch() - Method in class smile.deep.layer.BatchNorm1dLayer
- asTorch() - Method in class smile.deep.layer.BatchNorm2dLayer
- asTorch() - Method in class smile.deep.layer.Conv2dLayer
- asTorch() - Method in class smile.deep.layer.DropoutLayer
- asTorch() - Method in class smile.deep.layer.EmbeddingLayer
- asTorch() - Method in class smile.deep.layer.GroupNormLayer
- asTorch() - Method in interface smile.deep.layer.Layer
-
Returns the PyTorch Module object.
- asTorch() - Method in class smile.deep.layer.LayerBlock
- asTorch() - Method in class smile.deep.layer.LinearLayer
- asTorch() - Method in class smile.deep.layer.MaxPool2dLayer
- asTorch() - Method in class smile.deep.layer.RMSNormLayer
- asTorch() - Method in class smile.deep.Model
-
Returns the PyTorch Module object.
- asTorch() - Method in class smile.deep.tensor.Device
-
Returns the PyTorch device object.
- asTorch() - Method in enum class smile.deep.tensor.ScalarType
- asTorch() - Method in class smile.deep.tensor.Tensor
-
Returns the PyTorch tensor object.
- asTorch() - Method in class smile.llm.PositionalEncoding
- asTorch() - Method in class smile.vision.layer.StochasticDepth
- asum(double[]) - Method in interface smile.math.blas.BLAS
-
Sums the absolute values of the elements of a vector.
- asum(float[]) - Method in interface smile.math.blas.BLAS
-
Sums the absolute values of the elements of a vector.
- asum(int, double[], int) - Method in interface smile.math.blas.BLAS
-
Sums the absolute values of the elements of a vector.
- asum(int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- asum(int, float[], int) - Method in interface smile.math.blas.BLAS
-
Sums the absolute values of the elements of a vector.
- asum(int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ata() - Method in class smile.math.matrix.BigMatrix
-
Returns
A' * A
. - ata() - Method in class smile.math.matrix.fp32.Matrix
-
Returns
A' * A
. - ata() - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns
A' * A
. - ata() - Method in class smile.math.matrix.Matrix
-
Returns
A' * A
. - ata() - Method in class smile.math.matrix.SparseMatrix
-
Returns
A' * A
. - atan(String) - Static method in interface smile.data.formula.Terms
-
The
atan(x)
term. - atan(Term) - Static method in interface smile.data.formula.Terms
-
The
atan(x)
term. - Attention - Class in smile.llm.llama
-
Multi-head attention.
- Attention(ModelArgs) - Constructor for class smile.llm.llama.Attention
-
Constructor.
- attractors - Variable in class smile.clustering.DENCLUE
-
The density attractor of each observation.
- auc() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
auc
record component. - AUC - Class in smile.validation.metric
-
The area under the curve (AUC).
- AUC() - Constructor for class smile.validation.metric.AUC
- AutoScope - Class in smile.util
-
AutoScope allows for predictable, deterministic resource deallocation.
- AutoScope(AutoCloseable...) - Constructor for class smile.util.AutoScope
-
Constructors.
- autosize() - Method in class smile.plot.vega.Concat
- autosize() - Method in class smile.plot.vega.Config
-
Sets the overall size of the visualization.
- autosize() - Method in class smile.plot.vega.Facet
- autosize() - Method in class smile.plot.vega.Repeat
- autosize() - Method in class smile.plot.vega.VegaLite
-
Sets the overall size of the visualization.
- autosize() - Method in class smile.plot.vega.View
- autosize(String, boolean, String) - Method in class smile.plot.vega.Concat
- autosize(String, boolean, String) - Method in class smile.plot.vega.Config
-
Sets the overall size of the visualization.
- autosize(String, boolean, String) - Method in class smile.plot.vega.Facet
- autosize(String, boolean, String) - Method in class smile.plot.vega.Repeat
- autosize(String, boolean, String) - Method in class smile.plot.vega.VegaLite
-
Sets the overall size of the visualization.
- autosize(String, boolean, String) - Method in class smile.plot.vega.View
- Averaging - Enum Class in smile.deep.metric
-
The averaging strategy to aggregate binary performance metrics across multi-classes.
- Averaging - Enum Class in smile.validation.metric
-
The averaging strategy to aggregate binary performance metrics across multi-classes.
- avg - Variable in class smile.validation.ClassificationValidations
-
The average of metrics.
- avg - Variable in class smile.validation.RegressionValidations
-
The average of metrics.
- avgDocSize() - Method in interface smile.nlp.Corpus
-
Returns the average size of documents in the corpus.
- avgDocSize() - Method in class smile.nlp.SimpleCorpus
- avgPool2d(int) - Static method in interface smile.deep.layer.Layer
-
Returns an average pooling layer that reduces a tensor by combining cells, and assigning the average value of the input cells to the output cell.
- AvgPool2dLayer - Class in smile.deep.layer
-
An average pooling layer that reduces a tensor by combining cells, and assigning the average value of the input cells to the output cell.
- AvgPool2dLayer(int) - Constructor for class smile.deep.layer.AvgPool2dLayer
-
Constructor.
- AvgPool2dLayer(int, int) - Constructor for class smile.deep.layer.AvgPool2dLayer
-
Constructor.
- avro(String, InputStream) - Static method in interface smile.io.Read
-
Reads an Apache Avro file.
- avro(String, String) - Static method in interface smile.io.Read
-
Reads an Apache Avro file.
- avro(Path, InputStream) - Static method in interface smile.io.Read
-
Reads an Apache Avro file.
- avro(Path, Path) - Static method in interface smile.io.Read
-
Reads an Apache Avro file.
- Avro - Class in smile.io
-
Apache Avro is a data serialization system.
- Avro(InputStream) - Constructor for class smile.io.Avro
-
Constructor.
- Avro(Path) - Constructor for class smile.io.Avro
-
Constructor.
- Avro(Schema) - Constructor for class smile.io.Avro
-
Constructor.
- axis() - Method in class smile.plot.vega.Config
-
Returns the axis definition object.
- axis() - Method in class smile.plot.vega.Field
-
Returns the axis definition object.
- axis() - Method in class smile.plot.vega.ViewConfig
-
Returns the axis definition object.
- Axis - Class in smile.plot.swing
-
This class describes an axis of a coordinate system.
- Axis - Class in smile.plot.vega
-
Axes provide axis lines, ticks, and labels to convey how a positional range represents a data range.
- Axis(Base, int) - Constructor for class smile.plot.swing.Axis
-
Constructor.
- axpy(double, double[], double[]) - Method in interface smile.math.blas.BLAS
-
Computes a constant alpha times a vector x plus a vector y.
- axpy(double, double[], double[]) - Static method in class smile.math.MathEx
-
Update an array by adding a multiple of another array y = a * x + y.
- axpy(float, float[], float[]) - Method in interface smile.math.blas.BLAS
-
Computes a constant alpha times a vector x plus a vector y.
- axpy(int, double, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
-
Computes a constant alpha times a vector x plus a vector y.
- axpy(int, double, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- axpy(int, float, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
-
Computes a constant alpha times a vector x plus a vector y.
- axpy(int, float, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
B
- b - Variable in class smile.validation.metric.ContingencyTable
-
The column sum of contingency table.
- B - Variable in class smile.vq.BIRCH
-
The branching factor of non-leaf nodes.
- background() - Method in class smile.plot.vega.View
-
Returns the view background's fill and stroke object.
- background(String) - Method in class smile.plot.vega.Concat
- background(String) - Method in class smile.plot.vega.Config
-
Sets the background with CSS color property.
- background(String) - Method in class smile.plot.vega.Facet
- background(String) - Method in class smile.plot.vega.Repeat
- background(String) - Method in class smile.plot.vega.VegaLite
-
Sets the background of the entire view with CSS color property.
- background(String) - Method in class smile.plot.vega.View
- Background - Class in smile.plot.vega
-
The view background of a single-view or layer specification.
- backpopagateDropout() - Method in class smile.base.mlp.Layer
-
Propagates the errors back through the (implicit) dropout layer.
- backpropagate(boolean) - Method in class smile.base.mlp.MultilayerPerceptron
-
Propagates the errors back through the network.
- backpropagate(double[]) - Method in class smile.base.mlp.HiddenLayer
- backpropagate(double[]) - Method in class smile.base.mlp.InputLayer
- backpropagate(double[]) - Method in class smile.base.mlp.Layer
-
Propagates the errors back to a lower layer.
- backpropagate(double[]) - Method in class smile.base.mlp.OutputLayer
- backward() - Method in class smile.deep.tensor.Tensor
-
Computes the gradients.
- Bag - Record Class in smile.validation
-
A bag of random selected samples.
- Bag(int[], int[]) - Constructor for record class smile.validation.Bag
-
Creates an instance of a
Bag
record class. - BagOfWords - Class in smile.feature.extraction
-
The bag-of-words feature of text used in natural language processing and information retrieval.
- BagOfWords(String[], Function<String, String[]>, String[], boolean) - Constructor for class smile.feature.extraction.BagOfWords
-
Constructor.
- BagOfWords(Function<String, String[]>, String[]) - Constructor for class smile.feature.extraction.BagOfWords
-
Constructor.
- BandMatrix - Class in smile.math.matrix
-
A band matrix is a sparse matrix, whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.
- BandMatrix - Class in smile.math.matrix.fp32
-
A band matrix is a sparse matrix, whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.
- BandMatrix(int, int, int, int) - Constructor for class smile.math.matrix.BandMatrix
-
Constructor.
- BandMatrix(int, int, int, int) - Constructor for class smile.math.matrix.fp32.BandMatrix
-
Constructor.
- BandMatrix(int, int, int, int, double[][]) - Constructor for class smile.math.matrix.BandMatrix
-
Constructor.
- BandMatrix(int, int, int, int, float[][]) - Constructor for class smile.math.matrix.fp32.BandMatrix
-
Constructor.
- BandMatrix.Cholesky - Class in smile.math.matrix
-
The Cholesky decomposition of a symmetric, positive-definite matrix.
- BandMatrix.Cholesky - Class in smile.math.matrix.fp32
-
The Cholesky decomposition of a symmetric, positive-definite matrix.
- BandMatrix.LU - Class in smile.math.matrix
-
The LU decomposition.
- BandMatrix.LU - Class in smile.math.matrix.fp32
-
The LU decomposition.
- bandPosition(double) - Method in class smile.plot.vega.Axis
-
For band scales, sets the interpolation fraction where axis ticks should be positioned.
- bandwidth() - Method in class smile.stat.distribution.KernelDensity
-
Returns the bandwidth of kernel.
- bandwidth(double) - Method in class smile.plot.vega.DensityTransform
-
Sets the bandwidth (standard deviation) of the Gaussian kernel.
- bandwidth(double) - Method in class smile.plot.vega.LoessTransform
-
Sets a bandwidth parameter in the range [0, 1] that determines the amount of smoothing.
- Bar - Class in smile.plot.swing
-
Bars with heights proportional to the value.
- Bar(double[][], double, Color) - Constructor for class smile.plot.swing.Bar
-
Constructor.
- BarPlot - Class in smile.plot.swing
-
A barplot draws bars with heights proportional to the value.
- BarPlot(Bar...) - Constructor for class smile.plot.swing.BarPlot
-
Constructor.
- BarPlot(Bar[], Legend[]) - Constructor for class smile.plot.swing.BarPlot
-
Constructor.
- base(int) - Method in class smile.plot.vega.BinParams
-
Sets the number base to use for automatic bin determination (default is base 10).
- Base - Class in smile.plot.swing
-
The coordinate base of PlotCanvas.
- Base(double[], double[]) - Constructor for class smile.plot.swing.Base
-
Constructor.
- Base(double[], double[], boolean) - Constructor for class smile.plot.swing.Base
-
Constructor.
- BaseVector<T,
TS, - Interface in smile.data.vectorS> -
Base interface for immutable named vectors, which are sequences of elements supporting random access and sequential stream operations.
- batch(int) - Method in interface smile.data.Dataset
-
Returns an iterator of mini-batches.
- batchNorm1d(int) - Static method in interface smile.deep.layer.Layer
-
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
- batchNorm1d(int, double, double, boolean) - Static method in interface smile.deep.layer.Layer
-
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
- BatchNorm1dLayer - Class in smile.deep.layer
-
A batch normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
- BatchNorm1dLayer(int) - Constructor for class smile.deep.layer.BatchNorm1dLayer
-
Constructor.
- BatchNorm1dLayer(int, double, double, boolean) - Constructor for class smile.deep.layer.BatchNorm1dLayer
-
Constructor.
- batchNorm2d(int) - Static method in interface smile.deep.layer.Layer
-
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
- batchNorm2d(int, double, double, boolean) - Static method in interface smile.deep.layer.Layer
-
Returns a normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
- BatchNorm2dLayer - Class in smile.deep.layer
-
A batch normalization layer that re-centers and normalizes the output of one layer before feeding it to another.
- BatchNorm2dLayer(int) - Constructor for class smile.deep.layer.BatchNorm2dLayer
-
Constructor.
- BatchNorm2dLayer(int, double, double, boolean) - Constructor for class smile.deep.layer.BatchNorm2dLayer
-
Constructor.
- BBDTree - Class in smile.clustering
-
Balanced Box-Decomposition Tree.
- BBDTree(double[][]) - Constructor for class smile.clustering.BBDTree
-
Constructs a tree out of the given n data points living in R^d.
- BE - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
-
Computes nev eigenvalues, half from each end of the spectrum.
- BE - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
-
Computes nev eigenvalues, half from each end of the spectrum.
- Bernoulli - Interface in smile.glm.model
-
The response variable is of Bernoulli distribution.
- BERNOULLI - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
The document Bernoulli model generates an indicator for each term of the vocabulary, either indicating presence of the term in the document or indicating absence.
- bernoulli_(double) - Method in class smile.deep.tensor.Tensor
-
Draws binary random numbers (0 or 1) from a Bernoulli distribution.
- BernoulliDistribution - Class in smile.stat.distribution
-
Bernoulli's distribution is a discrete probability distribution, which takes value 1 with success probability p and value 0 with failure probability q = 1 - p.
- BernoulliDistribution(boolean[]) - Constructor for class smile.stat.distribution.BernoulliDistribution
-
Construct a Bernoulli from the given samples.
- BernoulliDistribution(double) - Constructor for class smile.stat.distribution.BernoulliDistribution
-
Constructor.
- BestLocalizedWavelet - Class in smile.wavelet
-
Best localized wavelets.
- BestLocalizedWavelet(int) - Constructor for class smile.wavelet.BestLocalizedWavelet
-
Constructor.
- beta - Variable in class smile.glm.GLM
-
The linear weights.
- beta - Variable in class smile.stat.distribution.BetaDistribution
-
The shape parameter.
- beta() - Method in class smile.stat.distribution.BetaDistribution
-
Returns the shape parameter beta.
- beta(double, double) - Static method in class smile.math.special.Beta
-
Beta function, also called the Euler integral of the first kind.
- Beta - Class in smile.math.special
-
The beta function, also called the Euler integral of the first kind.
- BetaDistribution - Class in smile.stat.distribution
-
The beta distribution is defined on the interval [0, 1] parameterized by two positive shape parameters, typically denoted by α and β.
- BetaDistribution(double, double) - Constructor for class smile.stat.distribution.BetaDistribution
-
Constructor.
- bfcc() - Method in class smile.graph.Graph
-
Returns the connected components by breadth-first search.
- BFGS - Class in smile.math
-
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving unconstrained nonlinear optimization problems.
- BFGS() - Constructor for class smile.math.BFGS
- BFloat16 - Enum constant in enum class smile.deep.tensor.ScalarType
-
The bfloat16 (brain floating point) floating-point format occupies 16 bits.
- bfs(VertexVisitor) - Method in class smile.graph.Graph
-
BFS search on graph and performs some operation defined in visitor on each vertex during traveling.
- bfsort() - Method in class smile.graph.Graph
-
Topological sort digraph by breadth-first search of graph.
- bias - Variable in class smile.base.mlp.Layer
-
The bias.
- bias() - Method in record class smile.data.formula.Intercept
-
Returns the value of the
bias
record component. - biasGradient - Variable in class smile.base.mlp.Layer
-
The bias gradient.
- biasGradientMoment1 - Variable in class smile.base.mlp.Layer
-
The first moment of bias gradient.
- biasGradientMoment2 - Variable in class smile.base.mlp.Layer
-
The second moment of bias gradient.
- biasUpdate - Variable in class smile.base.mlp.Layer
-
The bias update.
- bic - Variable in class smile.stat.distribution.DiscreteExponentialFamilyMixture
-
The BIC score when the distribution is fit on a sample data.
- bic - Variable in class smile.stat.distribution.ExponentialFamilyMixture
-
The BIC score when the distribution is fit on a sample data.
- bic - Variable in class smile.stat.distribution.MultivariateExponentialFamilyMixture
-
The BIC score when the distribution is fit on a sample data.
- bic(double[]) - Method in class smile.stat.distribution.DiscreteMixture
-
Returns the BIC score.
- bic(double[]) - Method in class smile.stat.distribution.Mixture
-
Returns the BIC score.
- bic(double[][]) - Method in class smile.stat.distribution.MultivariateMixture
-
Returns the BIC score.
- BIC() - Method in class smile.glm.GLM
-
Returns the BIC score.
- BIC(double, int, int) - Static method in interface smile.validation.ModelSelection
-
Bayesian information criterion.
- BicubicInterpolation - Class in smile.interpolation
-
Bicubic interpolation in a two-dimensional regular grid.
- BicubicInterpolation(double[], double[], double[][]) - Constructor for class smile.interpolation.BicubicInterpolation
-
Constructor.
- BigMatrix - Class in smile.math.matrix
-
Big dense matrix of double precision values for more than 2 billion elements.
- BigMatrix(int, int) - Constructor for class smile.math.matrix.BigMatrix
-
Constructor of zero matrix.
- BigMatrix(int, int, double) - Constructor for class smile.math.matrix.BigMatrix
-
Constructor.
- BigMatrix(int, int, int, DoublePointer) - Constructor for class smile.math.matrix.BigMatrix
-
Constructor.
- BigMatrix.Cholesky - Class in smile.math.matrix
-
The Cholesky decomposition of a symmetric, positive-definite matrix.
- BigMatrix.EVD - Class in smile.math.matrix
-
Eigenvalue decomposition.
- BigMatrix.LU - Class in smile.math.matrix
-
The LU decomposition.
- BigMatrix.QR - Class in smile.math.matrix
-
The QR decomposition.
- BigMatrix.SVD - Class in smile.math.matrix
-
Singular Value Decomposition.
- Bigram - Class in smile.nlp
-
Bigrams or digrams are groups of two words, and are very commonly used as the basis for simple statistical analysis of text.
- Bigram - Class in smile.nlp.collocation
-
Collocations are expressions of multiple words which commonly co-occur.
- Bigram(String, String) - Constructor for class smile.nlp.Bigram
-
Constructor.
- Bigram(String, String, int, double) - Constructor for class smile.nlp.collocation.Bigram
-
Constructor.
- bigramCount() - Method in interface smile.nlp.Corpus
-
Returns the number of bigrams in the corpus.
- bigramCount() - Method in class smile.nlp.SimpleCorpus
- bigrams() - Method in interface smile.nlp.Corpus
-
Returns the iterator over the bigrams in the corpus.
- bigrams() - Method in class smile.nlp.SimpleCorpus
- BilinearInterpolation - Class in smile.interpolation
-
Bilinear interpolation in a two-dimensional regular grid.
- BilinearInterpolation(double[], double[], double[][]) - Constructor for class smile.interpolation.BilinearInterpolation
-
Constructor.
- bin(boolean) - Method in class smile.plot.vega.FacetField
-
Turns on/off binning a quantitative field.
- bin(boolean) - Method in class smile.plot.vega.Field
-
Turns on/off binning a quantitative field.
- bin(String) - Method in class smile.plot.vega.FacetField
-
Indicates that the data for x or y channel are binned before they are imported into Vega-Lite.
- bin(String) - Method in class smile.plot.vega.Field
-
Indicates that the data for x or y channel are binned before they are imported into Vega-Lite.
- bin(String, String) - Method in class smile.plot.vega.Transform
-
Adds a bin transformation.
- bin(BinParams) - Method in class smile.plot.vega.Field
-
Sets custom binning parameters.
- binary(int, KernelMachine<int[]>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- binary(String) - Static method in interface smile.math.kernel.MercerKernel
-
Returns a binary sparse kernel function.
- BinaryEncoder - Class in smile.feature.extraction
-
Encodes categorical features using sparse one-hot scheme.
- BinaryEncoder(StructType, String...) - Constructor for class smile.feature.extraction.BinaryEncoder
-
Constructor.
- BinarySparseDataset<T> - Interface in smile.data
-
Binary sparse dataset.
- BinarySparseGaussianKernel - Class in smile.math.kernel
-
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
- BinarySparseGaussianKernel(double) - Constructor for class smile.math.kernel.BinarySparseGaussianKernel
-
Constructor.
- BinarySparseGaussianKernel(double, double, double) - Constructor for class smile.math.kernel.BinarySparseGaussianKernel
-
Constructor.
- BinarySparseHyperbolicTangentKernel - Class in smile.math.kernel
-
The hyperbolic tangent kernel on binary sparse data.
- BinarySparseHyperbolicTangentKernel() - Constructor for class smile.math.kernel.BinarySparseHyperbolicTangentKernel
-
Constructor with scale 1.0 and offset 0.0.
- BinarySparseHyperbolicTangentKernel(double, double) - Constructor for class smile.math.kernel.BinarySparseHyperbolicTangentKernel
-
Constructor.
- BinarySparseHyperbolicTangentKernel(double, double, double[], double[]) - Constructor for class smile.math.kernel.BinarySparseHyperbolicTangentKernel
-
Constructor.
- BinarySparseLaplacianKernel - Class in smile.math.kernel
-
Laplacian kernel, also referred as exponential kernel.
- BinarySparseLaplacianKernel(double) - Constructor for class smile.math.kernel.BinarySparseLaplacianKernel
-
Constructor.
- BinarySparseLaplacianKernel(double, double, double) - Constructor for class smile.math.kernel.BinarySparseLaplacianKernel
-
Constructor.
- BinarySparseLinearKernel - Class in smile.math.kernel
-
The linear dot product kernel on sparse binary arrays in
int[]
, which are the indices of nonzero elements. - BinarySparseLinearKernel() - Constructor for class smile.math.kernel.BinarySparseLinearKernel
-
Constructor.
- BinarySparseMaternKernel - Class in smile.math.kernel
-
The class of Matérn kernels is a generalization of the Gaussian/RBF.
- BinarySparseMaternKernel(double, double) - Constructor for class smile.math.kernel.BinarySparseMaternKernel
-
Constructor.
- BinarySparseMaternKernel(double, double, double, double) - Constructor for class smile.math.kernel.BinarySparseMaternKernel
-
Constructor.
- BinarySparsePolynomialKernel - Class in smile.math.kernel
-
The polynomial kernel on binary sparse data.
- BinarySparsePolynomialKernel(int) - Constructor for class smile.math.kernel.BinarySparsePolynomialKernel
-
Constructor with scale 1 and offset 0.
- BinarySparsePolynomialKernel(int, double, double) - Constructor for class smile.math.kernel.BinarySparsePolynomialKernel
-
Constructor.
- BinarySparsePolynomialKernel(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.BinarySparsePolynomialKernel
-
Constructor.
- BinarySparseThinPlateSplineKernel - Class in smile.math.kernel
-
The Thin Plate Spline kernel on binary sparse data.
- BinarySparseThinPlateSplineKernel(double) - Constructor for class smile.math.kernel.BinarySparseThinPlateSplineKernel
-
Constructor.
- BinarySparseThinPlateSplineKernel(double, double, double) - Constructor for class smile.math.kernel.BinarySparseThinPlateSplineKernel
-
Constructor.
- bind(StructType) - Method in class smile.data.formula.Abs
- bind(StructType) - Method in class smile.data.formula.Add
- bind(StructType) - Method in class smile.data.formula.Date
- bind(StructType) - Method in class smile.data.formula.Delete
- bind(StructType) - Method in class smile.data.formula.Div
- bind(StructType) - Method in class smile.data.formula.Dot
- bind(StructType) - Method in class smile.data.formula.DoubleFunction
- bind(StructType) - Method in class smile.data.formula.FactorCrossing
- bind(StructType) - Method in class smile.data.formula.FactorInteraction
- bind(StructType) - Method in class smile.data.formula.Formula
-
Binds the formula to a schema and returns the schema of predictors.
- bind(StructType) - Method in record class smile.data.formula.Intercept
- bind(StructType) - Method in class smile.data.formula.IntFunction
- bind(StructType) - Method in class smile.data.formula.Mul
- bind(StructType) - Method in class smile.data.formula.Round
- bind(StructType) - Method in class smile.data.formula.Sub
- bind(StructType) - Method in interface smile.data.formula.Term
-
Binds the term to a schema.
- bind(StructType) - Method in record class smile.data.formula.Variable
- binomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
-
Fits binomial logistic regression.
- binomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
-
Fits binomial logistic regression.
- binomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
-
Fits binomial logistic regression.
- binomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- binomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- binomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- binomial(SparseDataset<Integer>) - Static method in class smile.classification.SparseLogisticRegression
-
Fits binomial logistic regression.
- binomial(SparseDataset<Integer>, double, double, int) - Static method in class smile.classification.SparseLogisticRegression
-
Fits binomial logistic regression.
- binomial(SparseDataset<Integer>, Properties) - Static method in class smile.classification.SparseLogisticRegression
-
Fits binomial logistic regression.
- Binomial - Interface in smile.glm.model
-
The response variable is of Binomial distribution.
- Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Binomial
-
Constructor.
- Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.Maxent.Binomial
-
Constructor.
- Binomial(double[], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Binomial
-
Constructor.
- BinomialDistribution - Class in smile.stat.distribution
-
The binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p.
- BinomialDistribution(int, double) - Constructor for class smile.stat.distribution.BinomialDistribution
-
Constructor.
- BinParams - Class in smile.plot.vega
-
To test a data point in a filter transform or a test property in conditional encoding, a predicate definition of the following forms must be specified:
- BinParams() - Constructor for class smile.plot.vega.BinParams
-
Constructor.
- bins(double[], double) - Static method in interface smile.math.Histogram
-
Returns the number of bins for a data based on a suggested bin width h.
- bins(int) - Static method in interface smile.math.Histogram
-
Returns the number of bins by square-root rule, which takes the square root of the number of data points in the sample (used by Excel histograms and many others).
- BIRCH - Class in smile.vq
-
Balanced Iterative Reducing and Clustering using Hierarchies.
- BIRCH(int, int, int, double) - Constructor for class smile.vq.BIRCH
-
Constructor.
- bits() - Method in class smile.gap.BitString
-
Returns the bit string of chromosome.
- BitString - Class in smile.gap
-
The standard bit string representation of the solution domain.
- BitString(byte[], Fitness<BitString>) - Constructor for class smile.gap.BitString
-
Constructor.
- BitString(byte[], Fitness<BitString>, Crossover, double, double) - Constructor for class smile.gap.BitString
-
Constructor.
- BitString(int, Fitness<BitString>) - Constructor for class smile.gap.BitString
-
Constructor.
- BitString(int, Fitness<BitString>, Crossover, double, double) - Constructor for class smile.gap.BitString
-
Constructor.
- bk() - Method in class smile.math.matrix.fp32.SymmMatrix
-
Bunch-Kaufman decomposition.
- bk() - Method in class smile.math.matrix.SymmMatrix
-
Bunch-Kaufman decomposition.
- BKTree<K,
V> - Class in smile.neighbor -
A BK-tree is a metric tree specifically adapted to discrete metric spaces.
- BKTree(Metric<K>) - Constructor for class smile.neighbor.BKTree
-
Constructor.
- BLACK - Static variable in interface smile.plot.swing.Palette
- blas() - Method in enum class smile.math.blas.Diag
-
Returns the int value for BLAS.
- blas() - Method in enum class smile.math.blas.Layout
-
Returns the int value for BLAS.
- blas() - Method in enum class smile.math.blas.Side
-
Returns the int value for BLAS.
- blas() - Method in enum class smile.math.blas.Transpose
-
Returns the int value for BLAS.
- blas() - Method in enum class smile.math.blas.UPLO
-
Returns the int value for BLAS.
- BLAS - Interface in smile.math.blas
-
Basic Linear Algebra Subprograms.
- blend(String) - Method in class smile.plot.vega.Mark
-
Sets the color blend mode for drawing an item on its current background.
- block() - Method in record class smile.vision.layer.MBConvConfig
-
Returns the value of the
block
record component. - BLUE - Static variable in interface smile.plot.swing.Palette
- BM25 - Class in smile.nlp.relevance
-
The BM25 weighting scheme, often called Okapi weighting, after the system in which it was first implemented, was developed as a way of building a probabilistic model sensitive to term frequency and document length while not introducing too many additional parameters into the model.
- BM25() - Constructor for class smile.nlp.relevance.BM25
-
Default constructor with k1 = 1.2, b = 0.75, delta = 1.0.
- BM25(double, double, double) - Constructor for class smile.nlp.relevance.BM25
-
Constructor.
- body - Variable in class smile.nlp.Text
-
The text body.
- Boolean - Enum constant in enum class smile.data.type.DataType.ID
-
Boolean type ID.
- BOOLEAN - Static variable in interface smile.util.Regex
-
Boolean regular expression pattern.
- BOOLEAN_REGEX - Static variable in interface smile.util.Regex
-
Boolean regular expression.
- BooleanArrayType - Static variable in class smile.data.type.DataTypes
-
Boolean Array data type.
- BooleanObjectType - Static variable in class smile.data.type.DataTypes
-
Boolean Object data type.
- BooleanType - Class in smile.data.type
-
Boolean data type.
- BooleanType - Static variable in class smile.data.type.DataTypes
-
Boolean data type.
- booleanVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- booleanVector(int) - Method in class smile.data.IndexDataFrame
- booleanVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- booleanVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- BooleanVector - Interface in smile.data.vector
-
An immutable boolean vector.
- boolValue() - Method in class smile.deep.tensor.Tensor
-
Returns the boolean value when the tensor holds a single value.
- Bootstrap - Interface in smile.validation
-
The bootstrap is a general tool for assessing statistical accuracy.
- bounds(String) - Method in class smile.plot.vega.Concat
- bounds(String) - Method in class smile.plot.vega.Facet
- bounds(String) - Method in class smile.plot.vega.Repeat
- bounds(String) - Method in interface smile.plot.vega.ViewLayoutComposition
-
Sets the bounds calculation method to use for determining the extent of a sub-plot.
- Box_Pierce - Enum constant in enum class smile.timeseries.BoxTest.Type
-
Box-Pierce test.
- boxed() - Method in interface smile.data.type.DataType
-
Returns the boxed data type if this is a primitive type.
- boxed(Collection<Tuple>) - Method in class smile.data.type.StructType
-
Updates the field type to the boxed one if the field has null/missing values in the data.
- BoxPlot - Class in smile.plot.swing
-
A boxplot is a convenient way of graphically depicting groups of numerical data through their five-number summaries the smallest observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation (sample maximum).
- BoxPlot(double[][], String[]) - Constructor for class smile.plot.swing.BoxPlot
-
Constructor.
- BoxTest - Class in smile.timeseries
-
Portmanteau test jointly that several autocorrelations of time series are zero.
- BoxTest.Type - Enum Class in smile.timeseries
-
The type of test.
- branch(Tuple) - Method in class smile.base.cart.InternalNode
-
Returns true if the instance goes to the true branch.
- branch(Tuple) - Method in class smile.base.cart.NominalNode
- branch(Tuple) - Method in class smile.base.cart.OrdinalNode
- BreakIteratorSentenceSplitter - Class in smile.nlp.tokenizer
-
A sentence splitter based on the java.text.BreakIterator, which supports multiple natural languages (selected by locale setting).
- BreakIteratorSentenceSplitter() - Constructor for class smile.nlp.tokenizer.BreakIteratorSentenceSplitter
-
Constructor for the default locale.
- BreakIteratorSentenceSplitter(Locale) - Constructor for class smile.nlp.tokenizer.BreakIteratorSentenceSplitter
-
Constructor for the given locale.
- BreakIteratorTokenizer - Class in smile.nlp.tokenizer
-
A word tokenizer based on the java.text.BreakIterator, which supports multiple natural languages (selected by locale setting).
- BreakIteratorTokenizer() - Constructor for class smile.nlp.tokenizer.BreakIteratorTokenizer
-
Constructor for the default locale.
- BreakIteratorTokenizer(Locale) - Constructor for class smile.nlp.tokenizer.BreakIteratorTokenizer
-
Constructor for the given locale.
- breaks() - Method in record class smile.feature.selection.InformationValue
-
Returns the value of the
breaks
record component. - breaks(double[], double) - Static method in interface smile.math.Histogram
-
Returns the breakpoints between histogram cells for a dataset based on a suggested bin width h.
- breaks(double[], int) - Static method in interface smile.math.Histogram
-
Returns the breakpoints between histogram cells for a dataset.
- breaks(double, double, double) - Static method in interface smile.math.Histogram
-
Returns the breakpoints between histogram cells for a given range based on a suggested bin width h.
- breaks(double, double, int) - Static method in interface smile.math.Histogram
-
Returns the breakpoints between histogram cells for a given range.
- BROWN - Static variable in interface smile.plot.swing.Palette
- bubble(int) - Static method in interface smile.vq.Neighborhood
-
Returns the bubble neighborhood function.
- bucket - Variable in class smile.neighbor.lsh.Bucket
-
The bucket id is given by the universal bucket hashing.
- Bucket - Class in smile.neighbor.lsh
-
A bucket is a container for points that all have the same value for hash function g (function g is a vector of k LSH functions).
- Bucket(int) - Constructor for class smile.neighbor.lsh.Bucket
-
Constructor.
- build() - Method in class smile.hash.PerfectMap.Builder
-
Builds the perfect map.
- build(int) - Method in class smile.base.mlp.HiddenLayerBuilder
- build(int) - Method in class smile.base.mlp.LayerBuilder
-
Builds a layer.
- build(int) - Method in class smile.base.mlp.OutputLayerBuilder
- build(String, String, int, int) - Static method in class smile.llm.llama.Llama
-
Builds a Llama instance by initializing and loading a model checkpoint.
- build(String, String, int, int, Integer) - Static method in class smile.llm.llama.Llama
-
Builds a Llama instance by initializing and loading a model checkpoint.
- builder(String, int, double, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer.
- Builder() - Constructor for class smile.hash.PerfectMap.Builder
-
Constructor.
- Builder(Map<String, T>) - Constructor for class smile.hash.PerfectMap.Builder
-
Constructor.
- BunchKaufman(SymmMatrix, int[], int) - Constructor for class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
Constructor.
- BunchKaufman(SymmMatrix, int[], int) - Constructor for class smile.math.matrix.SymmMatrix.BunchKaufman
-
Constructor.
- BURGUNDY - Static variable in interface smile.plot.swing.Palette
- Button - Class in smile.swing
-
Action initialized JButton.
- Button(Action) - Constructor for class smile.swing.Button
-
Constructor.
- ButtonCellRenderer - Class in smile.swing.table
-
The ButtonCellRenderer class provides a renderer and an editor that looks like a JButton.
- ButtonCellRenderer(JTable, Action, int) - Constructor for class smile.swing.table.ButtonCellRenderer
-
Create the ButtonCellRenderer to be used as a renderer and editor.
- Byte - Enum constant in enum class smile.data.type.DataType.ID
-
Byte type ID.
- byteArray() - Method in class smile.deep.tensor.Tensor
-
Returns the byte array of tensor elements
- ByteArrayCellRenderer - Class in smile.swing.table
-
Byte array renderer in JTable.
- ByteArrayCellRenderer() - Constructor for class smile.swing.table.ByteArrayCellRenderer
-
Constructor.
- ByteArrayType - Static variable in class smile.data.type.DataTypes
-
Byte Array data type.
- ByteObjectType - Static variable in class smile.data.type.DataTypes
-
Byte Object data type.
- Bytes - Record Class in smile.util
-
Byte string.
- Bytes(byte[]) - Constructor for record class smile.util.Bytes
-
Creates an instance of a
Bytes
record class. - Bytes(String) - Constructor for record class smile.util.Bytes
-
Constructor with a string input.
- ByteType - Class in smile.data.type
-
Byte data type.
- ByteType - Static variable in class smile.data.type.DataTypes
-
Byte data type.
- byteValue() - Method in class smile.deep.tensor.Tensor
-
Returns the byte value when the tensor holds a single value.
- byteVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- byteVector(int) - Method in class smile.data.IndexDataFrame
- byteVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- byteVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- ByteVector - Interface in smile.data.vector
-
An immutable byte vector.
C
- c(double...) - Static method in class smile.math.MathEx
-
Combines the arguments to form a vector.
- c(double[]...) - Static method in class smile.math.MathEx
-
Concatenates multiple vectors into one.
- c(float...) - Static method in class smile.math.MathEx
-
Combines the arguments to form a vector.
- c(float[]...) - Static method in class smile.math.MathEx
-
Concatenates multiple vectors into one.
- c(int...) - Static method in class smile.math.MathEx
-
Combines the arguments to form a vector.
- c(int[]...) - Static method in class smile.math.MathEx
-
Concatenates multiple vectors into one.
- c(String...) - Static method in class smile.math.MathEx
-
Combines the arguments to form a vector.
- c(String[]...) - Static method in class smile.math.MathEx
-
Concatenates multiple vectors into one array of strings.
- CacheFiles - Interface in smile.util
-
Static methods that manage cache files.
- CADET_BLUE - Static variable in interface smile.plot.swing.Palette
- calculate(String, String) - Method in class smile.plot.vega.Transform
-
Adds a formula transform extends data objects with new fields (columns) according to an expression.
- CANCEL_OPTION - Static variable in class smile.swing.FontChooser
-
Return value from
showDialog()
. - canvas - Variable in class smile.plot.swing.Projection
-
The canvas associated with this projection.
- canvas() - Method in class smile.plot.swing.BarPlot
- canvas() - Method in class smile.plot.swing.BoxPlot
- canvas() - Method in class smile.plot.swing.Contour
- canvas() - Method in class smile.plot.swing.Dendrogram
- canvas() - Method in class smile.plot.swing.Heatmap
- canvas() - Method in class smile.plot.swing.Hexmap
- canvas() - Method in class smile.plot.swing.LinePlot
- canvas() - Method in class smile.plot.swing.Plot
-
Returns a canvas of the plot.
- canvas() - Method in class smile.plot.swing.ScreePlot
- canvas() - Method in class smile.plot.swing.SparseMatrixPlot
- canvas() - Method in class smile.plot.swing.StaircasePlot
- Canvas - Class in smile.plot.swing
-
Canvas for mathematical plots.
- Canvas(double[], double[]) - Constructor for class smile.plot.swing.Canvas
-
Constructor
- Canvas(double[], double[], boolean) - Constructor for class smile.plot.swing.Canvas
-
Constructor
- CARDINAL_NUMBER - Static variable in interface smile.util.Regex
-
Cardinal numbers.
- CARDINAL_NUMBER_WITH_COMMA - Static variable in interface smile.util.Regex
-
Cardinal numbers, optionally thousands are separated by comma.
- CART - Class in smile.base.cart
-
Classification and regression tree.
- CART(DataFrame, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.base.cart.CART
-
Constructor.
- CART(Formula, StructType, StructField, Node, double[]) - Constructor for class smile.base.cart.CART
-
Constructor.
- CategoricalEncoder - Enum Class in smile.data
-
Categorical variable encoder.
- CategoricalMeasure - Class in smile.data.measure
-
Categorical data can be stored into groups or categories with the aid of names or labels.
- CategoricalMeasure(int[]) - Constructor for class smile.data.measure.CategoricalMeasure
-
Constructor.
- CategoricalMeasure(int[], String[]) - Constructor for class smile.data.measure.CategoricalMeasure
-
Constructor.
- CategoricalMeasure(String...) - Constructor for class smile.data.measure.CategoricalMeasure
-
Constructor.
- CategoricalMeasure(List<String>) - Constructor for class smile.data.measure.CategoricalMeasure
-
Constructor.
- cbind(double[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by columns.
- cbind(float[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by columns.
- cbind(int[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by columns.
- cbind(String[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by columns.
- cbrt(String) - Static method in interface smile.data.formula.Terms
-
The
cbrt(x)
term. - cbrt(Term) - Static method in interface smile.data.formula.Terms
-
The
cbrt(x)
term. - CC - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Coordinating conjunction.
- CD - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Cardinal number.
- cdf(double) - Method in class smile.stat.distribution.BernoulliDistribution
- cdf(double) - Method in class smile.stat.distribution.BetaDistribution
- cdf(double) - Method in class smile.stat.distribution.BinomialDistribution
- cdf(double) - Method in class smile.stat.distribution.ChiSquareDistribution
- cdf(double) - Method in class smile.stat.distribution.DiscreteMixture
- cdf(double) - Method in interface smile.stat.distribution.Distribution
-
Cumulative distribution function.
- cdf(double) - Method in class smile.stat.distribution.EmpiricalDistribution
- cdf(double) - Method in class smile.stat.distribution.ExponentialDistribution
- cdf(double) - Method in class smile.stat.distribution.FDistribution
- cdf(double) - Method in class smile.stat.distribution.GammaDistribution
- cdf(double) - Method in class smile.stat.distribution.GaussianDistribution
- cdf(double) - Method in class smile.stat.distribution.GeometricDistribution
- cdf(double) - Method in class smile.stat.distribution.HyperGeometricDistribution
- cdf(double) - Method in class smile.stat.distribution.KernelDensity
-
Cumulative distribution function.
- cdf(double) - Method in class smile.stat.distribution.LogisticDistribution
- cdf(double) - Method in class smile.stat.distribution.LogNormalDistribution
- cdf(double) - Method in class smile.stat.distribution.Mixture
- cdf(double) - Method in class smile.stat.distribution.NegativeBinomialDistribution
- cdf(double) - Method in class smile.stat.distribution.PoissonDistribution
- cdf(double) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- cdf(double) - Method in class smile.stat.distribution.TDistribution
- cdf(double) - Method in class smile.stat.distribution.WeibullDistribution
- cdf(double[]) - Method in interface smile.stat.distribution.MultivariateDistribution
-
Cumulative distribution function.
- cdf(double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
-
Algorithm from Alan Genz (1992) Numerical Computation of Multivariate Normal Probabilities, Journal of Computational and Graphical Statistics, pp.
- cdf(double[]) - Method in class smile.stat.distribution.MultivariateMixture
- cdf2tailed(double) - Method in class smile.stat.distribution.TDistribution
-
Two-tailed cdf.
- ceil(String) - Static method in interface smile.data.formula.Terms
-
The
ceil(x)
term. - ceil(Term) - Static method in interface smile.data.formula.Terms
-
The
ceil(x)
term. - center() - Method in class smile.feature.extraction.PCA
-
Returns the center of data.
- center() - Method in class smile.feature.extraction.ProbabilisticPCA
-
Returns the center of data.
- center(boolean) - Method in class smile.plot.vega.Concat
- center(boolean) - Method in class smile.plot.vega.Facet
- center(boolean) - Method in class smile.plot.vega.FacetField
-
Sets if facet's subviews should be centered relative to their respective rows or columns.
- center(boolean) - Method in class smile.plot.vega.Repeat
- center(boolean) - Method in interface smile.plot.vega.ViewLayoutComposition
-
Sets if subviews should be centered relative to their respective rows or columns.
- center(double, double) - Method in class smile.plot.vega.Projection
-
Sets the projection's center, a two-element array of longitude and latitude in degrees.
- center(int, int) - Method in class smile.plot.vega.Concat
- center(int, int) - Method in class smile.plot.vega.Facet
- center(int, int) - Method in class smile.plot.vega.Repeat
- center(int, int) - Method in interface smile.plot.vega.ViewLayoutComposition
-
Sets if subviews should be centered relative to their respective rows or columns.
- CentroidClustering<T,
U> - Class in smile.clustering -
In centroid-based clustering, clusters are represented by a central vector, which may not necessarily be a member of the data set.
- CentroidClustering(double, T[], int[]) - Constructor for class smile.clustering.CentroidClustering
-
Constructor.
- centroids - Variable in class smile.clustering.CentroidClustering
-
The centroids of each cluster.
- centroids() - Method in class smile.vq.BIRCH
-
Returns the cluster centroids of leaf nodes.
- change(int) - Method in class smile.util.PriorityQueue
-
The priority of item k has changed.
- Char - Enum constant in enum class smile.data.type.DataType.ID
-
Char type ID.
- CharArrayType - Static variable in class smile.data.type.DataTypes
-
Char Array data type.
- CharObjectType - Static variable in class smile.data.type.DataTypes
-
Char Object data type.
- charset(Charset) - Method in class smile.io.CSV
-
Sets the charset.
- charset(Charset) - Method in class smile.io.JSON
-
Sets the charset.
- CharType - Class in smile.data.type
-
Char data type.
- CharType - Static variable in class smile.data.type.DataTypes
-
Char data type.
- charVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- charVector(int) - Method in class smile.data.IndexDataFrame
- charVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- charVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- CharVector - Interface in smile.data.vector
-
An immutable char vector.
- chat(Message[][], int, double, double, boolean, Long, SubmissionPublisher<String>) - Method in class smile.llm.llama.Llama
-
Generates assistant responses for a list of conversational dialogs.
- ChebyshevDistance - Class in smile.math.distance
-
Chebyshev distance (or Tchebychev distance), or L∞ metric is a metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension.
- ChebyshevDistance() - Constructor for class smile.math.distance.ChebyshevDistance
-
Constructor.
- children() - Method in class smile.taxonomy.Concept
-
Gets all children concepts.
- chisq() - Method in record class smile.stat.hypothesis.ChiSqTest
-
Returns the value of the
chisq
record component. - ChiSqTest - Record Class in smile.stat.hypothesis
-
Pearson's chi-square test, also known as the chi-square goodness-of-fit test or chi-square test for independence.
- ChiSqTest(String, double, double, double) - Constructor for record class smile.stat.hypothesis.ChiSqTest
-
Constructor.
- ChiSqTest(String, double, double, double, double) - Constructor for record class smile.stat.hypothesis.ChiSqTest
-
Creates an instance of a
ChiSqTest
record class. - ChiSquareDistribution - Class in smile.stat.distribution
-
Chi-square (or chi-squared) distribution with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables.
- ChiSquareDistribution(int) - Constructor for class smile.stat.distribution.ChiSquareDistribution
-
Constructor.
- cholesky() - Method in class smile.math.matrix.BandMatrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky() - Method in class smile.math.matrix.BigMatrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky() - Method in class smile.math.matrix.fp32.BandMatrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky() - Method in class smile.math.matrix.fp32.Matrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky() - Method in class smile.math.matrix.fp32.SymmMatrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky() - Method in class smile.math.matrix.Matrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky() - Method in class smile.math.matrix.SymmMatrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky(boolean) - Method in class smile.math.matrix.BigMatrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky(boolean) - Method in class smile.math.matrix.fp32.Matrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- cholesky(boolean) - Method in class smile.math.matrix.Matrix
-
Cholesky decomposition for symmetric and positive definite matrix.
- Cholesky(BandMatrix) - Constructor for class smile.math.matrix.BandMatrix.Cholesky
-
Constructor.
- Cholesky(BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.Cholesky
-
Constructor.
- Cholesky(BandMatrix) - Constructor for class smile.math.matrix.fp32.BandMatrix.Cholesky
-
Constructor.
- Cholesky(Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.Cholesky
-
Constructor.
- Cholesky(SymmMatrix) - Constructor for class smile.math.matrix.fp32.SymmMatrix.Cholesky
-
Constructor.
- Cholesky(Matrix) - Constructor for class smile.math.matrix.Matrix.Cholesky
-
Constructor.
- Cholesky(SymmMatrix) - Constructor for class smile.math.matrix.SymmMatrix.Cholesky
-
Constructor.
- CholeskyOfAtA() - Method in class smile.math.matrix.BigMatrix.QR
-
Returns the Cholesky decomposition of A'A.
- CholeskyOfAtA() - Method in class smile.math.matrix.fp32.Matrix.QR
-
Returns the Cholesky decomposition of A'A.
- CholeskyOfAtA() - Method in class smile.math.matrix.Matrix.QR
-
Returns the Cholesky decomposition of A'A.
- choose(int, int) - Static method in class smile.math.MathEx
-
The n choose k.
- christofides() - Method in class smile.graph.Graph
-
Returns the approximate solution to TSP with Christofides algorithm.
- Chromosome<T> - Interface in smile.gap
-
Artificial chromosomes in genetic algorithm/programming encoding candidate solutions to an optimization problem.
- CLARANS<T> - Class in smile.clustering
-
Clustering Large Applications based upon RANdomized Search.
- CLARANS(double, T[], int[], Distance<T>) - Constructor for class smile.clustering.CLARANS
-
Constructor.
- classes - Variable in class smile.classification.AbstractClassifier
-
The class labels.
- classes - Variable in class smile.classification.ClassLabels
-
The class labels.
- classes() - Method in class smile.classification.AbstractClassifier
- classes() - Method in interface smile.classification.Classifier
-
Returns the class labels.
- classes() - Method in class smile.classification.DecisionTree
- classes() - Method in class smile.classification.MLP
- classes() - Method in class smile.classification.SVM
- classification(int, int) - Static method in interface smile.vision.transform.Transform
-
Returns a transform for image classification.
- classification(int, int, float[], float[], int) - Static method in interface smile.vision.transform.Transform
-
Returns a transform for image classification.
- classification(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of classification.
- classification(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of classification.
- classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
-
Runs classification bootstrap validation.
- classification(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of classification.
- classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.Bootstrap
-
Runs classification bootstrap validation.
- classification(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of classification.
- classification(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- classification(T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- CLASSIFICATION_ERROR - Enum constant in enum class smile.base.cart.SplitRule
-
Classification error.
- ClassificationMetric - Interface in smile.validation.metric
-
An abstract interface to measure the classification performance.
- ClassificationMetrics - Record Class in smile.validation
-
The classification validation metrics.
- ClassificationMetrics(double, double, int, int, double) - Constructor for record class smile.validation.ClassificationMetrics
-
Constructor.
- ClassificationMetrics(double, double, int, int, double, double) - Constructor for record class smile.validation.ClassificationMetrics
-
Constructor of multiclass soft classifier validation.
- ClassificationMetrics(double, double, int, int, double, double, double, double, double, double) - Constructor for record class smile.validation.ClassificationMetrics
-
Constructor of binary classifier validation.
- ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double) - Constructor for record class smile.validation.ClassificationMetrics
-
Constructor of binary soft classifier validation.
- ClassificationMetrics(double, double, int, int, double, double, double, double, double, double, double, double, double) - Constructor for record class smile.validation.ClassificationMetrics
-
Creates an instance of a
ClassificationMetrics
record class. - ClassificationValidation<M> - Class in smile.validation
-
Classification model validation results.
- ClassificationValidation(M, double, double, int[], int[]) - Constructor for class smile.validation.ClassificationValidation
-
Constructor.
- ClassificationValidation(M, double, double, int[], int[], double[][]) - Constructor for class smile.validation.ClassificationValidation
-
Constructor of soft classifier validation.
- ClassificationValidations<M> - Class in smile.validation
-
Classification model validation results.
- ClassificationValidations(List<ClassificationValidation<M>>) - Constructor for class smile.validation.ClassificationValidations
-
Constructor.
- Classifier<T> - Interface in smile.classification
-
A classifier assigns an input object into one of a given number of categories.
- Classifier.Trainer<T,
M> - Interface in smile.classification -
The classifier trainer.
- ClassLabels - Class in smile.classification
-
Map arbitrary class labels to [0, k), where k is the number of classes.
- ClassLabels(int, int[], IntSet) - Constructor for class smile.classification.ClassLabels
-
Constructor.
- clean() - Static method in interface smile.util.CacheFiles
-
Cleans up the cache directory.
- clear() - Method in class smile.base.cart.CART
-
Clear the workspace of building tree.
- clear() - Method in class smile.plot.swing.Canvas
-
Remove all graphic plots from the canvas.
- clear() - Method in class smile.util.DoubleArrayList
-
Removes all the values from this list.
- clear() - Method in class smile.util.IntArrayList
-
Removes all the values from this list.
- clear() - Method in class smile.util.PairingHeap
- clear(double) - Method in class smile.vq.NeuralMap
-
Removes staled neurons and the edges beyond lifetime.
- clearClip() - Method in class smile.plot.swing.Graphics
-
Clear the restriction of the draw area.
- clip() - Method in class smile.plot.swing.Graphics
-
Restrict the draw area to the valid base coordinate space.
- clip(boolean) - Method in class smile.plot.vega.Mark
-
Sets whether a mark be clipped to the enclosing group's width and height.
- clipAngle(double) - Method in class smile.plot.vega.Projection
-
Sets the projection's clipping circle radius to the specified angle in degrees.
- clipExtent(double, double, double, double) - Method in class smile.plot.vega.Projection
-
Sets the projection's viewport clip extent to the specified bounds in pixels.
- clipHeight(double) - Method in class smile.plot.vega.Legend
-
Sets the height in pixels to clip symbol legend entries and limit their size.
- clipNorm - Variable in class smile.base.mlp.MultilayerPerceptron
-
The gradient clipping norm.
- clipValue - Variable in class smile.base.mlp.MultilayerPerceptron
-
The gradient clipping value.
- clone(double[][]) - Static method in class smile.math.MathEx
-
Deep clone a two-dimensional array.
- clone(float[][]) - Static method in class smile.math.MathEx
-
Deep clone a two-dimensional array.
- clone(int[][]) - Static method in class smile.math.MathEx
-
Deep clone a two-dimensional array.
- close() - Method in class smile.data.SQL
- close() - Method in record class smile.deep.SampleBatch
- close() - Method in class smile.deep.tensor.Tensor
- close() - Method in class smile.io.Arff
- close() - Method in class smile.math.matrix.BigMatrix
- close() - Method in class smile.util.AutoScope
- close() - Method in class smile.vision.ImageDataset
- CLOSING_PARENTHESIS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation ) ] }
- CLOSING_QUOTATION - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation ' or ''
- clustering(double[][], double[][], int[], int[]) - Method in class smile.clustering.BBDTree
-
Given k cluster centroids, this method assigns data to nearest centroids.
- ClusteringMetric - Interface in smile.validation.metric
-
An abstract interface to measure the clustering performance.
- CNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
Complement Naive Bayes.
- coefficients() - Method in class smile.classification.LogisticRegression.Binomial
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.LogisticRegression.Multinomial
-
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.Maxent.Binomial
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.Maxent.Multinomial
-
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.SparseLogisticRegression.Binomial
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.classification.SparseLogisticRegression.Multinomial
-
Returns a 2d-array of size (k-1) x (p+1), containing the linear weights of multi-class logistic regression, where k is the number of classes and p is the dimension of feature vectors.
- coefficients() - Method in class smile.glm.GLM
-
Returns an array of size (p+1) containing the linear weights of binary logistic regression, where p is the dimension of feature vectors.
- coefficients() - Method in class smile.regression.LinearModel
-
Returns the linear coefficients without intercept.
- coerce(DataType, DataType) - Static method in interface smile.data.type.DataType
-
Returns the common type.
- CoifletWavelet - Class in smile.wavelet
-
Coiflet wavelets.
- CoifletWavelet(int) - Constructor for class smile.wavelet.CoifletWavelet
-
Constructor.
- col(int) - Method in class smile.math.matrix.BigMatrix
-
Returns the j-th column.
- col(int) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the j-th column.
- col(int) - Method in class smile.math.matrix.Matrix
-
Returns the j-th column.
- col(int...) - Method in class smile.math.matrix.BigMatrix
-
Returns the matrix of selected columns.
- COL_MAJOR - Enum constant in enum class smile.math.blas.Layout
-
Column major layout.
- collect() - Static method in interface smile.data.DataFrame.Collectors
-
Returns a stream collector that accumulates tuples into a DataFrame.
- collect(Class<T>) - Static method in interface smile.data.DataFrame.Collectors
-
Returns a stream collector that accumulates objects into a DataFrame.
- collector() - Static method in interface smile.data.Dataset
-
Returns a stream collector that accumulates elements into a Dataset.
- collector() - Static method in class smile.math.matrix.Matrix
-
Returns a stream collector that accumulates elements into a Matrix.
- colMax(double[][]) - Static method in class smile.math.MathEx
-
Returns the column maximum of a matrix.
- colMax(int[][]) - Static method in class smile.math.MathEx
-
Returns the column maximum of a matrix.
- colMeans() - Method in class smile.math.matrix.BigMatrix
-
Returns the mean of each column.
- colMeans() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the mean of each column.
- colMeans() - Method in class smile.math.matrix.Matrix
-
Returns the mean of each column.
- colMeans(double[][]) - Static method in class smile.math.MathEx
-
Returns the column means of a matrix.
- colMin(double[][]) - Static method in class smile.math.MathEx
-
Returns the column minimum of a matrix.
- colMin(int[][]) - Static method in class smile.math.MathEx
-
Returns the column minimum of a matrix.
- colName(int) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the name of i-th column.
- colName(int) - Method in class smile.math.matrix.IMatrix
-
Returns the name of i-th column.
- colNames() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the column names.
- colNames() - Method in class smile.math.matrix.IMatrix
-
Returns the column names.
- colNames(String[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Sets the column names.
- colNames(String[]) - Method in class smile.math.matrix.IMatrix
-
Sets the column names.
- Colon - Static variable in class smile.deep.tensor.Index
-
The colon (:) is used to slice all elements of a dimension.
- COLON - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation ; : ...
- color(String) - Method in class smile.plot.vega.Mark
-
Sets the default color.
- ColorCellEditor - Class in smile.swing.table
-
Color editor in JTable.
- ColorCellEditor() - Constructor for class smile.swing.table.ColorCellEditor
-
Constructor.
- ColorCellRenderer - Class in smile.swing.table
-
Color renderer in JTable.
- ColorCellRenderer() - Constructor for class smile.swing.table.ColorCellRenderer
-
Constructor.
- ColorCellRenderer(boolean) - Constructor for class smile.swing.table.ColorCellRenderer
-
Constructor.
- COLORS - Static variable in interface smile.plot.swing.Palette
- cols(int...) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the matrix of selected columns.
- cols(int...) - Method in class smile.math.matrix.Matrix
-
Returns the matrix of selected columns.
- colSds() - Method in class smile.math.matrix.BigMatrix
-
Returns the standard deviations of each column.
- colSds() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the standard deviations of each column.
- colSds() - Method in class smile.math.matrix.Matrix
-
Returns the standard deviations of each column.
- colSds(double[][]) - Static method in class smile.math.MathEx
-
Returns the column standard deviations of a matrix.
- colSums() - Method in class smile.math.matrix.BigMatrix
-
Returns the sum of each column.
- colSums() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the sum of each column.
- colSums() - Method in class smile.math.matrix.Matrix
-
Returns the sum of each column.
- colSums(double[][]) - Static method in class smile.math.MathEx
-
Returns the column sums of a matrix.
- colSums(int[][]) - Static method in class smile.math.MathEx
-
Returns the column sums of a matrix.
- column(double[]) - Static method in class smile.math.matrix.BigMatrix
-
Returns a column vector/matrix.
- column(double[]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a column vector/matrix.
- column(double[]) - Static method in class smile.math.matrix.Matrix
-
Returns a column vector/matrix.
- column(double[], int, int) - Static method in class smile.math.matrix.BigMatrix
-
Returns a column vector/matrix.
- column(double[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a column vector/matrix.
- column(double[], int, int) - Static method in class smile.math.matrix.Matrix
-
Returns a column vector/matrix.
- column(float[]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a column vector/matrix.
- column(float[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a column vector/matrix.
- column(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- column(int) - Method in class smile.data.IndexDataFrame
- column(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- column(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- column(String) - Method in class smile.plot.vega.Facet
-
Returns the field definition for the vertical facet of trellis plots.
- columnAdded(TableColumnModelEvent) - Method in class smile.swing.table.TableColumnSettings
- columnMarginChanged(ChangeEvent) - Method in class smile.swing.table.TableColumnSettings
- columnMoved(TableColumnModelEvent) - Method in class smile.swing.table.TableColumnSettings
- columnPadding(double) - Method in class smile.plot.vega.Legend
-
Sets the horizontal padding in pixels between symbol legend entries.
- columnRemoved(TableColumnModelEvent) - Method in class smile.swing.table.TableColumnSettings
- columns - Variable in class smile.feature.extraction.Projection
-
The fields of input space.
- columns(int) - Method in class smile.plot.vega.Facet
-
Sets the number of columns to include in the view composition layout.
- columns(int) - Method in class smile.plot.vega.Legend
-
Sets the number of columns in which to arrange symbol legend entries.
- columns(int) - Method in class smile.plot.vega.Repeat
-
Sets the number of columns to include in the view composition layout.
- columnSelectionChanged(ListSelectionEvent) - Method in class smile.swing.table.TableColumnSettings
- ColumnTransform - Class in smile.data.transform
-
Column-wise data transformation.
- ColumnTransform(String, Map<String, Function>) - Constructor for class smile.data.transform.ColumnTransform
-
Constructor.
- COMMA - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation ,
- COMPACT - Enum constant in enum class smile.math.blas.SVDJob
-
The first min(m, n) singular vectors are returned in supplied matrix U (or Vt).
- comparator - Static variable in class smile.base.cart.Split
-
The comparator on the split score.
- compareTo(CentroidClustering<T, U>) - Method in class smile.clustering.CentroidClustering
- compareTo(MEC<T>) - Method in class smile.clustering.MEC
- compareTo(InformationValue) - Method in record class smile.feature.selection.InformationValue
- compareTo(SignalNoiseRatio) - Method in record class smile.feature.selection.SignalNoiseRatio
- compareTo(SumSquaresRatio) - Method in record class smile.feature.selection.SumSquaresRatio
- compareTo(Chromosome) - Method in class smile.gap.BitString
- compareTo(Graph.Edge) - Method in record class smile.graph.Graph.Edge
- compareTo(PrH) - Method in record class smile.neighbor.lsh.PrH
- compareTo(Probe) - Method in class smile.neighbor.lsh.Probe
- compareTo(PrZ) - Method in record class smile.neighbor.lsh.PrZ
- compareTo(Neighbor<K, V>) - Method in record class smile.neighbor.Neighbor
- compareTo(Bigram) - Method in class smile.nlp.collocation.Bigram
- compareTo(NGram) - Method in class smile.nlp.collocation.NGram
- compareTo(Relevance) - Method in class smile.nlp.relevance.Relevance
- compareTo(MutableInt) - Method in class smile.util.MutableInt
- compareTo(SparseArray.Entry) - Method in record class smile.util.SparseArray.Entry
- compareTo(Neuron) - Method in class smile.vq.hebb.Neuron
- complete(String[], int, double, double, boolean, Long, SubmissionPublisher<String>) - Method in class smile.llm.llama.Llama
-
Performs text completion for a list of prompts
- CompleteLinkage - Class in smile.clustering.linkage
-
Complete linkage.
- CompleteLinkage(double[][]) - Constructor for class smile.clustering.linkage.CompleteLinkage
-
Constructor.
- CompleteLinkage(int, float[]) - Constructor for class smile.clustering.linkage.CompleteLinkage
-
Constructor.
- CompletionPrediction - Record Class in smile.llm
-
Prompt completion prediction.
- CompletionPrediction(String, String, int[], int[], FinishReason, float[]) - Constructor for record class smile.llm.CompletionPrediction
-
Creates an instance of a
CompletionPrediction
record class. - completionTokens() - Method in record class smile.llm.CompletionPrediction
-
Returns the value of the
completionTokens
record component. - Complex - Class in smile.math
-
Complex number.
- Complex(double, double) - Constructor for class smile.math.Complex
-
Constructor.
- Complex.Array - Class in smile.math
-
Packed array of complex numbers for better memory efficiency.
- Component(double, DiscreteDistribution) - Constructor for record class smile.stat.distribution.DiscreteMixture.Component
-
Creates an instance of a
Component
record class. - Component(double, Distribution) - Constructor for record class smile.stat.distribution.Mixture.Component
-
Creates an instance of a
Component
record class. - Component(double, MultivariateDistribution) - Constructor for record class smile.stat.distribution.MultivariateMixture.Component
-
Creates an instance of a
Component
record class. - components - Variable in class smile.ica.ICA
-
The independent components (row-wise).
- components - Variable in class smile.stat.distribution.DiscreteMixture
-
The components of finite mixture model.
- components - Variable in class smile.stat.distribution.Mixture
-
The components of finite mixture model.
- components - Variable in class smile.stat.distribution.MultivariateMixture
-
The components of finite mixture model.
- compose(Transform) - Method in interface smile.data.transform.Transform
-
Returns a composed function that first applies the
before
function to its input, and then applies this function to the result. - COMPREHENSIVE - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
-
A very long list of stop words.
- compute() - Method in class smile.deep.metric.Accuracy
- compute() - Method in interface smile.deep.metric.Metric
-
Computes the metric value from the metric state, which are updated by previous update() calls.
- compute() - Method in class smile.deep.metric.Precision
- compute() - Method in class smile.deep.metric.Recall
- computeFreqCis(int, int) - Static method in interface smile.llm.RotaryPositionalEncoding
-
Precompute the frequency tensor for complex exponentials (cis).
- computeFreqCis(int, int, double, boolean) - Static method in interface smile.llm.RotaryPositionalEncoding
-
Precompute the frequency tensor for complex exponentials (cis).
- computeGradient(double[]) - Method in class smile.base.mlp.InputLayer
- computeGradient(double[]) - Method in class smile.base.mlp.Layer
-
Computes the parameter gradient for a sample of (mini-)batch.
- computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.InputLayer
- computeGradientUpdate(double[], double, double, double) - Method in class smile.base.mlp.Layer
-
Computes the parameter gradient and update the weights.
- computeOutputGradient(double[], double) - Method in class smile.base.mlp.OutputLayer
-
Compute the network output gradient.
- Concat - Class in smile.plot.vega
-
Concatenating views.
- Concat(int, VegaLite...) - Constructor for class smile.plot.vega.Concat
-
Constructor to put multiple views into a flexible flow layout.
- Concept - Class in smile.taxonomy
-
Concept is a set of synonyms, i.e.
- Concept(Concept, String...) - Constructor for class smile.taxonomy.Concept
-
Constructor.
- CONCISE - Enum constant in enum class smile.nlp.dictionary.EnglishDictionary
-
A concise dictionary of common terms in English.
- condition() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the L2 norm condition number, which is max(S) / min(S).
- condition() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the L2 norm condition number, which is max(S) / min(S).
- condition() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the L2 norm condition number, which is max(S) / min(S).
- confidence() - Method in record class smile.association.AssociationRule
-
Returns the value of the
confidence
record component. - config() - Method in class smile.plot.vega.VegaLite
-
Returns the configuration object that lists properties of a visualization for creating a consistent theme.
- Config - Class in smile.plot.vega
-
Vega-Lite's config object lists configuration properties of a visualization for creating a consistent theme.
- confusion - Variable in class smile.validation.ClassificationValidation
-
The confusion matrix.
- ConfusionMatrix - Record Class in smile.validation.metric
-
The confusion matrix of truth and predictions.
- ConfusionMatrix(int[][]) - Constructor for record class smile.validation.metric.ConfusionMatrix
-
Creates an instance of a
ConfusionMatrix
record class. - conjugate() - Method in class smile.math.Complex
-
Returns the conjugate.
- CONJUGATE_TRANSPOSE - Enum constant in enum class smile.math.blas.Transpose
-
Conjugate transpose operation on the matrix.
- consequent() - Method in record class smile.association.AssociationRule
-
Returns the value of the
consequent
record component. - constant(double) - Static method in interface smile.math.TimeFunction
-
Returns the constant learning rate.
- Constant - Class in smile.data.formula
-
A constant value in the formula.
- Constant() - Constructor for class smile.data.formula.Constant
- contains(double[][], double[]) - Static method in class smile.math.MathEx
-
Determines if the polygon contains the point.
- contains(double[][], double, double) - Static method in class smile.math.MathEx
-
Determines if the polygon contains the point.
- contains(int) - Method in class smile.util.IntHashSet
-
Returns true if this set contains the specified element.
- contains(Object) - Method in class smile.util.PairingHeap
- contains(String) - Method in interface smile.nlp.dictionary.Dictionary
-
Returns true if this dictionary contains the specified word.
- contains(String) - Method in enum class smile.nlp.dictionary.EnglishDictionary
- contains(String) - Method in class smile.nlp.dictionary.EnglishPunctuations
- contains(String) - Method in enum class smile.nlp.dictionary.EnglishStopWords
- contains(String) - Method in class smile.nlp.dictionary.SimpleDictionary
- containsAll(Collection<?>) - Method in class smile.util.PairingHeap
- content() - Method in record class smile.llm.CompletionPrediction
-
Returns the value of the
content
record component. - content() - Method in record class smile.llm.Message
-
Returns the value of the
content
record component. - content_filter - Enum constant in enum class smile.llm.FinishReason
-
Omitted content due to a flag from content filters.
- contiguous() - Method in class smile.deep.tensor.Tensor
-
Returns a contiguous in memory tensor containing the same data as this tensor.
- ContingencyTable - Class in smile.validation.metric
-
The contingency table.
- ContingencyTable(int[], int[]) - Constructor for class smile.validation.metric.ContingencyTable
-
Constructor.
- continuousHeight(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the default height when the plot has a continuous field for y or latitude, or has arc marks.
- continuousWidth(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the default width when the plot has a continuous field for x or longitude, or has arc marks.
- Contour - Class in smile.plot.swing
-
A contour plot is a graphical technique for representing a 3-dimensional surface by plotting constant z slices, called contours, on a 2-dimensional format.
- Contour(double[][], double[]) - Constructor for class smile.plot.swing.Contour
-
Constructor.
- Contour(double[][], int, boolean) - Constructor for class smile.plot.swing.Contour
-
Constructor.
- Contour(double[], double[], double[][], double[]) - Constructor for class smile.plot.swing.Contour
-
Constructor.
- Contour(double[], double[], double[][], int, boolean) - Constructor for class smile.plot.swing.Contour
-
Constructor.
- conv2d(int, int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a convolutional layer.
- conv2d(int, int, int, int, int, int, int, boolean, String) - Static method in interface smile.deep.layer.Layer
-
Returns a convolutional layer.
- conv2d(int, int, int, int, String, int, int, boolean, String) - Static method in interface smile.deep.layer.Layer
-
Returns a convolutional layer.
- Conv2dLayer - Class in smile.deep.layer
-
A convolutional layer.
- Conv2dLayer(int, int, int, int, int, int, int, boolean, String) - Constructor for class smile.deep.layer.Conv2dLayer
-
Constructor.
- Conv2dLayer(int, int, int, int, String, int, int, boolean, String) - Constructor for class smile.deep.layer.Conv2dLayer
-
Constructor.
- Conv2dNormActivation - Class in smile.vision.layer
-
Convolution2d-Normalization-Activation block.
- Conv2dNormActivation(Conv2dNormActivation.Options) - Constructor for class smile.vision.layer.Conv2dNormActivation
-
Constructor.
- Conv2dNormActivation.Options - Record Class in smile.vision.layer
-
Conv2dNormActivation configurations.
- CooccurrenceKeywords - Interface in smile.nlp.keyword
-
Keyword extraction from a single document using word co-occurrence statistical information.
- coordinates - Variable in class smile.manifold.SammonMapping
-
The coordinates.
- coordinates - Variable in class smile.manifold.TSNE
-
The coordinate matrix in embedding space.
- coordinates() - Method in record class smile.manifold.IsotonicMDS
-
Returns the value of the
coordinates
record component. - coordinates() - Method in class smile.manifold.KPCA
-
Returns the nonlinear principal component scores, i.e., the representation of learning data in the nonlinear principal component space.
- coordinates() - Method in record class smile.manifold.MDS
-
Returns the value of the
coordinates
record component. - copy() - Method in class smile.math.matrix.BandMatrix
- copy() - Method in class smile.math.matrix.BigMatrix
- copy() - Method in class smile.math.matrix.fp32.BandMatrix
- copy() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns a deep copy of matrix.
- copy() - Method in class smile.math.matrix.fp32.Matrix
- copy() - Method in class smile.math.matrix.fp32.SparseMatrix
- copy() - Method in class smile.math.matrix.fp32.SymmMatrix
- copy() - Method in class smile.math.matrix.IMatrix
-
Returns a deep copy of matrix.
- copy() - Method in class smile.math.matrix.Matrix
- copy() - Method in class smile.math.matrix.SparseMatrix
- copy() - Method in class smile.math.matrix.SymmMatrix
- copy() - Method in class smile.neighbor.lsh.Probe
-
Returns a shallow copy that shares the range array.
- copy(double[][], double[][]) - Static method in class smile.math.MathEx
-
Deep copy x into y.
- copy(float[][], float[][]) - Static method in class smile.math.MathEx
-
Deep copy x into y.
- copy(int[][], int[][]) - Static method in class smile.math.MathEx
-
Copy x into y.
- cor() - Method in record class smile.stat.hypothesis.CorTest
-
Returns the value of the
cor
record component. - cor(double[][]) - Static method in class smile.math.MathEx
-
Returns the sample correlation matrix.
- cor(double[][], double[]) - Static method in class smile.math.MathEx
-
Returns the sample correlation matrix.
- cor(double[][], String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with correlation matrix.
- cor(double[], double[]) - Static method in class smile.math.MathEx
-
Returns the correlation coefficient between two vectors.
- cor(float[], float[]) - Static method in class smile.math.MathEx
-
Returns the correlation coefficient between two vectors.
- cor(int[], int[]) - Static method in class smile.math.MathEx
-
Returns the correlation coefficient between two vectors.
- cor(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with correlation matrix.
- cornerRadius(double) - Method in class smile.plot.vega.Legend
-
Sets the corner radius for the full legend.
- cornerRadius(double) - Method in class smile.plot.vega.Mark
-
Sets the radius in pixels of rounded rectangles or arcs' corners.
- cornerRadius(int) - Method in class smile.plot.vega.Background
-
Sets the radius of corners.
- cornerRadius(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the radius of corners.
- cornerRadiusBottomLeft(double) - Method in class smile.plot.vega.Mark
-
Sets the radius in pixels of rounded rectangles' bottom left corner.
- cornerRadiusBottomRight(double) - Method in class smile.plot.vega.Mark
-
Sets the radius in pixels of rounded rectangles' bottom right corner.
- cornerRadiusEnd(double) - Method in class smile.plot.vega.Mark
-
For vertical bars, sets the top-left and top-right corner radius.
- cornerRadiusTopLeft(double) - Method in class smile.plot.vega.Mark
-
Sets the radius in pixels of rounded rectangles' top left corner.
- cornerRadiusTopRight(double) - Method in class smile.plot.vega.Mark
-
Sets the radius in pixels of rounded rectangles' top right corner.
- Corpus - Interface in smile.nlp
-
A corpus is a collection of documents.
- CorrelationDistance - Class in smile.math.distance
-
Correlation distance is defined as 1 - correlation coefficient.
- CorrelationDistance() - Constructor for class smile.math.distance.CorrelationDistance
-
Constructor of Pearson correlation distance.
- CorrelationDistance(String) - Constructor for class smile.math.distance.CorrelationDistance
-
Constructor.
- CorTest - Record Class in smile.stat.hypothesis
-
Correlation test.
- CorTest(String, double, double, double, double) - Constructor for record class smile.stat.hypothesis.CorTest
-
Creates an instance of a
CorTest
record class. - cos() - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor with the cosine of the elements of input.
- cos() - Method in class smile.math.Complex
-
Returns the complex cosine.
- cos(String) - Static method in interface smile.data.formula.Terms
-
The
cos(x)
term. - cos(Term) - Static method in interface smile.data.formula.Terms
-
The
cos(x)
term. - cos_() - Method in class smile.deep.tensor.Tensor
-
Computes the cosine of the elements of input in place.
- cosh(String) - Static method in interface smile.data.formula.Terms
-
The
cosh(x)
term. - cosh(Term) - Static method in interface smile.data.formula.Terms
-
The
cosh(x)
term. - cosine(double[], double[]) - Static method in class smile.math.MathEx
-
Returns the cosine similarity.
- cosine(double, double, double) - Static method in interface smile.math.TimeFunction
-
Returns the cosine annealing function.
- cosine(float[], float[]) - Static method in class smile.math.MathEx
-
Returns the cosine similarity.
- cost() - Method in class smile.base.mlp.OutputLayer
-
Returns the cost function of neural network.
- cost() - Method in class smile.manifold.TSNE
-
Returns the cost function value.
- Cost - Enum Class in smile.base.mlp
-
Neural network cost function.
- count - Variable in class smile.nlp.collocation.Bigram
-
The frequency of bigram in the corpus.
- count - Variable in class smile.nlp.collocation.NGram
-
The frequency of n-gram in the corpus.
- count() - Method in class smile.base.cart.DecisionNode
-
Returns the sample size in each class.
- count(String) - Method in interface smile.nlp.Corpus
-
Returns the total frequency of the term in the corpus.
- count(String) - Method in class smile.nlp.SimpleCorpus
- count(Bigram) - Method in interface smile.nlp.Corpus
-
Returns the total frequency of the bigram in the corpus.
- count(Bigram) - Method in class smile.nlp.SimpleCorpus
- counter - Variable in class smile.vq.hebb.Neuron
-
The local counter variable (e.g.
- counts(boolean) - Method in class smile.plot.vega.DensityTransform
-
Produces probability estimates or smoothed counts.
- countTitle(String) - Method in class smile.plot.vega.Config
-
Sets the default axis and legend title for count fields.
- cov - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The covariance matrix of joint predictive distribution at query points.
- cov() - Method in interface smile.stat.distribution.MultivariateDistribution
-
The covariance matrix of distribution.
- cov() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- cov() - Method in class smile.stat.distribution.MultivariateMixture
- cov(double[][]) - Static method in class smile.math.MathEx
-
Returns the sample covariance matrix.
- cov(double[][], double[]) - Static method in class smile.math.MathEx
-
Returns the sample covariance matrix.
- cov(double[], double[]) - Static method in class smile.math.MathEx
-
Returns the covariance between two vectors.
- cov(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Autocovariance function.
- cov(float[], float[]) - Static method in class smile.math.MathEx
-
Returns the covariance between two vectors.
- cov(int[], int[]) - Static method in class smile.math.MathEx
-
Returns the covariance between two vectors.
- CoverTree<K,
V> - Class in smile.neighbor -
Cover tree is a data structure for generic nearest neighbor search, which is especially efficient in spaces with small intrinsic dimension.
- CoverTree(List<K>, List<V>, Metric<K>) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CoverTree(List<K>, List<V>, Metric<K>, double) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CoverTree(K[], V[], Metric<K>) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CoverTree(K[], V[], Metric<K>, double) - Constructor for class smile.neighbor.CoverTree
-
Constructor.
- CPU - Enum constant in enum class smile.deep.tensor.DeviceType
-
CPU
- CPU() - Static method in class smile.deep.tensor.Device
-
Returns the CPU device.
- CramerV() - Method in record class smile.stat.hypothesis.ChiSqTest
-
Returns the value of the
CramerV
record component. - CRF - Class in smile.sequence
-
First-order linear conditional random field.
- CRF(StructType, RegressionTree[][], double) - Constructor for class smile.sequence.CRF
-
Constructor.
- CRFLabeler<T> - Class in smile.sequence
-
First-order CRF sequence labeler.
- CRFLabeler(CRF, Function<T, Tuple>) - Constructor for class smile.sequence.CRFLabeler
-
Constructor.
- crop(BufferedImage, int, boolean) - Method in interface smile.vision.transform.Transform
-
Crops an image.
- crop(BufferedImage, int, int, boolean) - Method in interface smile.vision.transform.Transform
-
Crops an image.
- cross(int, String...) - Static method in interface smile.data.formula.Terms
-
Factor crossing of two or more factors.
- cross(String...) - Static method in interface smile.data.formula.Terms
-
Factor crossing of two or more factors.
- crossentropy() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
crossentropy
record component. - crossEntropy() - Static method in interface smile.deep.Loss
-
Cross Entropy Loss Function.
- crossEntropy(Tensor, Tensor, String, long) - Static method in class smile.deep.tensor.Tensor
-
Computes the cross entropy loss between input logits and target.
- CrossEntropy - Interface in smile.validation.metric
-
Cross entropy generalizes the log loss metric to multiclass problems.
- crossover(BitString) - Method in class smile.gap.BitString
- crossover(T) - Method in interface smile.gap.Chromosome
-
Returns a pair of offsprings by crossovering this one with another one according to the crossover rate, which determines how often will be crossover performed.
- Crossover - Enum Class in smile.gap
-
The types of crossover operation.
- CrossValidation - Interface in smile.validation
-
Cross-validation is a technique for assessing how the results of a statistical analysis will generalize to an independent data set.
- csv(String) - Static method in interface smile.io.Read
-
Reads a CSV file.
- csv(String, char, Map<String, String>, String...) - Method in class smile.data.SQL
-
Creates an in-memory table from csv files.
- csv(String, String) - Static method in interface smile.io.Read
-
Reads a CSV file.
- csv(String, String...) - Method in class smile.data.SQL
-
Creates an in-memory table from csv files.
- csv(String, Map<String, String>) - Method in class smile.plot.vega.Data
-
Loads a comma-separated values (CSV) file
- csv(String, CSVFormat) - Static method in interface smile.io.Read
-
Reads a CSV file.
- csv(String, CSVFormat, StructType) - Static method in interface smile.io.Read
-
Reads a CSV file.
- csv(Path) - Static method in interface smile.io.Read
-
Reads a CSV file.
- csv(Path, CSVFormat) - Static method in interface smile.io.Read
-
Reads a CSV file.
- csv(Path, CSVFormat, StructType) - Static method in interface smile.io.Read
-
Reads a CSV file.
- csv(DataFrame, Path) - Static method in interface smile.io.Write
-
Writes a CSV file.
- csv(DataFrame, Path, CSVFormat) - Static method in interface smile.io.Write
-
Writes a CSV file.
- CSV - Class in smile.io
-
Reads and writes files in variations of the Comma Separated Value (CSV) format.
- CSV() - Constructor for class smile.io.CSV
-
Constructor.
- CSV(CSVFormat) - Constructor for class smile.io.CSV
-
Constructor.
- CubicSplineInterpolation1D - Class in smile.interpolation
-
Cubic spline interpolation.
- CubicSplineInterpolation1D(double[], double[]) - Constructor for class smile.interpolation.CubicSplineInterpolation1D
-
Constructor.
- CubicSplineInterpolation2D - Class in smile.interpolation
-
Cubic spline interpolation in a two-dimensional regular grid.
- CubicSplineInterpolation2D(double[], double[], double[][]) - Constructor for class smile.interpolation.CubicSplineInterpolation2D
-
Constructor.
- CUDA - Enum constant in enum class smile.deep.tensor.DeviceType
-
NVIDIA GPU
- CUDA - Interface in smile.deep
-
NVIDIA CUDA helper functions.
- CUDA() - Static method in class smile.deep.tensor.Device
-
Returns the default NVIDIA CUDA device.
- CUDA(byte) - Static method in class smile.deep.tensor.Device
-
Returns the NVIDIA CUDA device.
- cumulative(boolean) - Method in class smile.plot.vega.DensityTransform
-
Produces density estimates or cumulative density estimates.
- cumulativeVarianceProportion() - Method in class smile.feature.extraction.PCA
-
Returns the cumulative proportion of variance contained in principal components, ordered from largest to smallest.
- Currency - Static variable in interface smile.data.measure.Measure
-
Currency.
- CURRENCY - Static variable in class smile.swing.table.NumberCellRenderer
- cursor(String) - Method in class smile.plot.vega.Background
-
Sets the mouse cursor used over the view.
- cursor(String) - Method in class smile.plot.vega.ViewConfig
-
Sets the mouse cursor used over the view.
- customFormatTypes(boolean) - Method in class smile.plot.vega.FormatConfig
-
Allow the formatType property for text marks and guides to accept a custom formatter function registered as a Vega expression.
- CYAN - Static variable in interface smile.plot.swing.Palette
D
- d - Variable in class smile.vq.BIRCH
-
The dimensionality of data.
- d() - Method in record class smile.stat.hypothesis.KSTest
-
Returns the value of the
d
record component. - d(byte[], byte[]) - Static method in class smile.math.distance.HammingDistance
-
Returns Hamming distance between the two byte arrays.
- d(byte, byte) - Static method in class smile.math.distance.HammingDistance
-
Returns Hamming distance between the two bytes.
- d(char[], char[]) - Method in class smile.math.distance.EditDistance
-
Edit distance between two strings.
- d(double[], double[]) - Method in class smile.math.distance.ChebyshevDistance
-
Chebyshev distance between the two arrays of type double.
- d(double[], double[]) - Method in class smile.math.distance.CorrelationDistance
-
Pearson correlation distance between the two arrays of type double.
- d(double[], double[]) - Static method in class smile.math.distance.DynamicTimeWarping
-
Dynamic time warping without path constraints.
- d(double[], double[]) - Method in class smile.math.distance.EuclideanDistance
-
Euclidean distance between the two arrays of type double.
- d(double[], double[]) - Method in class smile.math.distance.JensenShannonDistance
- d(double[], double[]) - Method in class smile.math.distance.MahalanobisDistance
- d(double[], double[]) - Method in class smile.math.distance.ManhattanDistance
-
Manhattan distance between two arrays of type double.
- d(double[], double[]) - Method in class smile.math.distance.MinkowskiDistance
-
Minkowski distance between the two arrays of type double.
- d(double[], double[], int) - Static method in class smile.math.distance.DynamicTimeWarping
-
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.
- d(float[], float[]) - Static method in class smile.math.distance.ChebyshevDistance
-
Chebyshev distance between the two arrays of type float.
- d(float[], float[]) - Static method in class smile.math.distance.DynamicTimeWarping
-
Dynamic time warping without path constraints.
- d(float[], float[]) - Method in class smile.math.distance.EuclideanDistance
-
Euclidean distance between the two arrays of type float.
- d(float[], float[]) - Method in class smile.math.distance.ManhattanDistance
-
Manhattan distance between two arrays of type float.
- d(float[], float[]) - Method in class smile.math.distance.MinkowskiDistance
-
Minkowski distance between the two arrays of type float.
- d(float[], float[], int) - Static method in class smile.math.distance.DynamicTimeWarping
-
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.
- d(int[], int[]) - Static method in class smile.math.distance.ChebyshevDistance
-
Chebyshev distance between the two arrays of type integer.
- d(int[], int[]) - Static method in class smile.math.distance.DynamicTimeWarping
-
Dynamic time warping without path constraints.
- d(int[], int[]) - Method in class smile.math.distance.EuclideanDistance
-
Euclidean distance between the two arrays of type integer.
- d(int[], int[]) - Static method in class smile.math.distance.HammingDistance
-
Returns Hamming distance between the two integer arrays.
- d(int[], int[]) - Method in class smile.math.distance.LeeDistance
- d(int[], int[]) - Method in class smile.math.distance.ManhattanDistance
-
Manhattan distance between two arrays of type integer.
- d(int[], int[]) - Method in class smile.math.distance.MinkowskiDistance
-
Minkowski distance between the two arrays of type integer.
- d(int[], int[], int) - Static method in class smile.math.distance.DynamicTimeWarping
-
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.
- d(int, int) - Method in class smile.clustering.linkage.Linkage
-
Returns the distance/dissimilarity between two clusters/objects, which are indexed by integers.
- d(int, int) - Static method in class smile.math.distance.HammingDistance
-
Returns Hamming distance between the two integers.
- d(long, long) - Static method in class smile.math.distance.HammingDistance
-
Returns Hamming distance between the two long integers.
- d(short[], short[]) - Static method in class smile.math.distance.HammingDistance
-
Returns Hamming distance between the two short arrays.
- d(short, short) - Static method in class smile.math.distance.HammingDistance
-
Returns Hamming distance between the two shorts.
- d(String, String) - Method in class smile.math.distance.EditDistance
-
Edit distance between two strings.
- d(String, String) - Method in class smile.taxonomy.TaxonomicDistance
-
Computes the distance between two concepts in a taxonomy.
- d(BitSet, BitSet) - Method in class smile.math.distance.HammingDistance
- d(Set<T>, Set<T>) - Static method in class smile.math.distance.JaccardDistance
-
Returns the Jaccard distance between sets.
- d(Concept, Concept) - Method in class smile.taxonomy.TaxonomicDistance
-
Computes the distance between two concepts in a taxonomy.
- d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseChebyshevDistance
- d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseEuclideanDistance
- d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseManhattanDistance
- d(SparseArray, SparseArray) - Method in class smile.math.distance.SparseMinkowskiDistance
- d(T[], T[]) - Method in class smile.math.distance.DynamicTimeWarping
- d(T[], T[]) - Method in class smile.math.distance.JaccardDistance
- d(T, T) - Method in interface smile.math.distance.Distance
-
Returns the distance measure between two objects.
- D(T[]) - Method in interface smile.math.distance.Distance
-
Returns the pairwise distance matrix.
- D(T[], T[]) - Method in interface smile.math.distance.Distance
-
Returns the pairwise distance matrix.
- D4Wavelet - Class in smile.wavelet
-
The simplest and most localized wavelet, Daubechies wavelet of 4 coefficients.
- D4Wavelet() - Constructor for class smile.wavelet.D4Wavelet
-
Constructor.
- damerau(char[], char[]) - Static method in class smile.math.distance.EditDistance
-
Damerau-Levenshtein distance between two strings allows insertion, deletion, substitution, or transposition of characters.
- damerau(String, String) - Static method in class smile.math.distance.EditDistance
-
Damerau-Levenshtein distance between two strings allows insertion, deletion, substitution, or transposition of characters.
- DARK_BLUE - Static variable in interface smile.plot.swing.Palette
- DARK_CYAN - Static variable in interface smile.plot.swing.Palette
- DARK_GRAY - Static variable in interface smile.plot.swing.Palette
- DARK_GREEN - Static variable in interface smile.plot.swing.Palette
- DARK_MAGENTA - Static variable in interface smile.plot.swing.Palette
- DARK_PURPLE - Static variable in interface smile.plot.swing.Palette
- DARK_RED - Static variable in interface smile.plot.swing.Palette
- DARK_SLATE_GRAY - Static variable in interface smile.plot.swing.Palette
- DASH - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation -
- DASH - Enum constant in enum class smile.plot.swing.Line.Style
- data - Variable in class smile.neighbor.LSH
-
The data objects.
- data() - Method in record class smile.deep.SampleBatch
-
Returns the value of the
data
record component. - data() - Method in class smile.plot.vega.LookupData
-
Returns the secondary data source.
- data() - Method in class smile.plot.vega.VegaLite
-
Returns the data specification object.
- data(String) - Static method in interface smile.io.Read
-
Reads a data file.
- data(String, String) - Static method in interface smile.io.Read
-
Reads a data file.
- Data - Class in smile.plot.vega
-
The basic data model used by Vega-Lite is tabular data.
- DataFrame - Interface in smile.data
-
An immutable collection of data organized into named columns.
- DataFrame.Collectors - Interface in smile.data
-
Stream collectors.
- DataFrameClassifier - Interface in smile.classification
-
Classification trait on DataFrame.
- DataFrameClassifier.Trainer<M> - Interface in smile.classification
-
The classifier trainer.
- DataFrameRegression - Interface in smile.regression
-
Regression trait on DataFrame.
- DataFrameRegression.Trainer<M> - Interface in smile.regression
-
The regression trainer.
- Dataset<D,
T> - Interface in smile.data -
An immutable collection of data objects.
- Dataset - Interface in smile.deep
-
A dataset consists of data and an associated target (label) and can be iterated in mini-batches.
- DataType - Interface in smile.data.type
-
The interface of data types.
- DataType.ID - Enum Class in smile.data.type
-
Data type ID.
- DataTypes - Class in smile.data.type
-
To get a specific data type, users should use singleton objects and factory methods in this class.
- DataTypes() - Constructor for class smile.data.type.DataTypes
- date(String) - Static method in class smile.data.type.DataTypes
-
Date data type with customized format.
- date(String, DateFeature...) - Static method in interface smile.data.formula.Terms
-
Extracts date/time features.
- Date - Class in smile.data.formula
-
Date/time feature extractor.
- Date - Enum constant in enum class smile.data.type.DataType.ID
-
Date type ID.
- Date(String, DateFeature...) - Constructor for class smile.data.formula.Date
-
Constructor.
- DATE - Static variable in interface smile.util.Regex
-
Date regular expression pattern.
- DateCellEditor - Class in smile.swing.table
-
Implements a cell editor that uses a formatted text field to edit Date values.
- DateCellEditor(String) - Constructor for class smile.swing.table.DateCellEditor
-
Constructor.
- DateCellEditor(DateFormat) - Constructor for class smile.swing.table.DateCellEditor
-
Constructor.
- DateCellRenderer - Class in smile.swing.table
-
Date cell renderer.
- DateCellRenderer(String) - Constructor for class smile.swing.table.DateCellRenderer
- DateCellRenderer(DateFormat) - Constructor for class smile.swing.table.DateCellRenderer
- DateFeature - Enum Class in smile.data.formula
-
The date/time features.
- datetime(String) - Static method in class smile.data.type.DataTypes
-
DateTime data type with customized format.
- DateTime - Enum constant in enum class smile.data.type.DataType.ID
-
DateTime type ID.
- DATETIME - Static variable in interface smile.util.Regex
-
Datetime regular expression pattern.
- DateTimeType - Class in smile.data.type
-
DateTime data type.
- DateTimeType - Static variable in class smile.data.type.DataTypes
-
DateTime data type with ISO format.
- DateTimeType(String) - Constructor for class smile.data.type.DateTimeType
-
Constructor.
- DateType - Class in smile.data.type
-
Date data type.
- DateType - Static variable in class smile.data.type.DataTypes
-
Date data type with ISO format.
- DateType(String) - Constructor for class smile.data.type.DateType
-
Constructor.
- DaubechiesWavelet - Class in smile.wavelet
-
Daubechies wavelets.
- DaubechiesWavelet(int) - Constructor for class smile.wavelet.DaubechiesWavelet
-
Constructor.
- DAY_OF_MONTH - Enum constant in enum class smile.data.formula.DateFeature
-
The day of month represented by an integer from 1 to 31 in the usual manner.
- DAY_OF_WEEK - Enum constant in enum class smile.data.formula.DateFeature
-
The day of week represented by an integer from 1 to 7; 1 is Monday, 2 is Tuesday, and so forth; thus 7 is Sunday.
- DAY_OF_YEAR - Enum constant in enum class smile.data.formula.DateFeature
-
The day of year represented by an integer from 1 to 365, or 366 in a leap year.
- DBSCAN<T> - Class in smile.clustering
-
Density-Based Spatial Clustering of Applications with Noise.
- DBSCAN(int, double, RNNSearch<T, T>, int, int[], boolean[]) - Constructor for class smile.clustering.DBSCAN
-
Constructor.
- Decimal - Enum constant in enum class smile.data.type.DataType.ID
-
Decimal type ID.
- DECIMAL_FORMAT - Static variable in interface smile.util.Strings
-
Decimal format for floating numbers.
- DecimalType - Class in smile.data.type
-
Arbitrary-precision decimal data type.
- DecimalType - Static variable in class smile.data.type.DataTypes
-
Decimal data type.
- DecisionNode - Class in smile.base.cart
-
A leaf node in decision tree.
- DecisionNode(int[]) - Constructor for class smile.base.cart.DecisionNode
-
Constructor.
- DecisionTree - Class in smile.classification
-
Decision tree.
- DecisionTree(DataFrame, int[], StructField, int, SplitRule, int, int, int, int, int[], int[][]) - Constructor for class smile.classification.DecisionTree
-
Constructor.
- decode(int[]) - Method in class smile.llm.tokenizer.SentencePiece
- decode(int[]) - Method in class smile.llm.tokenizer.Tiktoken
- decode(int[]) - Method in interface smile.llm.tokenizer.Tokenizer
-
Decodes a list of token IDs into a string.
- decrease(E) - Method in class smile.util.PairingHeap.Node
-
Decreases the value of an element.
- decrement() - Method in class smile.util.MutableInt
-
Decrement by one.
- decrement(int) - Method in class smile.util.MutableInt
-
Decrement.
- DEFAULT - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
-
Default stop words list.
- DEFAULT_MEAN - Static variable in interface smile.vision.transform.Transform
-
The default mean value of pixel RGB after normalized to [0, 1].
- DEFAULT_STD - Static variable in interface smile.vision.transform.Transform
-
The default standard deviation of pixel RGB after normalized to [0, 1].
- DefaultTableHeaderCellRenderer - Class in smile.swing.table
-
A default cell renderer for a JTableHeader.
- DefaultTableHeaderCellRenderer() - Constructor for class smile.swing.table.DefaultTableHeaderCellRenderer
-
Constructs a
DefaultTableHeaderCellRenderer
. - degree() - Method in class smile.math.kernel.Polynomial
-
Returns the degree of polynomial.
- delete(String) - Static method in interface smile.data.formula.Terms
-
Deletes a variable or the intercept ("1") from the formula.
- delete(Term) - Static method in interface smile.data.formula.Terms
-
Deletes a term from the formula.
- Delete - Class in smile.data.formula
-
Remove a factor from the formula.
- Delete(Term) - Constructor for class smile.data.formula.Delete
-
Constructor.
- DENCLUE - Class in smile.clustering
-
DENsity CLUstering.
- DENCLUE(int, double[][], double[], double[][], double, int[], double) - Constructor for class smile.clustering.DENCLUE
-
Constructor.
- Dendrogram - Class in smile.plot.swing
-
A dendrogram is a tree diagram frequently used to illustrate the arrangement of the clusters produced by hierarchical clustering.
- Dendrogram(int[][], double[]) - Constructor for class smile.plot.swing.Dendrogram
-
Constructor.
- Dendrogram(int[][], double[], Color) - Constructor for class smile.plot.swing.Dendrogram
-
Constructor.
- denoise(double[], Wavelet) - Static method in interface smile.wavelet.WaveletShrinkage
-
Adaptive hard-thresholding denoising a time series with given wavelet.
- denoise(double[], Wavelet, boolean) - Static method in interface smile.wavelet.WaveletShrinkage
-
Adaptive denoising a time series with given wavelet.
- density(String, String...) - Method in class smile.plot.vega.Transform
-
Adds a density transformation.
- DensityTransform - Class in smile.plot.vega
-
The density transform performs one-dimensional kernel density estimation over an input data stream and generates a new data stream of samples of the estimated densities.
- depth() - Method in class smile.base.cart.InternalNode
- depth() - Method in class smile.base.cart.LeafNode
- depth() - Method in interface smile.base.cart.Node
-
Returns the maximum depth of the tree -- the number of nodes along the longest path from this node down to the farthest leaf node.
- descent(double[][], int) - Static method in record class smile.graph.NearestNeighborGraph
-
Creates an approximate nearest neighbor graph with random projection forest and Euclidean distance.
- descent(double[][], int, int, int, int, int, double) - Static method in record class smile.graph.NearestNeighborGraph
-
Creates an approximate nearest neighbor graph with random projection forest and Euclidean distance.
- descent(T[], Metric<T>, int) - Static method in record class smile.graph.NearestNeighborGraph
-
Creates an approximate nearest neighbor graph with the NN-Descent algorithm.
- descent(T[], Metric<T>, int, int, int, double) - Static method in record class smile.graph.NearestNeighborGraph
-
Creates an approximate nearest neighbor graph with the NN-Descent algorithm.
- describe(String) - Method in class smile.data.SQL
-
Returns the columns in a table.
- description(String) - Method in class smile.plot.vega.Axis
-
Sets the text description of this axis for ARIA accessibility (SVG output only).
- description(String) - Method in class smile.plot.vega.Concat
- description(String) - Method in class smile.plot.vega.Facet
- description(String) - Method in class smile.plot.vega.Legend
-
Sets the text description of this legend for ARIA accessibility (SVG output only).
- description(String) - Method in class smile.plot.vega.Mark
-
Sets the description.
- description(String) - Method in class smile.plot.vega.Repeat
- description(String) - Method in class smile.plot.vega.VegaLite
-
Sets the description of this mark for commenting purpose.
- description(String) - Method in class smile.plot.vega.View
- det() - Method in class smile.math.matrix.BandMatrix.Cholesky
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.BandMatrix.LU
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.BigMatrix.Cholesky
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.BigMatrix.LU
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.fp32.BandMatrix.LU
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.fp32.Matrix.Cholesky
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.fp32.Matrix.LU
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.Matrix.Cholesky
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.Matrix.LU
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
-
Returns the matrix determinant.
- det() - Method in class smile.math.matrix.SymmMatrix.Cholesky
-
Returns the matrix determinant.
- detach() - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor, detached from the current graph.
- DeterministicAnnealing - Class in smile.clustering
-
Deterministic annealing clustering.
- DeterministicAnnealing(double, double[][], int[]) - Constructor for class smile.clustering.DeterministicAnnealing
-
Constructor.
- deviance - Variable in class smile.glm.GLM
-
The deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Proposed Model)).
- deviance() - Method in class smile.base.cart.DecisionNode
- deviance() - Method in class smile.base.cart.InternalNode
- deviance() - Method in interface smile.base.cart.Node
-
Returns the deviance of node.
- deviance() - Method in class smile.base.cart.RegressionNode
- deviance() - Method in class smile.glm.GLM
-
Returns the deviance of model.
- deviance(double[], double[], double[]) - Method in interface smile.glm.model.Model
-
The deviance function.
- deviance(int[], double[]) - Static method in class smile.base.cart.DecisionNode
-
Returns the deviance of node.
- devianceResiduals - Variable in class smile.glm.GLM
-
The deviance residuals.
- devianceResiduals() - Method in class smile.glm.GLM
-
Returns the deviance residuals.
- device - Variable in class smile.deep.layer.LayerBlock
-
The compute device.
- device() - Static method in interface smile.deep.CUDA
-
Returns the default CUDA device.
- device() - Method in class smile.deep.layer.LayerBlock
-
Returns the compute device of module.
- device() - Method in class smile.deep.Model
-
Returns the device on which the model is stored.
- device() - Method in class smile.deep.tensor.Tensor
-
Returns the device on which the tensor is.
- device(byte) - Static method in interface smile.deep.CUDA
-
Returns the CUDA device of given index.
- device(Device) - Method in class smile.deep.tensor.Tensor.Options
-
Sets a compute device on which a tensor is stored.
- Device - Class in smile.deep.tensor
-
The compute device on which a tensor is stored.
- Device(DeviceType) - Constructor for class smile.deep.tensor.Device
-
Constructor.
- Device(DeviceType, byte) - Constructor for class smile.deep.tensor.Device
-
Constructor.
- deviceCount() - Static method in interface smile.deep.CUDA
-
Returns the number of CUDA devices.
- DeviceType - Enum Class in smile.deep.tensor
-
The compute device type.
- df - Variable in class smile.glm.GLM
-
The degrees of freedom of the residual deviance.
- df - Variable in class smile.timeseries.BoxTest
-
The degree of freedom.
- df() - Method in class smile.regression.LinearModel
-
Returns the degree-of-freedom of residual standard error.
- df() - Method in record class smile.stat.hypothesis.ChiSqTest
-
Returns the value of the
df
record component. - df() - Method in record class smile.stat.hypothesis.CorTest
-
Returns the value of the
df
record component. - df() - Method in record class smile.stat.hypothesis.TTest
-
Returns the value of the
df
record component. - df() - Method in class smile.timeseries.AR
-
Returns the degree-of-freedom of residual standard error.
- df() - Method in class smile.timeseries.ARMA
-
Returns the degree-of-freedom of residual standard error.
- df1() - Method in record class smile.stat.hypothesis.FTest
-
Returns the value of the
df1
record component. - df2() - Method in record class smile.stat.hypothesis.FTest
-
Returns the value of the
df2
record component. - dfcc() - Method in class smile.graph.Graph
-
Returns the connected components by depth-first search.
- dfs(VertexVisitor) - Method in class smile.graph.Graph
-
DFS search on graph and performs some operation defined in visitor on each vertex during traveling.
- dfsort() - Method in class smile.graph.Graph
-
Reverse topological sort digraph by depth-first search of graph.
- diag() - Method in class smile.math.matrix.BigMatrix.EVD
-
Returns the block diagonal eigenvalue matrix whose diagonal are the real part of eigenvalues, lower subdiagonal are positive imaginary parts, and upper subdiagonal are negative imaginary parts.
- diag() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the diagonal matrix of singular values.
- diag() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the diagonal elements.
- diag() - Method in class smile.math.matrix.fp32.Matrix.EVD
-
Returns the block diagonal eigenvalue matrix whose diagonal are the real part of eigenvalues, lower subdiagonal are positive imaginary parts, and upper subdiagonal are negative imaginary parts.
- diag() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the diagonal matrix of singular values.
- diag() - Method in class smile.math.matrix.fp32.SparseMatrix
- diag() - Method in class smile.math.matrix.IMatrix
-
Returns the diagonal elements.
- diag() - Method in class smile.math.matrix.Matrix.EVD
-
Returns the block diagonal eigenvalue matrix whose diagonal are the real part of eigenvalues, lower subdiagonal are positive imaginary parts, and upper subdiagonal are negative imaginary parts.
- diag() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the diagonal matrix of singular values.
- diag() - Method in class smile.math.matrix.SparseMatrix
- diag(double[]) - Static method in class smile.math.matrix.BigMatrix
-
Returns a square diagonal matrix.
- diag(double[]) - Static method in class smile.math.matrix.Matrix
-
Returns a square diagonal matrix.
- diag(float[]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a square diagonal matrix.
- diag(int, double) - Static method in class smile.math.matrix.BigMatrix
-
Returns a square diagonal matrix.
- diag(int, double) - Static method in class smile.math.matrix.Matrix
-
Returns a square diagonal matrix.
- diag(int, float) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a square diagonal matrix.
- diag(int, int, double) - Static method in class smile.math.matrix.BigMatrix
-
Returns an m-by-n diagonal matrix.
- diag(int, int, double) - Static method in class smile.math.matrix.Matrix
-
Returns an m-by-n diagonal matrix.
- diag(int, int, float) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns an m-by-n diagonal matrix.
- diag(DoublePointer) - Static method in class smile.math.matrix.BigMatrix
-
Returns a square diagonal matrix.
- Diag - Enum Class in smile.math.blas
-
The flag if a triangular matrix has unit diagonal elements.
- diagonal - Variable in class smile.stat.distribution.MultivariateGaussianDistribution
-
True if the covariance matrix is diagonal.
- dialogResultValue - Variable in class smile.swing.FontChooser
- Dictionary - Interface in smile.nlp.dictionary
-
A dictionary is a set of words in some natural language.
- diff(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Returns the first-differencing of time series.
- diff(double[], int, int) - Static method in interface smile.timeseries.TimeSeries
-
Returns the differencing of time series.
- DifferentiableFunction - Interface in smile.math
-
A differentiable function is a function whose derivative exists at each point in its domain.
- DifferentiableMultivariateFunction - Interface in smile.math
-
A differentiable function is a function whose derivative exists at each point in its domain.
- digamma(double) - Static method in class smile.math.special.Gamma
-
The digamma function is defined as the logarithmic derivative of the gamma function.
- DIGITS - Static variable in class smile.math.MathEx
-
The number of digits (in radix base) in the mantissa.
- dijkstra() - Method in class smile.graph.Graph
-
Calculates the all pair shortest-path by Dijkstra algorithm.
- dijkstra(int) - Method in class smile.graph.Graph
-
Calculate the shortest path from a source to all other vertices in the graph by Dijkstra algorithm.
- dijkstra(int, boolean) - Method in class smile.graph.Graph
-
Calculate the shortest path from a source to all other vertices in the graph by Dijkstra algorithm.
- dilation() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
dilation
record component. - dim() - Method in class smile.deep.tensor.Tensor
-
Returns the number of dimensions of tensor.
- dim() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
dim
record component. - dimension() - Method in class smile.classification.Maxent
-
Returns the dimension of input space.
- dimension() - Method in class smile.nlp.embedding.Word2Vec
-
Returns the dimension of embedding vector space.
- dir() - Static method in interface smile.util.CacheFiles
-
Returns the cache directory path.
- direction(String) - Method in class smile.plot.vega.Legend
-
Sets the direction of the legend, one of "vertical" or "horizontal".
- DiscreteDistribution - Class in smile.stat.distribution
-
Univariate discrete distributions.
- DiscreteDistribution() - Constructor for class smile.stat.distribution.DiscreteDistribution
- DiscreteExponentialFamily - Interface in smile.stat.distribution
-
The purpose of this interface is mainly to define the method M that is the Maximization step in the EM algorithm.
- DiscreteExponentialFamilyMixture - Class in smile.stat.distribution
-
The finite mixture of distributions from discrete exponential family.
- DiscreteExponentialFamilyMixture(DiscreteMixture.Component...) - Constructor for class smile.stat.distribution.DiscreteExponentialFamilyMixture
-
Constructor.
- discreteHeight(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the default height when the plot has non arc marks and either a discrete y-field or no y-field.
- DiscreteMixture - Class in smile.stat.distribution
-
The finite mixture of discrete distributions.
- DiscreteMixture(DiscreteMixture.Component...) - Constructor for class smile.stat.distribution.DiscreteMixture
-
Constructor.
- DiscreteMixture.Component - Record Class in smile.stat.distribution
-
A component in the mixture distribution is defined by a distribution and its weight in the mixture.
- DiscreteNaiveBayes - Class in smile.classification
-
Naive Bayes classifier for document classification in NLP.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, double[], int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes(DiscreteNaiveBayes.Model, int, int, double, IntSet) - Constructor for class smile.classification.DiscreteNaiveBayes
-
Constructor of naive Bayes classifier for document classification.
- DiscreteNaiveBayes.Model - Enum Class in smile.classification
-
The generation models of naive Bayes classifier.
- discreteWidth(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the default width when the plot has non-arc marks and either a discrete x-field or no x-field.
- distance - Variable in class smile.vq.hebb.Neuron
-
The distance between the neuron and an input signal.
- distance() - Method in record class smile.neighbor.Neighbor
-
Returns the value of the
distance
record component. - distance(double[]) - Method in class smile.vq.hebb.Neuron
-
Computes the distance between the neuron and a signal.
- distance(double[], double[]) - Method in class smile.clustering.DeterministicAnnealing
- distance(double[], double[]) - Method in class smile.clustering.GMeans
- distance(double[], double[]) - Method in class smile.clustering.KMeans
- distance(double[], double[]) - Method in class smile.clustering.XMeans
- distance(double[], double[]) - Static method in class smile.math.MathEx
-
The Euclidean distance.
- distance(double[], SparseArray) - Method in class smile.clustering.SIB
- distance(float[], float[]) - Static method in class smile.math.MathEx
-
The Euclidean distance.
- distance(int[], int[]) - Method in class smile.clustering.KModes
- distance(int[], int[]) - Static method in class smile.math.MathEx
-
The Euclidean distance on binary sparse arrays, which are the indices of nonzero elements in ascending order.
- distance(SparseArray, SparseArray) - Static method in class smile.math.MathEx
-
The Euclidean distance.
- distance(T, T) - Method in class smile.clustering.CLARANS
- distance(T, U) - Method in class smile.clustering.CentroidClustering
-
The distance function.
- Distance<T> - Interface in smile.math.distance
-
An interface to calculate a distance measure between two objects.
- distances() - Method in record class smile.graph.NearestNeighborGraph
-
Returns the value of the
distances
record component. - distinct() - Method in interface smile.data.vector.Vector
-
Returns the distinct values.
- distortion - Variable in class smile.clustering.CentroidClustering
-
The total distortion.
- distortion - Variable in class smile.clustering.SpectralClustering
-
The distortion in feature space.
- distribution() - Method in record class smile.stat.distribution.DiscreteMixture.Component
-
Returns the value of the
distribution
record component. - distribution() - Method in record class smile.stat.distribution.Mixture.Component
-
Returns the value of the
distribution
record component. - distribution() - Method in record class smile.stat.distribution.MultivariateMixture.Component
-
Returns the value of the
distribution
record component. - Distribution - Interface in smile.stat.distribution
-
Probability distribution of univariate random variable.
- div(double) - Method in class smile.deep.tensor.Tensor
-
Returns A / b.
- div(double) - Method in class smile.math.matrix.BigMatrix
-
A /= b
- div(double) - Method in class smile.math.matrix.Matrix
-
A /= b
- div(double) - Method in class smile.util.Array2D
-
A /= x.
- div(float) - Method in class smile.deep.tensor.Tensor
-
Returns A / b.
- div(float) - Method in class smile.math.matrix.fp32.Matrix
-
A /= b
- div(int) - Method in class smile.util.IntArray2D
-
A /= x.
- div(int, int, double) - Method in class smile.math.matrix.BigMatrix
-
A[i,j] /= b
- div(int, int, double) - Method in class smile.math.matrix.Matrix
-
A[i,j] /= b
- div(int, int, double) - Method in class smile.util.Array2D
-
A[i, j] /= x.
- div(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
-
A[i,j] /= b
- div(int, int, int) - Method in class smile.util.IntArray2D
-
A[i, j] /= x.
- div(String, String) - Static method in interface smile.data.formula.Terms
-
Divides two terms.
- div(String, Term) - Static method in interface smile.data.formula.Terms
-
Divides two terms.
- div(Term, String) - Static method in interface smile.data.formula.Terms
-
Divides two terms.
- div(Term, Term) - Static method in interface smile.data.formula.Terms
-
Divides two terms.
- div(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A / B element wisely.
- div(Complex) - Method in class smile.math.Complex
-
Returns a / b.
- div(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise division A /= B
- div(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise division A /= B
- div(Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise division A /= B
- div(Array2D) - Method in class smile.util.Array2D
-
A /= B.
- div(IntArray2D) - Method in class smile.util.IntArray2D
-
A /= B.
- Div - Class in smile.data.formula
-
The term of
a / b
expression. - Div(Term, Term) - Constructor for class smile.data.formula.Div
-
Constructor.
- div_(double) - Method in class smile.deep.tensor.Tensor
-
Returns A /= b.
- div_(float) - Method in class smile.deep.tensor.Tensor
-
Returns A /= b.
- div_(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A /= B element wisely.
- divide(int...) - Method in class smile.plot.vega.BinParams
-
Sets the scale factors indicating allowable subdivisions.
- dlink(double) - Method in interface smile.glm.model.Model
-
The derivative of link function.
- docCount() - Method in interface smile.nlp.Corpus
-
Returns the number of documents in the corpus.
- docCount() - Method in class smile.nlp.SimpleCorpus
- domain(boolean) - Method in class smile.plot.vega.Axis
-
Sets if the domain (the axis baseline) should be included as part of the axis.
- domain(double...) - Method in class smile.plot.vega.Field
-
Sets the customize domain values.
- domain(String...) - Method in class smile.plot.vega.Field
-
Sets the customize domain values.
- domainCap(String) - Method in class smile.plot.vega.Axis
-
Sets the stroke cap for the domain line's ending style.
- domainColor(String) - Method in class smile.plot.vega.Axis
-
Sets the color of axis domain line.
- domainDash(double, double) - Method in class smile.plot.vega.Axis
-
Sets the alternating [stroke, space] lengths for dashed domain lines.
- domainDashOffset(double) - Method in class smile.plot.vega.Axis
-
Sets the pixel offset at which to start drawing with the domain dash array.
- domainMax(double) - Method in class smile.plot.vega.Field
-
Sets the maximum value in the scale domain, overriding the domain property or the default domain.
- domainMax(String) - Method in class smile.plot.vega.Field
-
Sets the maximum value in the scale domain, overriding the domain property or the default domain.
- domainMin(double) - Method in class smile.plot.vega.Field
-
Sets the minimum value in the scale domain, overriding the domain property or the default domain.
- domainMin(String) - Method in class smile.plot.vega.Field
-
Sets the minimum value in the scale domain, overriding the domain property or the default domain.
- domainOpacity(double) - Method in class smile.plot.vega.Axis
-
Sets the opacity of the axis domain line.
- domainWidth(double) - Method in class smile.plot.vega.Axis
-
Sets the stroke width of axis domain line.
- dot() - Method in class smile.base.cart.CART
-
Returns the graphic representation in Graphviz dot format.
- dot() - Static method in interface smile.data.formula.Terms
-
Returns the special term "." that means all columns not otherwise in the formula in the context of a data frame.
- dot() - Method in class smile.graph.Graph
-
Returns the graphic representation in Graphviz dot format.
- dot(double[], double[]) - Method in interface smile.math.blas.BLAS
-
Computes the dot product of two vectors.
- dot(double[], double[]) - Static method in class smile.math.MathEx
-
Returns the dot product between two vectors.
- dot(float[], float[]) - Method in interface smile.math.blas.BLAS
-
Computes the dot product of two vectors.
- dot(float[], float[]) - Static method in class smile.math.MathEx
-
Returns the dot product between two vectors.
- dot(int[], int[]) - Static method in class smile.math.MathEx
-
Returns the dot product between two binary sparse arrays, which are the indices of nonzero elements in ascending order.
- dot(int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
-
Computes the dot product of two vectors.
- dot(int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- dot(int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
-
Computes the dot product of two vectors.
- dot(int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- dot(String, String[]) - Method in class smile.graph.Graph
-
Returns the graphic representation in Graphviz dot format.
- dot(StructType, StructField, int) - Method in class smile.base.cart.DecisionNode
- dot(StructType, StructField, int) - Method in interface smile.base.cart.Node
-
Returns the dot representation of node.
- dot(StructType, StructField, int) - Method in class smile.base.cart.NominalNode
- dot(StructType, StructField, int) - Method in class smile.base.cart.OrdinalNode
- dot(StructType, StructField, int) - Method in class smile.base.cart.RegressionNode
- dot(SparseArray, SparseArray) - Static method in class smile.math.MathEx
-
Returns the dot product between two sparse arrays.
- Dot - Class in smile.data.formula
-
The special term "." means all columns not otherwise in the formula in the context of a data frame.
- Dot() - Constructor for class smile.data.formula.Dot
-
Constructor.
- DOT - Enum constant in enum class smile.plot.swing.Line.Style
- DOT_DASH - Enum constant in enum class smile.plot.swing.Line.Style
- DotProductKernel - Interface in smile.math.kernel
-
Dot product kernel depends only on the dot product of x and y.
- Double - Enum constant in enum class smile.data.type.DataType.ID
-
Double type ID.
- DOUBLE - Static variable in interface smile.util.Regex
-
Double regular expression pattern.
- DOUBLE_REGEX - Static variable in interface smile.util.Regex
-
Double regular expression.
- doubleArray() - Method in class smile.deep.tensor.Tensor
-
Returns the double array of tensor elements
- DoubleArrayCellEditor - Class in smile.swing.table
-
Implements a cell editor that uses a formatted text field to edit double[] values.
- DoubleArrayCellEditor() - Constructor for class smile.swing.table.DoubleArrayCellEditor
-
Constructor.
- DoubleArrayCellRenderer - Class in smile.swing.table
-
Double array renderer in JTable.
- DoubleArrayCellRenderer() - Constructor for class smile.swing.table.DoubleArrayCellRenderer
-
Constructor.
- DoubleArrayList - Class in smile.util
-
A resizeable, array-backed list of double primitives.
- DoubleArrayList() - Constructor for class smile.util.DoubleArrayList
-
Constructs an empty list.
- DoubleArrayList(double[]) - Constructor for class smile.util.DoubleArrayList
-
Constructs a list containing the values of the specified array.
- DoubleArrayList(int) - Constructor for class smile.util.DoubleArrayList
-
Constructs an empty list with the specified initial capacity.
- DoubleArrayType - Static variable in class smile.data.type.DataTypes
-
Double Array data type.
- DoubleCellEditor - Class in smile.swing.table
-
Implements a cell editor that uses a formatted text field to edit Double values.
- DoubleCellEditor() - Constructor for class smile.swing.table.DoubleCellEditor
-
Constructor.
- DoubleCellEditor(double, double) - Constructor for class smile.swing.table.DoubleCellEditor
-
Constructor.
- DoubleConsumer - Interface in smile.math.matrix
-
Double precision matrix element stream consumer.
- DoubleFunction - Class in smile.data.formula
-
The generic term of applying a double function.
- DoubleFunction(String, Term, Function) - Constructor for class smile.data.formula.DoubleFunction
-
Constructor.
- DoubleHeapSelect - Class in smile.sort
-
This class tracks the smallest values seen thus far in a stream of values.
- DoubleHeapSelect(double[]) - Constructor for class smile.sort.DoubleHeapSelect
-
Constructor.
- DoubleHeapSelect(int) - Constructor for class smile.sort.DoubleHeapSelect
-
Constructor.
- DoubleObjectType - Static variable in class smile.data.type.DataTypes
-
Double Object data type.
- DoubleType - Class in smile.data.type
-
Double data type.
- DoubleType - Static variable in class smile.data.type.DataTypes
-
Double data type.
- doubleValue() - Method in class smile.deep.tensor.Tensor
-
Returns the double value when the tensor holds a single value.
- doubleVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- doubleVector(int) - Method in class smile.data.IndexDataFrame
- doubleVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- doubleVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- DoubleVector - Interface in smile.data.vector
-
An immutable double vector.
- download(String) - Static method in interface smile.util.CacheFiles
-
Downloads a file and save to the cache directory.
- download(String, boolean) - Static method in interface smile.util.CacheFiles
-
Downloads a file and save to the cache directory.
- drawLine(double[]...) - Method in class smile.plot.swing.Graphics
-
Draw poly line.
- drawLineBaseRatio(double[]...) - Method in class smile.plot.swing.Graphics
-
Draw poly line.
- drawPoint(char, double...) - Method in class smile.plot.swing.Graphics
-
Draw a dot with given pattern.
- drawPoint(double...) - Method in class smile.plot.swing.Graphics
-
Draw a dot.
- drawPolygon(double[]...) - Method in class smile.plot.swing.Graphics
-
Draw polygon.
- drawRect(double[], double[]) - Method in class smile.plot.swing.Graphics
-
Draw the outline of the specified rectangle.
- drawRectBaseRatio(double[], double[]) - Method in class smile.plot.swing.Graphics
-
Draw the outline of the specified rectangle.
- drawText(String, double[]) - Method in class smile.plot.swing.Graphics
-
Draw a string.
- drawText(String, double[], double) - Method in class smile.plot.swing.Graphics
-
Draw a string with given rotation angle.
- drawText(String, double[], double, double) - Method in class smile.plot.swing.Graphics
-
Draw a string with given reference point.
- drawText(String, double[], double, double, double) - Method in class smile.plot.swing.Graphics
-
Draw a string with given reference point and rotation angle.
- drawTextBaseRatio(String, double[]) - Method in class smile.plot.swing.Graphics
-
Draw a string with given rotation angle.
- drawTextBaseRatio(String, double[], double) - Method in class smile.plot.swing.Graphics
-
Draw a string with given rotation angle.
- drawTextBaseRatio(String, double[], double, double) - Method in class smile.plot.swing.Graphics
-
Draw a string with given reference point.
- drawTextBaseRatio(String, double[], double, double, double) - Method in class smile.plot.swing.Graphics
-
Draw a string with given reference point and rotation angle.
- drop(int...) - Method in interface smile.data.DataFrame
-
Returns a new DataFrame without selected columns.
- drop(int...) - Method in class smile.data.IndexDataFrame
- drop(String...) - Method in interface smile.data.DataFrame
-
Returns a new DataFrame without selected columns.
- dropout - Variable in class smile.base.mlp.Layer
-
The dropout rate.
- dropout - Variable in class smile.base.mlp.LayerBuilder
-
The dropout rate.
- dropout(double) - Static method in interface smile.deep.layer.Layer
-
Returns a dropout layer that randomly zeroes some of the elements of the input tensor with probability p during training.
- dropout(double) - Method in class smile.deep.tensor.Tensor
-
Randomly zeroes some elements of the input tensor with probability p.
- dropout_(double) - Method in class smile.deep.tensor.Tensor
-
Randomly zeroes some elements in place with probability p.
- DropoutLayer - Class in smile.deep.layer
-
A dropout layer that randomly zeroes some of the elements of the input tensor with probability p during training.
- DropoutLayer(double) - Constructor for class smile.deep.layer.DropoutLayer
-
Constructor.
- DropoutLayer(double, boolean) - Constructor for class smile.deep.layer.DropoutLayer
-
Constructor.
- dsv(String, String) - Method in class smile.plot.vega.Data
-
Loads a delimited text file with a custom delimiter.
- dsv(String, String, Map<String, String>) - Method in class smile.plot.vega.Data
-
Loads a delimited text file with a custom delimiter.
- DT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Determiner.
- dtype - Variable in class smile.deep.layer.LayerBlock
-
The data type.
- dtype() - Method in class smile.deep.layer.LayerBlock
-
Returns the compute device of module.
- dtype() - Method in class smile.deep.Model
-
Returns the data type.
- dtype() - Method in class smile.deep.tensor.Tensor
-
Returns the element data type.
- dtype(ScalarType) - Method in class smile.deep.tensor.Tensor.Options
-
Sets the data type of the elements stored in the tensor.
- DUMMY - Enum constant in enum class smile.data.CategoricalEncoder
-
Dummy encoding.
- DynamicTimeWarping<T> - Class in smile.math.distance
-
Dynamic time warping is an algorithm for measuring similarity between two sequences which may vary in time or speed.
- DynamicTimeWarping(Distance<T>) - Constructor for class smile.math.distance.DynamicTimeWarping
-
Constructor.
- DynamicTimeWarping(Distance<T>, double) - Constructor for class smile.math.distance.DynamicTimeWarping
-
Dynamic time warping with Sakoe-Chiba band, which primarily to prevent unreasonable warping and also improve computational cost.
E
- Edge - Class in smile.vq.hebb
-
The connection between neurons.
- Edge(int, int) - Constructor for record class smile.graph.Graph.Edge
-
Constructor of unweighted edge.
- Edge(int, int, double) - Constructor for record class smile.graph.Graph.Edge
-
Creates an instance of a
Edge
record class. - Edge(Neuron) - Constructor for class smile.vq.hebb.Edge
-
Constructor.
- Edge(Neuron, int) - Constructor for class smile.vq.hebb.Edge
-
Constructor.
- edges - Variable in class smile.vq.hebb.Neuron
-
The direct connected neighbors.
- EditDistance - Class in smile.math.distance
-
The Edit distance between two strings is a metric for measuring the amount of difference between two sequences.
- EditDistance() - Constructor for class smile.math.distance.EditDistance
-
Constructor.
- EditDistance(boolean) - Constructor for class smile.math.distance.EditDistance
-
Constructor.
- EditDistance(int) - Constructor for class smile.math.distance.EditDistance
-
Constructor.
- EditDistance(int[][]) - Constructor for class smile.math.distance.EditDistance
-
Constructor.
- EditDistance(int[][], double) - Constructor for class smile.math.distance.EditDistance
-
Constructor.
- EditDistance(int, boolean) - Constructor for class smile.math.distance.EditDistance
-
Constructor.
- EfficientNet - Class in smile.vision
-
EfficientNet is an image classification model family.
- EfficientNet(MBConvConfig[], double, double, int, int, IntFunction<Layer>) - Constructor for class smile.vision.EfficientNet
-
Constructor.
- eigen() - Method in class smile.math.matrix.BigMatrix
-
Eigenvalue Decomposition.
- eigen() - Method in class smile.math.matrix.fp32.Matrix
-
Eigenvalue Decomposition.
- eigen() - Method in class smile.math.matrix.Matrix
-
Eigenvalue Decomposition.
- eigen(boolean, boolean, boolean) - Method in class smile.math.matrix.BigMatrix
-
Eigenvalue Decomposition.
- eigen(boolean, boolean, boolean) - Method in class smile.math.matrix.fp32.Matrix
-
Eigenvalue Decomposition.
- eigen(boolean, boolean, boolean) - Method in class smile.math.matrix.Matrix
-
Eigenvalue Decomposition.
- eigen(double[]) - Method in class smile.math.matrix.IMatrix
-
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
- eigen(double[], double, double, int) - Method in class smile.math.matrix.IMatrix
-
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
- eigen(float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
- eigen(float[], float, float, int) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the largest eigen pair of matrix with the power iteration under the assumptions A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
- eigen(IMatrix, ARPACK.AsymmOption, int) - Static method in class smile.math.matrix.fp32.ARPACK
-
Computes NEV eigenvalues of an asymmetric single precision matrix.
- eigen(IMatrix, ARPACK.AsymmOption, int, int, float) - Static method in class smile.math.matrix.fp32.ARPACK
-
Computes NEV eigenvalues of an asymmetric single precision matrix.
- eigen(IMatrix, int) - Static method in class smile.math.matrix.Lanczos
-
Find k-largest approximate eigen pairs of a symmetric matrix by the Lanczos algorithm.
- eigen(IMatrix, int, double, int) - Static method in class smile.math.matrix.Lanczos
-
Find k-largest approximate eigen pairs of a symmetric matrix by the Lanczos algorithm.
- eigen(IMatrix, ARPACK.AsymmOption, int) - Static method in class smile.math.matrix.ARPACK
-
Computes NEV eigenvalues of an asymmetric double precision matrix.
- eigen(IMatrix, ARPACK.AsymmOption, int, int, double) - Static method in class smile.math.matrix.ARPACK
-
Computes NEV eigenvalues of an asymmetric double precision matrix.
- EigenRange - Enum Class in smile.math.blas
-
THe option of eigenvalue range.
- ElasticNet - Class in smile.regression
-
Elastic Net regularization.
- ElasticNet() - Constructor for class smile.regression.ElasticNet
- element() - Method in class smile.util.PairingHeap
- Ellipsis - Static variable in class smile.deep.tensor.Index
-
The ellipsis (...) is used to slice higher-dimensional data structures as in numpy.
- EMAIL_ADDRESS - Static variable in interface smile.util.Regex
-
Email address.
- embedding(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns an embedding layer that is a simple lookup table that stores embeddings of a fixed dictionary and size.
- embedding(int, int, double) - Static method in interface smile.deep.layer.Layer
-
Returns an embedding layer that is a simple lookup table that stores embeddings of a fixed dictionary and size.
- EmbeddingLayer - Class in smile.deep.layer
-
An embedding layer that is a simple lookup table that stores embeddings of a fixed dictionary and size.
- EmbeddingLayer(int, int) - Constructor for class smile.deep.layer.EmbeddingLayer
-
Constructor.
- EmbeddingLayer(int, int, double) - Constructor for class smile.deep.layer.EmbeddingLayer
-
Constructor.
- EmpiricalDistribution - Class in smile.stat.distribution
-
An empirical distribution function or empirical cdf, is a cumulative probability distribution function that concentrates probability 1/n at each of the n numbers in a sample.
- EmpiricalDistribution(double[]) - Constructor for class smile.stat.distribution.EmpiricalDistribution
-
Constructor.
- EmpiricalDistribution(double[], IntSet) - Constructor for class smile.stat.distribution.EmpiricalDistribution
-
Constructor.
- empty(long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with uninitialized data.
- empty(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with uninitialized data.
- emptyCache() - Method in class smile.deep.tensor.Device
-
Releases all unoccupied cached memory.
- encode(String) - Method in class smile.llm.tokenizer.SentencePiece
- encode(String) - Method in class smile.llm.tokenizer.Tiktoken
- encode(String) - Method in interface smile.llm.tokenizer.Tokenizer
-
Encodes a string into a list of token IDs.
- encode(String, boolean, boolean) - Method in class smile.llm.tokenizer.SentencePiece
- encode(String, boolean, boolean) - Method in class smile.llm.tokenizer.Tiktoken
- encode(String, boolean, boolean) - Method in interface smile.llm.tokenizer.Tokenizer
-
Encodes a string into a list of token IDs.
- encode(String, String) - Method in class smile.plot.vega.View
-
Returns the field object for encoding a channel.
- encodeDatum(String, double) - Method in class smile.plot.vega.Layer
- encodeDatum(String, double) - Method in class smile.plot.vega.View
-
Sets a constant data value encoded via a scale.
- encodeDatum(String, int) - Method in class smile.plot.vega.Layer
- encodeDatum(String, int) - Method in class smile.plot.vega.View
-
Sets a constant data value encoded via a scale.
- encodeDatum(String, String) - Method in class smile.plot.vega.Layer
- encodeDatum(String, String) - Method in class smile.plot.vega.View
-
Sets a constant data value encoded via a scale.
- encodeDialog(Message...) - Method in class smile.llm.llama.Tokenizer
-
Encodes the messages of a dialog.
- encodeMessage(Message) - Method in class smile.llm.llama.Tokenizer
-
Encodes a message.
- encodeValue(String, double) - Method in class smile.plot.vega.Layer
- encodeValue(String, double) - Method in class smile.plot.vega.View
-
Sets an encoded constant visual value.
- encodeValue(String, int) - Method in class smile.plot.vega.Layer
- encodeValue(String, int) - Method in class smile.plot.vega.View
-
Sets an encoded constant visual value.
- encodeValue(String, String) - Method in class smile.plot.vega.Layer
- encodeValue(String, String) - Method in class smile.plot.vega.View
-
Sets an encoded constant visual value.
- engine - Static variable in interface smile.math.blas.BLAS
-
The default BLAS engine.
- engine - Static variable in interface smile.math.blas.LAPACK
-
The default LAPACK engine.
- EnglishDictionary - Enum Class in smile.nlp.dictionary
-
A concise dictionary of common terms in English.
- EnglishPOSLexicon - Class in smile.nlp.pos
-
An English lexicon with part-of-speech tags.
- EnglishPunctuations - Class in smile.nlp.dictionary
-
Punctuation marks in English.
- EnglishStopWords - Enum Class in smile.nlp.dictionary
-
Several sets of English stop words.
- ensemble(Classifier<T>...) - Static method in interface smile.classification.Classifier
-
Return an ensemble of multiple base models to obtain better predictive performance.
- ensemble(DataFrameClassifier...) - Static method in interface smile.classification.DataFrameClassifier
-
Return an ensemble of multiple base models to obtain better predictive performance.
- ensemble(DataFrameRegression...) - Static method in interface smile.regression.DataFrameRegression
-
Return an ensemble of multiple base models to obtain better predictive performance.
- ensemble(Regression<T>...) - Static method in interface smile.regression.Regression
-
Return an ensemble of multiple base models to obtain better predictive performance.
- ensureCapacity(int) - Method in class smile.util.DoubleArrayList
-
Increases the capacity, if necessary, to ensure that it can hold at least the number of values specified by the minimum capacity argument.
- ensureCapacity(int) - Method in class smile.util.IntArrayList
-
Increases the capacity, if necessary, to ensure that it can hold at least the number of values specified by the minimum capacity argument.
- entropy - Variable in class smile.clustering.MEC
-
The conditional entropy as the objective function.
- entropy() - Method in class smile.stat.distribution.BernoulliDistribution
- entropy() - Method in class smile.stat.distribution.BetaDistribution
- entropy() - Method in class smile.stat.distribution.BinomialDistribution
- entropy() - Method in class smile.stat.distribution.ChiSquareDistribution
- entropy() - Method in class smile.stat.distribution.DiscreteMixture
-
Shannon's entropy.
- entropy() - Method in interface smile.stat.distribution.Distribution
-
Returns Shannon entropy of the distribution.
- entropy() - Method in class smile.stat.distribution.EmpiricalDistribution
- entropy() - Method in class smile.stat.distribution.ExponentialDistribution
- entropy() - Method in class smile.stat.distribution.FDistribution
-
Shannon's entropy.
- entropy() - Method in class smile.stat.distribution.GammaDistribution
- entropy() - Method in class smile.stat.distribution.GaussianDistribution
- entropy() - Method in class smile.stat.distribution.GeometricDistribution
-
Shannon's entropy.
- entropy() - Method in class smile.stat.distribution.HyperGeometricDistribution
- entropy() - Method in class smile.stat.distribution.KernelDensity
-
Shannon's entropy.
- entropy() - Method in class smile.stat.distribution.LogisticDistribution
- entropy() - Method in class smile.stat.distribution.LogNormalDistribution
- entropy() - Method in class smile.stat.distribution.Mixture
-
Shannon's entropy.
- entropy() - Method in interface smile.stat.distribution.MultivariateDistribution
-
Shannon's entropy of the distribution.
- entropy() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- entropy() - Method in class smile.stat.distribution.MultivariateMixture
-
Shannon entropy.
- entropy() - Method in class smile.stat.distribution.NegativeBinomialDistribution
-
Shannon's entropy.
- entropy() - Method in class smile.stat.distribution.PoissonDistribution
- entropy() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- entropy() - Method in class smile.stat.distribution.TDistribution
- entropy() - Method in class smile.stat.distribution.WeibullDistribution
- entropy(double[]) - Static method in class smile.math.MathEx
-
Shannon's entropy.
- ENTROPY - Enum constant in enum class smile.base.cart.SplitRule
-
Used by the ID3, C4.5 and C5.0 tree generation algorithms.
- entry - Variable in class smile.neighbor.lsh.Bucket
-
The indices of points that all have the same value for hash function g.
- Entry(int, double) - Constructor for record class smile.util.SparseArray.Entry
-
Creates an instance of a
Entry
record class. - epsilon - Variable in class smile.base.mlp.MultilayerPerceptron
-
A small constant for numerical stability in RMSProp.
- EPSILON - Static variable in interface smile.math.DifferentiableMultivariateFunction
-
A number close to zero, between machine epsilon and its square root.
- EPSILON - Static variable in class smile.math.MathEx
-
The machine precision for the double type, which is the difference between 1 and the smallest value greater than 1 that is representable for the double type.
- eq(double) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise equality.
- eq(int) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise equality.
- eq(Tensor) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise equality.
- equals(double[][], double[][]) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y with default epsilon 1E-10.
- equals(double[][], double[][], double) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y in given precision.
- equals(double[], double[]) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y with default epsilon 1E-10.
- equals(double[], double[], double) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y in given precision.
- equals(double, double) - Static method in class smile.math.MathEx
-
Returns true if two double values equals to each other in the system precision.
- equals(float[][], float[][]) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y with default epsilon 1E-7.
- equals(float[][], float[][], float) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y in given precision.
- equals(float[], float[]) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y with default epsilon 1E-7.
- equals(float[], float[], float) - Static method in class smile.math.MathEx
-
Check if x element-wisely equals y in given precision.
- equals(Object) - Method in record class smile.association.AssociationRule
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.association.ItemSet
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class smile.base.cart.DecisionNode
- equals(Object) - Method in class smile.base.cart.RegressionNode
- equals(Object) - Method in class smile.data.formula.Formula
- equals(Object) - Method in record class smile.data.formula.Intercept
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.data.formula.Variable
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class smile.data.measure.CategoricalMeasure
- equals(Object) - Method in class smile.data.measure.NominalScale
- equals(Object) - Method in class smile.data.measure.OrdinalScale
- equals(Object) - Method in record class smile.data.SampleInstance
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class smile.data.type.ArrayType
- equals(Object) - Method in class smile.data.type.BooleanType
- equals(Object) - Method in class smile.data.type.ByteType
- equals(Object) - Method in class smile.data.type.CharType
- equals(Object) - Method in class smile.data.type.DateTimeType
- equals(Object) - Method in class smile.data.type.DateType
- equals(Object) - Method in class smile.data.type.DecimalType
- equals(Object) - Method in class smile.data.type.DoubleType
- equals(Object) - Method in class smile.data.type.FloatType
- equals(Object) - Method in class smile.data.type.IntegerType
- equals(Object) - Method in class smile.data.type.LongType
- equals(Object) - Method in class smile.data.type.ObjectType
- equals(Object) - Method in class smile.data.type.ShortType
- equals(Object) - Method in class smile.data.type.StringType
- equals(Object) - Method in class smile.data.type.StructField
- equals(Object) - Method in class smile.data.type.StructType
- equals(Object) - Method in class smile.data.type.TimeType
- equals(Object) - Method in record class smile.deep.SampleBatch
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class smile.deep.tensor.Device
- equals(Object) - Method in class smile.deep.tensor.Tensor
- equals(Object) - Method in record class smile.feature.selection.InformationValue
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.feature.selection.SignalNoiseRatio
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.feature.selection.SumSquaresRatio
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.graph.Graph.Edge
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.graph.NearestNeighborGraph
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.llm.CompletionPrediction
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.llm.llama.ModelArgs
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.llm.Message
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.manifold.IsotonicMDS
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.manifold.MDS
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class smile.math.Complex
- equals(Object) - Method in class smile.math.matrix.BandMatrix
- equals(Object) - Method in class smile.math.matrix.BigMatrix
- equals(Object) - Method in class smile.math.matrix.fp32.BandMatrix
- equals(Object) - Method in class smile.math.matrix.fp32.Matrix
- equals(Object) - Method in class smile.math.matrix.fp32.SymmMatrix
- equals(Object) - Method in class smile.math.matrix.Matrix
- equals(Object) - Method in class smile.math.matrix.SymmMatrix
- equals(Object) - Method in record class smile.neighbor.lsh.PrH
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.neighbor.lsh.PrZ
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.neighbor.Neighbor
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class smile.nlp.Bigram
- equals(Object) - Method in class smile.nlp.NGram
- equals(Object) - Method in class smile.nlp.SimpleText
- equals(Object) - Method in record class smile.plot.vega.SortField
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.plot.vega.WindowTransformField
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.distribution.DiscreteMixture.Component
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.distribution.Mixture.Component
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.distribution.MultivariateMixture.Component
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.hypothesis.ChiSqTest
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.hypothesis.CorTest
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.hypothesis.FTest
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.hypothesis.KSTest
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.stat.hypothesis.TTest
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.swing.AlphaIcon
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.util.Bytes
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.util.IntPair
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.util.SparseArray.Entry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.util.Tuple2
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.validation.Bag
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.validation.ClassificationMetrics
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.validation.metric.ConfusionMatrix
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.validation.RegressionMetrics
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class smile.vision.layer.MBConvConfig
-
Indicates whether some other object is "equal to" this one.
- equals(BandMatrix, double) - Method in class smile.math.matrix.BandMatrix
-
Returns true if two matrices equal in given precision.
- equals(BigMatrix, double) - Method in class smile.math.matrix.BigMatrix
-
Returns true if two matrices equal in given precision.
- equals(BandMatrix, float) - Method in class smile.math.matrix.fp32.BandMatrix
-
Returns true if two matrices equal in given precision.
- equals(Matrix, float) - Method in class smile.math.matrix.fp32.Matrix
-
Returns true if two matrices equal in given precision.
- equals(SymmMatrix, float) - Method in class smile.math.matrix.fp32.SymmMatrix
-
Returns true if two matrices equal in given precision.
- equals(Matrix, double) - Method in class smile.math.matrix.Matrix
-
Returns true if two matrices equal in given precision.
- equals(SymmMatrix, double) - Method in class smile.math.matrix.SymmMatrix
-
Returns true if two matrices equal in given precision.
- erf(double) - Static method in class smile.math.special.Erf
-
The Gauss error function.
- Erf - Class in smile.math.special
-
The error function.
- erfc(double) - Static method in class smile.math.special.Erf
-
The complementary error function.
- erfcc(double) - Static method in class smile.math.special.Erf
-
The complementary error function with fractional error everywhere less than 1.2 × 10-7.
- error() - Method in class smile.regression.LinearModel
-
Returns the residual standard error.
- error() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
error
record component. - Error - Class in smile.validation.metric
-
The number of errors in the population.
- Error() - Constructor for class smile.validation.metric.Error
- ERROR_OPTION - Static variable in class smile.swing.FontChooser
-
Return value from
showDialog()
. - estimate(int, double) - Method in class smile.neighbor.lsh.HashValueParzenModel
-
Given a hash value h, estimate the Gaussian model (mean and variance) of neighbors existing in the corresponding bucket.
- EuclideanDistance - Class in smile.math.distance
-
Euclidean distance.
- EuclideanDistance() - Constructor for class smile.math.distance.EuclideanDistance
-
Constructor.
- EuclideanDistance(double[]) - Constructor for class smile.math.distance.EuclideanDistance
-
Constructor with a given weight vector.
- eval() - Method in class smile.deep.layer.LayerBlock
-
Sets the layer block in the evaluation/inference mode.
- eval() - Method in class smile.deep.Model
-
Sets the model in the evaluation/inference mode.
- eval(Dataset, Metric...) - Method in class smile.deep.Model
-
Evaluates the model accuracy on a test dataset.
- EVD(double[], double[], Matrix, Matrix) - Constructor for class smile.math.matrix.Matrix.EVD
-
Constructor.
- EVD(double[], Matrix) - Constructor for class smile.math.matrix.Matrix.EVD
-
Constructor.
- EVD(float[], float[], Matrix, Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.EVD
-
Constructor.
- EVD(float[], Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.EVD
-
Constructor.
- EVD(DoublePointer, DoublePointer, BigMatrix, BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.EVD
-
Constructor.
- EVD(DoublePointer, BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.EVD
-
Constructor.
- EVDJob - Enum Class in smile.math.blas
-
The option if computing eigen vectors.
- evolve() - Method in interface smile.gap.LamarckianChromosome
-
Performs a step of (hill-climbing) local search to evolve this chromosome.
- evolve(int) - Method in class smile.gap.GeneticAlgorithm
-
Performs genetic algorithm for a given number of generations.
- evolve(int, double) - Method in class smile.gap.GeneticAlgorithm
-
Performs genetic algorithm until the given number of generations is reached or the best fitness is larger than the given threshold.
- EX - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Existential there.
- execute(String) - Method in class smile.data.SQL
-
Executes an SQL statement, which may return multiple results.
- exp() - Method in class smile.deep.tensor.Tensor
-
Returns the exponential of elements in the tensor.
- exp() - Method in class smile.math.Complex
-
Returns the complex exponential.
- exp(double, double) - Static method in interface smile.math.TimeFunction
-
Returns the exponential decay function.
- exp(double, double, double) - Static method in interface smile.math.TimeFunction
-
Returns the exponential decay function.
- exp(double, double, double, boolean) - Static method in interface smile.math.TimeFunction
-
Returns the exponential decay function.
- exp(String) - Static method in interface smile.data.formula.Terms
-
The
exp(x)
term. - exp(Term) - Static method in interface smile.data.formula.Terms
-
The
exp(x)
term. - Exp - Class in smile.ica
-
The contrast function when the independent components are highly super-Gaussian, or when robustness is very important.
- Exp() - Constructor for class smile.ica.Exp
- exp_() - Method in class smile.deep.tensor.Tensor
-
Returns the exponential of elements in the tensor in place.
- expand() - Method in class smile.data.formula.Delete
- expand() - Method in class smile.data.formula.FactorCrossing
- expand() - Method in interface smile.data.formula.Term
-
Expands the term (e.g.
- expand() - Method in class smile.neighbor.lsh.Probe
-
This operation sets to one the component following the last nonzero component if it is not the last one.
- expand(long...) - Method in class smile.deep.tensor.Tensor
-
Returns a new view of this tensor with singleton dimensions expanded to a larger size.
- expand(StructType) - Method in class smile.data.formula.Formula
-
Expands the Dot and FactorCrossing terms on the given schema.
- expandRatio() - Method in record class smile.vision.layer.MBConvConfig
-
Returns the value of the
expandRatio
record component. - expm1(String) - Static method in interface smile.data.formula.Terms
-
The
exp(x) - 1
term. - expm1(Term) - Static method in interface smile.data.formula.Terms
-
The
exp(x) - 1
term. - ExponentialDistribution - Class in smile.stat.distribution
-
An exponential distribution describes the times between events in a Poisson process, in which events occur continuously and independently at a constant average rate.
- ExponentialDistribution(double) - Constructor for class smile.stat.distribution.ExponentialDistribution
-
Constructor.
- ExponentialFamily - Interface in smile.stat.distribution
-
The exponential family is a class of probability distributions sharing a certain form.
- ExponentialFamilyMixture - Class in smile.stat.distribution
-
The finite mixture of distributions from exponential family.
- ExponentialFamilyMixture(Mixture.Component...) - Constructor for class smile.stat.distribution.ExponentialFamilyMixture
-
Constructor.
- ExponentialVariogram - Class in smile.interpolation.variogram
-
Exponential variogram.
- ExponentialVariogram(double, double) - Constructor for class smile.interpolation.variogram.ExponentialVariogram
-
Constructor.
- ExponentialVariogram(double, double, double) - Constructor for class smile.interpolation.variogram.ExponentialVariogram
-
Constructor.
- extend() - Method in class smile.neighbor.lsh.Probe
-
This operation adds one to the last nonzero component.
- extendBound(double[], double[]) - Method in class smile.plot.swing.Base
-
Extend lower and upper bounds.
- extendBound(double[], double[]) - Method in class smile.plot.swing.Canvas
-
Extend lower and upper bounds.
- extendBound(int) - Method in class smile.plot.swing.Base
-
Rounds the bounds for axis i.
- extendLowerBound(double[]) - Method in class smile.plot.swing.Base
-
Extend lower bounds.
- extendLowerBound(double[]) - Method in class smile.plot.swing.Canvas
-
Extend lower bounds.
- extendUpperBound(double[]) - Method in class smile.plot.swing.Base
-
Extend upper bounds.
- extendUpperBound(double[]) - Method in class smile.plot.swing.Canvas
-
Extend upper bounds.
- extent(double, double) - Method in class smile.plot.vega.BinParams
-
Sets the range of desired bin values
- extent(double, double) - Method in class smile.plot.vega.DensityTransform
-
Sets a [min, max] domain from which to sample the distribution.
- extent(double, double) - Method in class smile.plot.vega.RegressionTransform
-
Sets a [min, max] domain over the independent (x) field for the starting and ending points of the generated trend line.
- extent(String) - Method in class smile.plot.vega.Mark
-
Sets the extent of the band.
- extent(String, String) - Method in class smile.plot.vega.Transform
-
Adds an extent transform.
- eye(int) - Static method in class smile.math.matrix.BigMatrix
-
Returns an identity matrix.
- eye(int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns an identity matrix.
- eye(int) - Static method in class smile.math.matrix.Matrix
-
Returns an identity matrix.
- eye(int, int) - Static method in class smile.math.matrix.BigMatrix
-
Returns an m-by-n identity matrix.
- eye(int, int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns an m-by-n identity matrix.
- eye(int, int) - Static method in class smile.math.matrix.Matrix
-
Returns an m-by-n identity matrix.
- eye(long) - Static method in class smile.deep.tensor.Tensor
-
Returns an identity matrix.
- eye(Tensor.Options, long) - Static method in class smile.deep.tensor.Tensor
-
Returns an identity matrix.
F
- f() - Method in record class smile.stat.hypothesis.FTest
-
Returns the value of the
f
record component. - f(double) - Method in class smile.ica.Exp
- f(double) - Method in class smile.ica.Kurtosis
- f(double) - Method in class smile.ica.LogCosh
- f(double) - Method in class smile.interpolation.variogram.ExponentialVariogram
- f(double) - Method in class smile.interpolation.variogram.GaussianVariogram
- f(double) - Method in class smile.interpolation.variogram.PowerVariogram
- f(double) - Method in class smile.interpolation.variogram.SphericalVariogram
- f(double) - Method in interface smile.math.Function
-
Computes the value of the function at x.
- f(double) - Method in interface smile.math.kernel.DotProductKernel
- f(double) - Method in interface smile.math.kernel.IsotropicKernel
- f(double) - Method in class smile.math.kernel.Matern
- f(double) - Method in class smile.math.rbf.GaussianRadialBasis
- f(double) - Method in class smile.math.rbf.InverseMultiquadricRadialBasis
- f(double) - Method in class smile.math.rbf.MultiquadricRadialBasis
- f(double) - Method in class smile.math.rbf.ThinPlateRadialBasis
- f(double) - Method in class smile.math.Scaler
- f(double[]) - Method in interface smile.base.mlp.ActivationFunction
-
The output function.
- f(double[]) - Method in enum class smile.base.mlp.OutputFunction
-
The output function.
- f(double[]) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(double[]) - Method in interface smile.math.MultivariateFunction
-
Computes the value of the function at x.
- f(int) - Method in interface smile.math.IntFunction
-
Computes the value of the function at x.
- f(int[]) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(SparseArray) - Method in class smile.base.svm.LinearKernelMachine
-
Returns the value of decision function.
- f(T) - Method in class smile.base.rbf.RBF
-
The activation function.
- f1() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
f1
record component. - F1 - Static variable in class smile.validation.metric.FScore
-
The F_1 score, the harmonic mean of precision and recall.
- F2 - Static variable in class smile.validation.metric.FScore
-
The F_2 score, which weighs recall higher than precision.
- facet(String) - Method in class smile.plot.vega.Facet
-
Returns the field definition for faceting the plot by one field.
- Facet - Class in smile.plot.vega
-
A facet is a trellis plot (or small multiple) of a series of similar plots that displays different subsets of the same data, facilitating comparison across subsets.
- Facet(VegaLite) - Constructor for class smile.plot.vega.Facet
-
Constructor.
- FacetField - Class in smile.plot.vega
-
Facet field definition object.
- factor(int) - Method in class smile.data.measure.CategoricalMeasure
-
Returns the factor value (in range [0, size)) of level.
- FactorCrossing - Class in smile.data.formula
-
Factor crossing.
- FactorCrossing(int, String...) - Constructor for class smile.data.formula.FactorCrossing
-
Constructor.
- FactorCrossing(String...) - Constructor for class smile.data.formula.FactorCrossing
-
Constructor.
- factorial(int) - Static method in class smile.math.MathEx
-
The factorial of n.
- FactorInteraction - Class in smile.data.formula
-
The interaction of all the factors appearing in the term.
- FactorInteraction(String...) - Constructor for class smile.data.formula.FactorInteraction
-
Constructor.
- factorize(String...) - Method in interface smile.data.DataFrame
-
Returns a new DataFrame with given columns converted to nominal.
- factorize(CategoricalMeasure) - Method in interface smile.data.vector.StringVector
-
Converts strings to discrete measured values.
- Fallout - Class in smile.validation.metric
-
Fall-out, false alarm rate, or false positive rate (FPR)
- Fallout() - Constructor for class smile.validation.metric.Fallout
- falseChild() - Method in class smile.base.cart.InternalNode
-
Returns the false branch child.
- family() - Method in class smile.llm.llama.Llama
-
Returns the model family name.
- farthestInsertion() - Method in class smile.graph.Graph
-
Returns the approximate solution to TSP with the farthest insertion heuristic.
- FDistribution - Class in smile.stat.distribution
-
F-distribution arises in the testing of whether two observed samples have the same variance.
- FDistribution(int, int) - Constructor for class smile.stat.distribution.FDistribution
-
Constructor.
- FDR - Class in smile.validation.metric
-
The false discovery rate (FDR) is ratio of false positives to combined true and false positives, which is actually 1 - precision.
- FDR() - Constructor for class smile.validation.metric.FDR
- feature() - Method in class smile.base.cart.InternalNode
-
Returns the split feature.
- feature() - Method in record class smile.feature.selection.InformationValue
-
Returns the value of the
feature
record component. - feature() - Method in record class smile.feature.selection.SignalNoiseRatio
-
Returns the value of the
feature
record component. - feature() - Method in record class smile.feature.selection.SumSquaresRatio
-
Returns the value of the
feature
record component. - Feature - Interface in smile.data.formula
-
A feature in the formula once bound to a schema.
- features - Variable in class smile.sequence.CRFLabeler
-
The feature function.
- features() - Method in class smile.feature.extraction.BagOfWords
-
Returns the feature words.
- features() - Method in class smile.vision.EfficientNet
-
Returns the feature layer block.
- FeedForward - Class in smile.llm.llama
-
Feedforward layer in Transformer.
- FeedForward(int, int, int, Double) - Constructor for class smile.llm.llama.FeedForward
-
Constructor.
- ffnDimMultiplier() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
ffnDimMultiplier
record component. - FHalf - Static variable in class smile.validation.metric.FScore
-
The F_0.5 score, which weighs recall lower than precision.
- field() - Method in interface smile.data.formula.Feature
-
Returns the metadata of feature.
- field() - Method in interface smile.data.vector.BaseVector
-
Returns a struct field corresponding to this vector.
- field() - Method in record class smile.plot.vega.SortField
-
Returns the value of the
field
record component. - field() - Method in record class smile.plot.vega.WindowTransformField
-
Returns the value of the
field
record component. - field(int) - Method in class smile.data.type.StructType
-
Return the field at position i.
- field(String) - Method in class smile.data.type.StructType
-
Return the field of given name.
- Field - Class in smile.plot.vega
-
Encoding field definition object.
- fields() - Method in class smile.data.type.StructType
-
Returns the fields.
- fields(String...) - Method in class smile.plot.vega.LookupData
-
Returns the fields in foreign data or selection to lookup.
- fieldTitle(String) - Method in class smile.plot.vega.Config
-
Defines how Vega-Lite generates title for fields.
- file(String) - Static method in interface smile.io.HadoopInput
-
Returns the Parquet's InputFile instance of a file path or URI.
- FileChooser - Class in smile.swing
-
File chooser for with file/images preview.
- FileChooser() - Constructor for class smile.swing.FileChooser
-
Constructor.
- FileChooser.SimpleFileFilter - Class in smile.swing
-
A simple extension-based file filter.
- fill(char, int) - Static method in interface smile.util.Strings
-
Returns the string with a single repeated character to a specific length.
- fill(double) - Method in class smile.math.matrix.BigMatrix
-
Fill the matrix with a value.
- fill(double) - Method in class smile.math.matrix.Matrix
-
Fills the matrix with a value.
- fill(float) - Method in class smile.math.matrix.fp32.Matrix
-
Fills the matrix with a value.
- fill(String) - Method in class smile.plot.vega.Background
-
Sets the fill color.
- fill(String) - Method in class smile.plot.vega.Mark
-
Sets the default fill color.
- fill(String) - Method in class smile.plot.vega.ViewConfig
-
Sets the fill color.
- fill_(double) - Method in class smile.deep.tensor.Tensor
-
Fills this tensor with the specified value.
- fill_(int) - Method in class smile.deep.tensor.Tensor
-
Fills this tensor with the specified value.
- fillColor(String) - Method in class smile.plot.vega.Legend
-
Sets the background fill color for the full legend.
- filled(boolean) - Method in class smile.plot.vega.Mark
-
Sets whether the mark's color should be used as fill color instead of stroke color.
- fillna(double) - Method in interface smile.data.DataFrame
-
Fills NaN/Inf values of floating number columns using the specified value.
- fillna(double) - Method in interface smile.data.vector.DoubleVector
-
Fills NaN/Inf values using the specified value.
- fillna(double) - Method in interface smile.data.vector.NumberVector
-
Fill null/NaN/Inf values using the specified value.
- fillna(float) - Method in interface smile.data.vector.FloatVector
-
Fills NaN/Inf values using the specified value.
- fillOpacity(double) - Method in class smile.plot.vega.Background
-
Sets the fill opacity.
- fillOpacity(double) - Method in class smile.plot.vega.Mark
-
Sets the fill opacity.
- fillOpacity(double) - Method in class smile.plot.vega.ViewConfig
-
Sets the fill opacity.
- fillPolygon(double[]...) - Method in class smile.plot.swing.Graphics
-
Fill polygon.
- fillPolygon(float, double[]...) - Method in class smile.plot.swing.Graphics
-
Fill polygon.
- fillRect(double[], double[]) - Method in class smile.plot.swing.Graphics
-
Fill the specified rectangle.
- fillRectBaseRatio(double[], double[]) - Method in class smile.plot.swing.Graphics
-
Fill the specified rectangle.
- filter(String) - Method in class smile.plot.vega.Transform
-
Adds a filter transform.
- filter(Predicate) - Method in class smile.plot.vega.Transform
-
Adds a filter transform.
- find(DifferentiableFunction, double, double, double, int) - Static method in class smile.math.Root
-
Newton's method (also known as the Newton–Raphson method).
- find(Function, double, double, double, int) - Static method in class smile.math.Root
-
Brent's method for root-finding.
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.base.cart.CART
-
Finds the best split for given column.
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.classification.DecisionTree
- findBestSplit(LeafNode, int, double, int, int) - Method in class smile.regression.RegressionTree
- findBestSplit(LeafNode, int, int, boolean[]) - Method in class smile.base.cart.CART
-
Finds the best attribute to split on a set of samples.
- FinishReason - Enum Class in smile.llm
-
The reasons that the chat completions finish.
- fit(double[]) - Static method in class smile.stat.distribution.BetaDistribution
-
Estimates the distribution parameters by the moment method.
- fit(double[]) - Static method in class smile.stat.distribution.ExponentialDistribution
-
Estimates the distribution parameters by MLE.
- fit(double[]) - Static method in class smile.stat.distribution.GammaDistribution
-
Estimates the distribution parameters by (approximate) MLE.
- fit(double[]) - Static method in class smile.stat.distribution.GaussianDistribution
-
Estimates the distribution parameters by MLE.
- fit(double[]) - Static method in class smile.stat.distribution.GaussianMixture
-
Fits the Gaussian mixture model with the EM algorithm.
- fit(double[]) - Static method in class smile.stat.distribution.LogNormalDistribution
-
Estimates the distribution parameters by MLE.
- fit(double[][]) - Static method in class smile.anomaly.IsolationForest
-
Fits an isolation forest.
- fit(double[][]) - Static method in class smile.stat.distribution.MultivariateGaussianDistribution
-
Estimates the mean and diagonal covariance by MLE.
- fit(double[][]) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
-
Fits the Gaussian mixture model with the EM algorithm.
- fit(double[][], boolean) - Static method in class smile.stat.distribution.MultivariateGaussianDistribution
-
Estimates the mean and covariance by MLE.
- fit(double[][], boolean) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
-
Fits the Gaussian mixture model with the EM algorithm.
- fit(double[][], double[], double, double, double) - Static method in class smile.regression.SVM
-
Fits a linear epsilon-SVR.
- fit(double[][], double[], Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model.
- fit(double[][], double[], Properties) - Static method in class smile.regression.MLP
-
Fits a MLP model.
- fit(double[][], double[], Properties) - Static method in class smile.regression.RBFNetwork
-
Fits an RBF network.
- fit(double[][], double[], Properties) - Static method in class smile.regression.SVM
-
Fits an epsilon-SVR.
- fit(double[][], double, int) - Static method in class smile.clustering.DENCLUE
-
Clustering data.
- fit(double[][], double, int, double, int) - Static method in class smile.clustering.DENCLUE
-
Clustering data.
- fit(double[][], int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(double[][], int) - Static method in class smile.clustering.DeterministicAnnealing
-
Clustering data into k clusters.
- fit(double[][], int) - Static method in class smile.clustering.GMeans
-
Clustering data with the number of clusters determined by G-Means algorithm automatically.
- fit(double[][], int) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters up to 100 iterations.
- fit(double[][], int) - Static method in class smile.clustering.XMeans
-
Clustering data with the number of clusters determined by X-Means algorithm automatically.
- fit(double[][], int) - Static method in class smile.ica.ICA
-
Fits independent component analysis.
- fit(double[][], int[]) - Static method in class smile.classification.FLD
-
Fits Fisher's linear discriminant.
- fit(double[][], int[]) - Static method in class smile.classification.KNN
-
Fits the 1-NN classifier.
- fit(double[][], int[]) - Static method in class smile.classification.LDA
-
Fits linear discriminant analysis.
- fit(double[][], int[]) - Static method in class smile.classification.LogisticRegression
-
Fits logistic regression.
- fit(double[][], int[]) - Static method in class smile.classification.QDA
-
Fits quadratic discriminant analysis.
- fit(double[][], int[], double) - Static method in class smile.classification.RDA
-
Fits regularized discriminant analysis.
- fit(double[][], int[], double[], double) - Static method in class smile.classification.LDA
-
Fits linear discriminant analysis.
- fit(double[][], int[], double[], double) - Static method in class smile.classification.QDA
-
Fits quadratic discriminant analysis.
- fit(double[][], int[], double, double) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(double[][], int[], double, double[], double) - Static method in class smile.classification.RDA
-
Fits regularized discriminant analysis.
- fit(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
-
Fits logistic regression.
- fit(double[][], int[], double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(double[][], int[], int) - Static method in class smile.classification.KNN
-
Fits the K-NN classifier.
- fit(double[][], int[], int, double) - Static method in class smile.classification.FLD
-
Fits Fisher's linear discriminant.
- fit(double[][], int[], Properties) - Static method in class smile.classification.FLD
-
Fits Fisher's linear discriminant.
- fit(double[][], int[], Properties) - Static method in class smile.classification.LDA
-
Fits linear discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
-
Fits logistic regression.
- fit(double[][], int[], Properties) - Static method in class smile.classification.MLP
-
Fits a MLP model.
- fit(double[][], int[], Properties) - Static method in class smile.classification.QDA
-
Fits quadratic discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.RBFNetwork
-
Fits an RBF network.
- fit(double[][], int[], Properties) - Static method in class smile.classification.RDA
-
Fits regularized discriminant analysis.
- fit(double[][], int[], Properties) - Static method in class smile.classification.SVM
-
Fits a binary or multiclass SVM.
- fit(double[][], int, double) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(double[][], int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data with KD-tree.
- fit(double[][], int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering the data.
- fit(double[][], int, double, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering the data.
- fit(double[][], int, double, int, double, double) - Static method in class smile.clustering.DeterministicAnnealing
-
Clustering data into k clusters.
- fit(double[][], int, int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(double[][], int, int, double) - Static method in class smile.clustering.GMeans
-
Clustering data with the number of clusters determined by G-Means algorithm automatically.
- fit(double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters up to 100 iterations.
- fit(double[][], int, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering with Nystrom approximation.
- fit(double[][], int, int, double) - Static method in class smile.clustering.XMeans
-
Clustering data with the number of clusters determined by X-Means algorithm automatically.
- fit(double[][], int, int, double, int) - Static method in class smile.anomaly.IsolationForest
-
Fits a random forest for classification.
- fit(double[][], int, int, double, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral clustering with Nystrom approximation.
- fit(double[][], int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
-
Fits probabilistic principal component analysis.
- fit(double[][], int, Properties) - Static method in class smile.ica.ICA
-
Fits independent component analysis.
- fit(double[][], int, DifferentiableFunction, double, int) - Static method in class smile.ica.ICA
-
Fits independent component analysis.
- fit(double[][], String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with covariance matrix.
- fit(double[][], Properties) - Static method in class smile.anomaly.IsolationForest
-
Fits a random forest for classification.
- fit(double[][], MultivariateMixture.Component...) - Static method in class smile.stat.distribution.MultivariateExponentialFamilyMixture
-
Fits the mixture model with the EM algorithm.
- fit(double[][], MultivariateMixture.Component[], double, int, double) - Static method in class smile.stat.distribution.MultivariateExponentialFamilyMixture
-
Fits the mixture model with the EM algorithm.
- fit(double[], int) - Static method in class smile.timeseries.AR
-
Fits an autoregressive model with Yule-Walker procedure.
- fit(double[], int[]) - Static method in class smile.classification.IsotonicRegressionScaling
-
Trains the Isotonic Regression scaling.
- fit(double[], int[]) - Static method in class smile.classification.PlattScaling
-
Trains the Platt scaling.
- fit(double[], int[], int) - Static method in class smile.classification.PlattScaling
-
Trains the Platt scaling.
- fit(double[], int, int) - Static method in class smile.timeseries.ARMA
-
Fits an ARMA model with Hannan-Rissanen algorithm.
- fit(double[], Mixture.Component...) - Static method in class smile.stat.distribution.ExponentialFamilyMixture
-
Fits the mixture model with the EM algorithm.
- fit(double[], Mixture.Component[], double, int, double) - Static method in class smile.stat.distribution.ExponentialFamilyMixture
-
Fits the mixture model with the EM algorithm.
- fit(int[]) - Static method in class smile.classification.ClassLabels
-
Fits the class label mapping.
- fit(int[]) - Static method in class smile.stat.distribution.BernoulliDistribution
-
Estimates the distribution parameters by MLE.
- fit(int[]) - Static method in class smile.stat.distribution.EmpiricalDistribution
-
Estimates the distribution.
- fit(int[]) - Static method in class smile.stat.distribution.GeometricDistribution
-
Estimates the distribution parameters by MLE.
- fit(int[]) - Static method in class smile.stat.distribution.PoissonDistribution
-
Estimates the distribution parameters by MLE.
- fit(int[]) - Static method in class smile.stat.distribution.ShiftedGeometricDistribution
-
Estimates the distribution parameters by MLE.
- fit(int[][], double[], int, double, double, double) - Static method in class smile.regression.SVM
-
Fits a linear epsilon-SVR of binary sparse data.
- fit(int[][], int) - Static method in class smile.clustering.KModes
-
Fits k-modes clustering.
- fit(int[][], int[][]) - Static method in class smile.sequence.HMM
-
Fits an HMM by maximum likelihood estimation.
- fit(int[][], int[], int, double, double) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM of binary sparse data.
- fit(int[][], int[], int, double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM of binary sparse data.
- fit(int[][], int, int) - Static method in class smile.clustering.KModes
-
Fits k-modes clustering.
- fit(int[], DiscreteMixture.Component...) - Static method in class smile.stat.distribution.DiscreteExponentialFamilyMixture
-
Fits the mixture model with the EM algorithm.
- fit(int[], DiscreteMixture.Component[], double, int, double) - Static method in class smile.stat.distribution.DiscreteExponentialFamilyMixture
-
Fits the mixture model with the EM algorithm.
- fit(int[], IntSet) - Static method in class smile.stat.distribution.EmpiricalDistribution
-
Estimates the distribution.
- fit(int, double[]) - Static method in class smile.stat.distribution.GaussianMixture
-
Fits the Gaussian mixture model with the EM algorithm.
- fit(int, double[][]) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
-
Fits the Gaussian mixture model with the EM algorithm.
- fit(int, double[][], boolean) - Static method in class smile.stat.distribution.MultivariateGaussianMixture
-
Fits the Gaussian mixture model with the EM algorithm.
- fit(int, int[][], int[]) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- fit(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- fit(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- fit(String[][], PennTreebankPOS[][]) - Static method in class smile.nlp.pos.HMMPOSTagger
-
Fits an HMM POS tagger by maximum likelihood estimation.
- fit(Classifier<T>, T[], int[]) - Static method in class smile.classification.PlattScaling
-
Fits Platt Scaling to estimate posteriori probabilities.
- fit(BBDTree, double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
Partitions data into k clusters.
- fit(Linkage) - Static method in class smile.clustering.HierarchicalClustering
-
Fits the Agglomerative Hierarchical Clustering with given linkage method, which includes proximity matrix.
- fit(DataFrame) - Static method in class smile.feature.transform.WinsorScaler
-
Fits the data transformation with 5% lower limit and 95% upper limit.
- fit(DataFrame, double, double, String...) - Static method in class smile.feature.imputation.SimpleImputer
-
Fits the missing value imputation values.
- fit(DataFrame, double, double, String...) - Static method in class smile.feature.transform.WinsorScaler
-
Fits the data transformation.
- fit(DataFrame, int, String...) - Static method in class smile.feature.extraction.ProbabilisticPCA
-
Fits probabilistic principal component analysis.
- fit(DataFrame, String) - Static method in record class smile.feature.selection.InformationValue
-
Calculates the information value.
- fit(DataFrame, String) - Static method in record class smile.feature.selection.SignalNoiseRatio
-
Calculates the signal noise ratio of numeric variables.
- fit(DataFrame, String) - Static method in record class smile.feature.selection.SumSquaresRatio
-
Calculates the sum squares ratio of numeric variables.
- fit(DataFrame, String...) - Static method in class smile.feature.extraction.PCA
-
Fits principal component analysis with covariance matrix.
- fit(DataFrame, String...) - Static method in class smile.feature.imputation.SimpleImputer
-
Fits the missing value imputation values.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.MaxAbsScaler
-
Fits the data transformation.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.RobustStandardizer
-
Fits the data transformation.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.Scaler
-
Fits the data transformation.
- fit(DataFrame, String...) - Static method in class smile.feature.transform.Standardizer
-
Fits the data transformation.
- fit(DataFrame, String, int) - Static method in record class smile.feature.selection.InformationValue
-
Calculates the information value.
- fit(DataFrame, Function<String, String[]>, int, String...) - Static method in class smile.feature.extraction.BagOfWords
-
Learns a vocabulary dictionary of top-k frequent tokens in the raw documents.
- fit(DataFrame, Function<DataFrame, Transform>...) - Static method in interface smile.data.transform.Transform
-
Fits a pipeline of data transforms.
- fit(DataFrame, Distance<Tuple>, int) - Static method in class smile.feature.imputation.KMedoidsImputer
-
Fits the missing value imputation values.
- fit(DataFrame, MercerKernel<double[]>, int, double, String...) - Static method in class smile.feature.extraction.KernelPCA
-
Fits kernel principal component analysis.
- fit(DataFrame, MercerKernel<double[]>, int, String...) - Static method in class smile.feature.extraction.KernelPCA
-
Fits kernel principal component analysis.
- fit(Dataset<?, Integer>) - Static method in class smile.classification.ClassLabels
-
Fits the class label mapping.
- fit(Formula, DataFrame) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame) - Method in interface smile.classification.DataFrameClassifier.Trainer
-
Fits a classification model with the default hyperparameters.
- fit(Formula, DataFrame) - Static method in class smile.classification.DecisionTree
-
Fits a classification tree.
- fit(Formula, DataFrame) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame) - Method in interface smile.regression.DataFrameRegression.Trainer
-
Fits a regression model with the default hyperparameters.
- fit(Formula, DataFrame) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame) - Static method in class smile.regression.RegressionTree
-
Fits a regression tree.
- fit(Formula, DataFrame) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, double) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, double) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, double[], double[], double[]) - Static method in class smile.regression.RidgeRegression
-
Fits a generalized ridge regression model that minimizes a weighted least squares criterion augmented with a generalized ridge penalty:
- fit(Formula, DataFrame, double, double) - Static method in class smile.regression.ElasticNet
-
Fits an Elastic Net model.
- fit(Formula, DataFrame, double, double, double, int) - Static method in class smile.regression.ElasticNet
-
Fits an Elastic Net model.
- fit(Formula, DataFrame, double, double, int) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, int, int, int) - Static method in class smile.regression.RegressionTree
-
Fits a regression tree.
- fit(Formula, DataFrame, int, int, int, int) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame, int, int, int, int, double, double) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame, int, int, int, int, int, double) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, int, int, int, int, int, double, LongStream) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[]) - Static method in class smile.classification.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, int, int, SplitRule, int, int, int, double, int[], LongStream) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, String, boolean, boolean) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary data frame classifiers.
- fit(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary data frame classifiers.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.AdaBoost
-
Fits a AdaBoost model.
- fit(Formula, DataFrame, Properties) - Method in interface smile.classification.DataFrameClassifier.Trainer
-
Fits a classification model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.DecisionTree
-
Fits a classification tree.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.GradientTreeBoost
-
Fits a gradient tree boosting for classification.
- fit(Formula, DataFrame, Properties) - Static method in class smile.classification.RandomForest
-
Fits a random forest for classification.
- fit(Formula, DataFrame, Properties) - Method in interface smile.regression.DataFrameRegression.Trainer
-
Fits a regression model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.ElasticNet
-
Fits an Elastic Net model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.LASSO
-
Fits a L1-regularized least squares model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.OLS
-
Fits an ordinary least squares model.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RandomForest
-
Fits a random forest for regression.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RegressionTree
-
Fits a regression tree.
- fit(Formula, DataFrame, Properties) - Static method in class smile.regression.RidgeRegression
-
Fits a ridge regression model.
- fit(Formula, DataFrame, Loss, int, int, int, int, double, double) - Static method in class smile.regression.GradientTreeBoost
-
Fits a gradient tree boosting for regression.
- fit(Formula, DataFrame, SplitRule, int, int, int) - Static method in class smile.classification.DecisionTree
-
Fits a classification tree.
- fit(Formula, DataFrame, Model) - Static method in class smile.glm.GLM
-
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
- fit(Formula, DataFrame, Model, double, int) - Static method in class smile.glm.GLM
-
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
- fit(Formula, DataFrame, Model, Properties) - Static method in class smile.glm.GLM
-
Fits the generalized linear model with IWLS (iteratively reweighted least squares).
- fit(SparseDataset<Integer>) - Static method in class smile.classification.SparseLogisticRegression
-
Fits logistic regression.
- fit(SparseDataset<Integer>, double, double, int) - Static method in class smile.classification.SparseLogisticRegression
-
Fits logistic regression.
- fit(SparseDataset<Integer>, Properties) - Static method in class smile.classification.SparseLogisticRegression
-
Fits logistic regression.
- fit(Tuple[][], int[][]) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(Tuple[][], int[][], int, int, int, int, double) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(Tuple[][], int[][], Properties) - Static method in class smile.sequence.CRF
-
Fits a CRF model.
- fit(BaseVector<?, ?, ?>) - Static method in class smile.classification.ClassLabels
-
Fits the class label mapping.
- fit(DifferentiableMultivariateFunction, double[][], double[], double[]) - Static method in class smile.math.LevenbergMarquardt
-
Fits the nonlinear least squares.
- fit(DifferentiableMultivariateFunction, double[][], double[], double[], double, int) - Static method in class smile.math.LevenbergMarquardt
-
Fits the nonlinear least squares.
- fit(DifferentiableMultivariateFunction, double[], double[], double[]) - Static method in class smile.math.LevenbergMarquardt
-
Fits the nonlinear least squares.
- fit(DifferentiableMultivariateFunction, double[], double[], double[], double, int) - Static method in class smile.math.LevenbergMarquardt
-
Fits the nonlinear least squares.
- fit(Matrix, int) - Static method in class smile.clustering.SpectralClustering
-
Spectral graph clustering.
- fit(Matrix, int, int, double) - Static method in class smile.clustering.SpectralClustering
-
Spectral graph clustering.
- fit(RNNSearch<double[], double[]>, double[][], double) - Method in class smile.neighbor.MPLSH
-
Fits the posteriori multiple probe algorithm.
- fit(RNNSearch<double[], double[]>, double[][], double, int) - Method in class smile.neighbor.MPLSH
-
Fits the posteriori multiple probe algorithm.
- fit(RNNSearch<double[], double[]>, double[][], double, int, double) - Method in class smile.neighbor.MPLSH
-
Train the posteriori multiple probe algorithm.
- fit(SparseArray[], double[], int, double, double, double) - Static method in class smile.regression.SVM
-
Fits a linear epsilon-SVR of sparse data.
- fit(SparseArray[], int) - Static method in class smile.clustering.SIB
-
Clustering data into k clusters up to 100 iterations.
- fit(SparseArray[], int[], int, double, double) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(SparseArray[], int[], int, double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary linear SVM.
- fit(SparseArray[], int, int) - Static method in class smile.clustering.SIB
-
Clustering data into k clusters.
- fit(T[]) - Method in class smile.base.svm.OCSVM
-
Fits a one-class support vector machine.
- fit(T[][], int[][], Function<T, Tuple>) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF model.
- fit(T[][], int[][], Function<T, Tuple>, int, int, int, int, double) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF.
- fit(T[][], int[][], Function<T, Tuple>, Properties) - Static method in class smile.sequence.CRFLabeler
-
Fits a CRF model.
- fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMM
-
Fits an HMM by maximum likelihood estimation.
- fit(T[][], int[][], ToIntFunction<T>) - Static method in class smile.sequence.HMMLabeler
-
Fits an HMM by maximum likelihood estimation.
- fit(T[], double[]) - Method in class smile.base.svm.SVR
-
Fits an epsilon support vector regression model.
- fit(T[], double[]) - Method in interface smile.regression.Regression.Trainer
-
Fits a regression model with the default hyperparameters.
- fit(T[], double[], Properties) - Method in interface smile.regression.Regression.Trainer
-
Fits a regression model.
- fit(T[], double[], RBF<T>[]) - Static method in class smile.regression.RBFNetwork
-
Fits an RBF network.
- fit(T[], double[], RBF<T>[], boolean) - Static method in class smile.regression.RBFNetwork
-
Fits an RBF network.
- fit(T[], double[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model by the method of subset of regressors.
- fit(T[], double[], MercerKernel<T>, double, boolean, double, int) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model.
- fit(T[], double[], MercerKernel<T>, double, double, double) - Static method in class smile.regression.SVM
-
Fits an epsilon-SVR.
- fit(T[], double[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits a regular Gaussian process model.
- fit(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model by the method of subset of regressors.
- fit(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model by the method of subset of regressors.
- fit(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model by the method of subset of regressors.
- fit(T[], int[]) - Method in interface smile.classification.Classifier.Trainer
-
Fits a classification model with the default hyperparameters.
- fit(T[], int[], int) - Method in class smile.base.svm.LASVM
-
Trains the model.
- fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], int, int, BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], int, Distance<T>) - Static method in class smile.classification.KNN
-
Fits the K-NN classifier.
- fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusOne
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], BiFunction<T[], int[], Classifier<T>>) - Static method in class smile.classification.OneVersusRest
-
Fits a multi-class model with binary classifiers.
- fit(T[], int[], Properties) - Method in interface smile.classification.Classifier.Trainer
-
Fits a classification model.
- fit(T[], int[], RBF<T>[]) - Static method in class smile.classification.RBFNetwork
-
Fits an RBF network.
- fit(T[], int[], RBF<T>[], boolean) - Static method in class smile.classification.RBFNetwork
-
Fits an RBF network.
- fit(T[], int[], Distance<T>) - Static method in class smile.classification.KNN
-
Fits the 1-NN classifier.
- fit(T[], int[], MercerKernel<T>, double, double) - Static method in class smile.classification.SVM
-
Fits a binary SVM.
- fit(T[], int[], MercerKernel<T>, double, double, int) - Static method in class smile.classification.SVM
-
Fits a binary SVM.
- fit(T[], Distance<T>, int) - Static method in class smile.clustering.CLARANS
-
Clustering data into k clusters.
- fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data.
- fit(T[], Distance<T>, int, double) - Static method in class smile.clustering.MEC
-
Clustering the data.
- fit(T[], Distance<T>, int, int) - Static method in class smile.clustering.CLARANS
-
Constructor.
- fit(T[], Metric<T>, int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(T[], Metric<T>, int, double) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(T[], Metric<T>, int, int) - Static method in class smile.base.rbf.RBF
-
Fits Gaussian RBF function and centers on data.
- fit(T[], MercerKernel<T>) - Static method in class smile.anomaly.SVM
-
Fits a one-class SVM.
- fit(T[], MercerKernel<T>, double, double) - Static method in class smile.anomaly.SVM
-
Fits a one-class SVM.
- fit(T[], MercerKernel<T>, int) - Static method in class smile.manifold.KPCA
-
Fits kernel principal component analysis.
- fit(T[], MercerKernel<T>, int, double) - Static method in class smile.manifold.KPCA
-
Fits kernel principal component analysis.
- fit(T[], RNNSearch<T, T>, int, double) - Static method in class smile.clustering.DBSCAN
-
Clustering the data.
- fit(T[], RNNSearch<T, T>, int, double, int[], double) - Static method in class smile.clustering.MEC
-
Clustering the data.
- fitness() - Method in class smile.gap.BitString
- fitness() - Method in interface smile.gap.Chromosome
-
Returns the fitness of chromosome.
- fitness(double[][], double[], double[][], double[], RegressionMetric, BiFunction<double[][], double[], Regression<double[]>>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the regression model.
- fitness(double[][], int[], double[][], int[], ClassificationMetric, BiFunction<double[][], int[], Classifier<double[]>>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the classification model.
- fitness(String, DataFrame, DataFrame, ClassificationMetric, BiFunction<Formula, DataFrame, DataFrameClassifier>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the classification model.
- fitness(String, DataFrame, DataFrame, RegressionMetric, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in class smile.feature.selection.GAFE
-
Returns the fitness of the regression model.
- Fitness<T> - Interface in smile.gap
-
A measure to evaluate the fitness of chromosomes.
- fittedValues - Variable in class smile.math.LevenbergMarquardt
-
The fitted values.
- fittedValues() - Method in class smile.glm.GLM
-
Returns the fitted mean values.
- fittedValues() - Method in class smile.regression.LinearModel
-
Returns the fitted values.
- fittedValues() - Method in class smile.timeseries.AR
-
Returns the fitted values.
- fittedValues() - Method in class smile.timeseries.ARMA
-
Returns the fitted values.
- fitTime() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
fitTime
record component. - fitTime() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
fitTime
record component. - flatten() - Method in class smile.deep.tensor.Tensor
-
Flattens the tensor by reshaping it into a one-dimensional tensor.
- flatten(int) - Method in class smile.deep.tensor.Tensor
-
Flattens the tensor by reshaping it into a one-dimensional tensor.
- flatten(int, int) - Method in class smile.deep.tensor.Tensor
-
Flattens the tensor by reshaping it into a one-dimensional tensor.
- flatten(String[], String[]) - Method in class smile.plot.vega.Transform
-
Adds a flatten transform.
- FLD - Class in smile.classification
-
Fisher's linear discriminant.
- FLD(double[], double[][], Matrix) - Constructor for class smile.classification.FLD
-
Constructor.
- FLD(double[], double[][], Matrix, IntSet) - Constructor for class smile.classification.FLD
-
Constructor.
- Float - Enum constant in enum class smile.data.type.DataType.ID
-
Float type ID.
- FLOAT_DIGITS - Static variable in class smile.math.MathEx
-
The number of digits (in radix base) in the mantissa.
- FLOAT_EPSILON - Static variable in class smile.math.MathEx
-
The machine precision for the float type, which is the difference between 1 and the smallest value greater than 1 that is representable for the float type.
- FLOAT_MACHEP - Static variable in class smile.math.MathEx
-
The largest negative integer such that 1.0 + RADIXMACHEP ≠ 1.0, except that machep is bounded below by -(DIGITS+3)
- FLOAT_NEGEP - Static variable in class smile.math.MathEx
-
The largest negative integer such that 1.0 - RADIXNEGEP ≠ 1.0, except that negeps is bounded below by -(DIGITS+3)
- Float16 - Enum constant in enum class smile.deep.tensor.ScalarType
-
Half-precision floating-point number.
- Float32 - Enum constant in enum class smile.deep.tensor.ScalarType
-
Single-precision floating-point number.
- Float64 - Enum constant in enum class smile.deep.tensor.ScalarType
-
Double-precision floating-point number.
- floatArray() - Method in class smile.deep.tensor.Tensor
-
Returns the float array of tensor elements
- FloatArrayCellRenderer - Class in smile.swing.table
-
Float array renderer in JTable.
- FloatArrayCellRenderer() - Constructor for class smile.swing.table.FloatArrayCellRenderer
-
Constructor.
- FloatArrayFormatter - Class in smile.swing.text
-
Text formatter for floating array values.
- FloatArrayFormatter() - Constructor for class smile.swing.text.FloatArrayFormatter
- FloatArrayType - Static variable in class smile.data.type.DataTypes
-
Float Array data type.
- FloatConsumer - Interface in smile.math.matrix.fp32
-
Single precision matrix element stream consumer.
- FloatHeapSelect - Class in smile.sort
-
This class tracks the smallest values seen thus far in a stream of values.
- FloatHeapSelect(float[]) - Constructor for class smile.sort.FloatHeapSelect
-
Constructor.
- FloatHeapSelect(int) - Constructor for class smile.sort.FloatHeapSelect
-
Constructor.
- FloatObjectType - Static variable in class smile.data.type.DataTypes
-
Float Object data type.
- FloatType - Class in smile.data.type
-
Float data type.
- FloatType - Static variable in class smile.data.type.DataTypes
-
Float data type.
- floatValue() - Method in class smile.deep.tensor.Tensor
-
Returns the float value when the tensor holds a single value.
- floatVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- floatVector(int) - Method in class smile.data.IndexDataFrame
- floatVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- floatVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- FloatVector - Interface in smile.data.vector
-
An immutable float vector.
- floor(String) - Static method in interface smile.data.formula.Terms
-
The
floor(x)
term. - floor(Term) - Static method in interface smile.data.formula.Terms
-
The
floor(x)
term. - fold(String[], String[]) - Method in class smile.plot.vega.Transform
-
Adds a fold transform.
- folder2Id - Static variable in interface smile.vision.ImageNet
-
The map from folder name to class id.
- folder2Target - Static variable in interface smile.vision.ImageNet
-
The functor mapping folder name to class id.
- folders - Static variable in interface smile.vision.ImageNet
-
Folder names in the same order of labels.
- font(String) - Method in class smile.plot.vega.Config
-
Sets the default font for all text marks, titles, and labels.
- FontCellEditor - Class in smile.swing.table
-
Font editor in JTable.
- FontCellEditor() - Constructor for class smile.swing.table.FontCellEditor
-
Constructor.
- FontCellRenderer - Class in smile.swing.table
-
Font renderer in JTable.
- FontCellRenderer() - Constructor for class smile.swing.table.FontCellRenderer
-
Constructor.
- FontCellRenderer(String) - Constructor for class smile.swing.table.FontCellRenderer
-
Constructor.
- FontChooser - Class in smile.swing
-
The
FontChooser
class is a swing component for font selection withJFileChooser
-like APIs. - FontChooser() - Constructor for class smile.swing.FontChooser
-
Constructs a
FontChooser
object. - FontChooser(String[]) - Constructor for class smile.swing.FontChooser
-
Constructs a
FontChooser
object using the given font size array. - forEach(ArrayElementConsumer) - Method in class smile.util.SparseArray
-
Performs an action for each nonzero entry.
- forEachEdge(int, ArrayElementConsumer) - Method in class smile.graph.AdjacencyList
- forEachEdge(int, ArrayElementConsumer) - Method in class smile.graph.AdjacencyMatrix
- forEachEdge(int, ArrayElementConsumer) - Method in class smile.graph.Graph
-
Performs an action for each edge of a vertex.
- forEachNonZero(int, int, DoubleConsumer) - Method in class smile.math.matrix.SparseMatrix
-
For each loop on non-zero elements.
- forEachNonZero(int, int, FloatConsumer) - Method in class smile.math.matrix.fp32.SparseMatrix
-
For each loop on non-zero elements.
- forEachNonZero(DoubleConsumer) - Method in class smile.math.matrix.SparseMatrix
-
For each loop on non-zero elements.
- forecast() - Method in class smile.timeseries.AR
-
Returns 1-step ahead forecast.
- forecast() - Method in class smile.timeseries.ARMA
-
Returns 1-step ahead forecast.
- forecast(int) - Method in class smile.timeseries.AR
-
Returns l-step ahead forecast.
- forecast(int) - Method in class smile.timeseries.ARMA
-
Returns l-step ahead forecast.
- FOREST_GREEN - Static variable in interface smile.plot.swing.Palette
- format(double) - Static method in interface smile.util.Strings
-
Returns the string representation of a floating number with the minimum necessary precision.
- format(float) - Static method in interface smile.util.Strings
-
Returns the string representation of a floating number with the minimum necessary precision.
- format(String) - Method in class smile.plot.vega.Axis
-
Sets the text format.
- format(String) - Method in class smile.plot.vega.Data
-
Sets the format for parsing the data.
- format(String) - Method in class smile.plot.vega.Legend
-
Sets the text format.
- format(String, Map<String, String>) - Method in class smile.plot.vega.Data
-
Sets the format for parsing the data.
- FormatConfig - Class in smile.plot.vega
-
These config properties define the default number and time formats for text marks as well as axes, headers, tooltip, and legends.
- formatType(String) - Method in class smile.plot.vega.Axis
-
Sets the format type for labels.
- formatType(String) - Method in class smile.plot.vega.Legend
-
Sets the format type for labels.
- formula - Variable in class smile.base.cart.CART
-
The model formula.
- formula - Variable in class smile.glm.GLM
-
The symbolic description of the model to be fitted.
- formula() - Method in class smile.classification.AdaBoost
- formula() - Method in interface smile.classification.DataFrameClassifier
-
Returns the formula associated with the model.
- formula() - Method in class smile.classification.DecisionTree
-
Returns null if the tree is part of ensemble algorithm.
- formula() - Method in class smile.classification.GradientTreeBoost
- formula() - Method in class smile.classification.RandomForest
- formula() - Method in interface smile.feature.importance.TreeSHAP
-
Returns the formula associated with the model.
- formula() - Method in interface smile.regression.DataFrameRegression
-
Returns the model formula.
- formula() - Method in class smile.regression.GradientTreeBoost
- formula() - Method in class smile.regression.LinearModel
- formula() - Method in class smile.regression.RandomForest
- formula() - Method in class smile.regression.RegressionTree
-
Returns null if the tree is part of ensemble algorithm.
- Formula - Class in smile.data.formula
-
The model fitting formula in a compact symbolic form.
- Formula(Term, Term...) - Constructor for class smile.data.formula.Formula
-
Constructor.
- forward(BufferedImage...) - Method in interface smile.vision.transform.Transform
-
Transforms images to 4-D tensor with shape [samples, channels, height, width].
- forward(BufferedImage...) - Method in class smile.vision.VisionModel
-
Forward propagation (or forward pass) through the model.
- forward(Tensor) - Method in class smile.deep.activation.GELU
- forward(Tensor) - Method in class smile.deep.activation.GLU
- forward(Tensor) - Method in class smile.deep.activation.HardShrink
- forward(Tensor) - Method in class smile.deep.activation.LeakyReLU
- forward(Tensor) - Method in class smile.deep.activation.LogSigmoid
- forward(Tensor) - Method in class smile.deep.activation.LogSoftmax
- forward(Tensor) - Method in class smile.deep.activation.ReLU
- forward(Tensor) - Method in class smile.deep.activation.Sigmoid
- forward(Tensor) - Method in class smile.deep.activation.SiLU
- forward(Tensor) - Method in class smile.deep.activation.Softmax
- forward(Tensor) - Method in class smile.deep.activation.SoftShrink
- forward(Tensor) - Method in class smile.deep.activation.Tanh
- forward(Tensor) - Method in class smile.deep.activation.TanhShrink
- forward(Tensor) - Method in class smile.deep.layer.AdaptiveAvgPool2dLayer
- forward(Tensor) - Method in class smile.deep.layer.AvgPool2dLayer
- forward(Tensor) - Method in class smile.deep.layer.BatchNorm1dLayer
- forward(Tensor) - Method in class smile.deep.layer.BatchNorm2dLayer
- forward(Tensor) - Method in class smile.deep.layer.Conv2dLayer
- forward(Tensor) - Method in class smile.deep.layer.DropoutLayer
- forward(Tensor) - Method in class smile.deep.layer.EmbeddingLayer
- forward(Tensor) - Method in class smile.deep.layer.GroupNormLayer
- forward(Tensor) - Method in interface smile.deep.layer.Layer
-
Forward propagation (or forward pass) through the layer.
- forward(Tensor) - Method in class smile.deep.layer.LinearLayer
- forward(Tensor) - Method in class smile.deep.layer.MaxPool2dLayer
- forward(Tensor) - Method in class smile.deep.layer.RMSNormLayer
- forward(Tensor) - Method in class smile.deep.layer.SequentialBlock
- forward(Tensor) - Method in class smile.deep.Model
-
Forward propagation (or forward pass) through the model.
- forward(Tensor) - Method in class smile.llm.llama.FeedForward
-
Feed forward.
- forward(Tensor) - Method in class smile.llm.llama.Transformer
- forward(Tensor) - Method in class smile.llm.PositionalEncoding
- forward(Tensor) - Method in class smile.vision.EfficientNet
- forward(Tensor) - Method in class smile.vision.layer.Conv2dNormActivation
- forward(Tensor) - Method in class smile.vision.layer.FusedMBConv
- forward(Tensor) - Method in class smile.vision.layer.MBConv
- forward(Tensor) - Method in class smile.vision.layer.SqueezeExcitation
- forward(Tensor) - Method in class smile.vision.layer.StochasticDepth
- forward(Tensor, int) - Method in class smile.llm.llama.Transformer
-
Forward pass through the model.
- forward(Tensor, int, Tensor, Tensor) - Method in class smile.llm.llama.Attention
-
Forward pass through the attention module.
- forward(Tensor, int, Tensor, Tensor) - Method in class smile.llm.llama.TransformerBlock
-
Forward pass through the block.
- FPGrowth - Class in smile.association
-
Frequent item set mining based on the FP-growth (frequent pattern growth) algorithm, which employs an extended prefix-tree (FP-tree) structure to store the database in a compressed form.
- FPTree - Class in smile.association
-
FP-tree data structure used in FP-growth (frequent pattern growth) algorithm for frequent item set mining.
- frame(Integer, Integer) - Method in class smile.plot.vega.ImputeTransform
-
Sets the frame to control the window over which the specified method is applied.
- frame(Integer, Integer) - Method in class smile.plot.vega.WindowTransform
-
Sets the frame specification indicating how the sliding window should proceed.
- frame(DataFrame) - Method in class smile.data.formula.Formula
-
Returns a data frame of predictors and optionally response variable (if input data frame has the related variable(s)).
- from(String, int, int) - Static method in record class smile.llm.llama.ModelArgs
-
Loads the model hyperparameters from a JSON file.
- from(Path) - Static method in interface smile.data.BinarySparseDataset
-
Parse a binary sparse dataset from a file, of which each line is a data item which are the indices of nonzero elements.
- from(Path) - Static method in interface smile.data.SparseDataset
-
Parses spare dataset in coordinate triple tuple list format.
- from(Path, int) - Static method in interface smile.data.SparseDataset
-
Reads spare dataset in coordinate triple tuple list format.
- FScore - Class in smile.validation.metric
-
The F-score (or F-measure) considers both the precision and the recall of the test to compute the score.
- FScore() - Constructor for class smile.validation.metric.FScore
-
Constructor of F1 score.
- FScore(double, Averaging) - Constructor for class smile.validation.metric.FScore
-
Constructor of general F-score.
- ftest() - Method in class smile.regression.LinearModel
-
Returns the F-statistic of goodness-of-fit.
- FTest - Record Class in smile.stat.hypothesis
-
F test of the hypothesis that two independent samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.
- FTest(double, int, int, double) - Constructor for record class smile.stat.hypothesis.FTest
-
Creates an instance of a
FTest
record class. - full(double, long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with the given value.
- full(long, long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with the given value.
- Function - Interface in smile.math
-
An interface representing a univariate real function.
- function_call - Enum constant in enum class smile.llm.FinishReason
-
The model decided to call a function.
- FusedMBConv - Class in smile.vision.layer
-
Fused-MBConv replaces the depthwise-conv3×3 and expansion-conv1×1 in MBConv with single regular conv3×3.
- FusedMBConv(MBConvConfig, double, IntFunction<Layer>) - Constructor for class smile.vision.layer.FusedMBConv
-
Constructor.
- FusedMBConv(double, int, int, int, int, int) - Static method in record class smile.vision.layer.MBConvConfig
-
Returns the config for Fused-MBConv block.
- FW - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Foreign word.
G
- g(double) - Method in class smile.ica.Exp
- g(double) - Method in class smile.ica.Kurtosis
- g(double) - Method in class smile.ica.LogCosh
- g(double) - Method in interface smile.math.DifferentiableFunction
-
Computes the gradient/derivative at x.
- g(double[], double[]) - Method in interface smile.base.mlp.ActivationFunction
-
The gradient function.
- g(double[], double[]) - Method in interface smile.math.DifferentiableMultivariateFunction
-
Computes the value and gradient at x.
- g(Cost, double[], double[]) - Method in enum class smile.base.mlp.OutputFunction
-
The gradient function.
- g2(double) - Method in class smile.ica.Exp
- g2(double) - Method in class smile.ica.Kurtosis
- g2(double) - Method in class smile.ica.LogCosh
- g2(double) - Method in interface smile.math.DifferentiableFunction
-
Compute the second-order derivative at x.
- GAFE - Class in smile.feature.selection
-
Genetic algorithm based feature selection.
- GAFE() - Constructor for class smile.feature.selection.GAFE
-
Constructor.
- GAFE(Selection, int, Crossover, double, double) - Constructor for class smile.feature.selection.GAFE
-
Constructor.
- gamma(double) - Static method in class smile.math.special.Gamma
-
Gamma function.
- Gamma - Class in smile.math.special
-
The gamma, digamma, and incomplete gamma functions.
- GammaDistribution - Class in smile.stat.distribution
-
The Gamma distribution is a continuous probability distributions with a scale parameter θ and a shape parameter k.
- GammaDistribution(double, double) - Constructor for class smile.stat.distribution.GammaDistribution
-
Constructor.
- gather(int, Tensor) - Method in class smile.deep.tensor.Tensor
-
Gathers values along an axis specified by dim.
- Gaussian - Class in smile.math.kernel
-
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
- Gaussian(double, double, double) - Constructor for class smile.math.kernel.Gaussian
-
Constructor.
- Gaussian(double, double) - Static method in interface smile.vq.Neighborhood
-
Returns Gaussian neighborhood function.
- GaussianDistribution - Class in smile.stat.distribution
-
The normal distribution or Gaussian distribution is a continuous probability distribution that describes data that clusters around a mean.
- GaussianDistribution(double, double) - Constructor for class smile.stat.distribution.GaussianDistribution
-
Constructor
- GaussianKernel - Class in smile.math.kernel
-
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
- GaussianKernel(double) - Constructor for class smile.math.kernel.GaussianKernel
-
Constructor.
- GaussianKernel(double, double, double) - Constructor for class smile.math.kernel.GaussianKernel
-
Constructor.
- GaussianMixture - Class in smile.stat.distribution
-
Finite univariate Gaussian mixture.
- GaussianMixture(Mixture.Component...) - Constructor for class smile.stat.distribution.GaussianMixture
-
Constructor.
- GaussianProcessRegression<T> - Class in smile.regression
-
Gaussian Process for Regression.
- GaussianProcessRegression(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression(MercerKernel<T>, T[], double[], double, double, double, Matrix.Cholesky, double) - Constructor for class smile.regression.GaussianProcessRegression
-
Constructor.
- GaussianProcessRegression.JointPrediction - Class in smile.regression
-
The joint prediction of multiple data points.
- GaussianRadialBasis - Class in smile.math.rbf
-
Gaussian RBF.
- GaussianRadialBasis() - Constructor for class smile.math.rbf.GaussianRadialBasis
-
Constructor.
- GaussianRadialBasis(double) - Constructor for class smile.math.rbf.GaussianRadialBasis
-
Constructor.
- GaussianVariogram - Class in smile.interpolation.variogram
-
Gaussian variogram.
- GaussianVariogram(double, double) - Constructor for class smile.interpolation.variogram.GaussianVariogram
-
Constructor.
- GaussianVariogram(double, double, double) - Constructor for class smile.interpolation.variogram.GaussianVariogram
-
Constructor.
- gbmv(Layout, Transpose, int, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a band matrix.
- gbmv(Layout, Transpose, int, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbmv(Layout, Transpose, int, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a band matrix.
- gbmv(Layout, Transpose, int, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbmv(Layout, Transpose, int, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a band matrix.
- gbmv(Layout, Transpose, int, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbmv(Layout, Transpose, int, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a band matrix.
- gbmv(Layout, Transpose, int, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbsv(Layout, int, int, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gbsv(Layout, int, int, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbsv(Layout, int, int, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gbsv(Layout, int, int, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbsv(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gbsv(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbsv(Layout, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gbsv(Layout, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrf(Layout, int, int, int, int, double[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
- gbtrf(Layout, int, int, int, int, double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrf(Layout, int, int, int, int, float[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
- gbtrf(Layout, int, int, int, int, float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrf(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
- gbtrf(Layout, int, int, int, int, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrf(Layout, int, int, int, int, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a band matrix A using partial pivoting with row interchanges.
- gbtrf(Layout, int, int, int, int, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrs(Layout, Transpose, int, int, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- gbtrs(Layout, Transpose, int, int, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrs(Layout, Transpose, int, int, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- gbtrs(Layout, Transpose, int, int, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrs(Layout, Transpose, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- gbtrs(Layout, Transpose, int, int, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gbtrs(Layout, Transpose, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- gbtrs(Layout, Transpose, int, int, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- ge(double) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise greater-than-or-equal-to comparison.
- ge(int) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise greater-than-or-equal-to comparison.
- ge(Tensor) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise greater-than-or-equal-to comparison.
- geev(Layout, EVDJob, EVDJob, int, double[], int, double[], double[], double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
- geev(Layout, EVDJob, EVDJob, int, double[], int, double[], double[], double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- geev(Layout, EVDJob, EVDJob, int, float[], int, float[], float[], float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
- geev(Layout, EVDJob, EVDJob, int, float[], int, float[], float[], float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- geev(Layout, EVDJob, EVDJob, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
- geev(Layout, EVDJob, EVDJob, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- geev(Layout, EVDJob, EVDJob, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
- geev(Layout, EVDJob, EVDJob, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- geev(Layout, EVDJob, EVDJob, int, DoublePointer, int, DoublePointer, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors.
- geev(Layout, EVDJob, EVDJob, int, DoublePointer, int, DoublePointer, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gels(Layout, Transpose, int, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
- gels(Layout, Transpose, int, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gels(Layout, Transpose, int, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
- gels(Layout, Transpose, int, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gels(Layout, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
- gels(Layout, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gels(Layout, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a QR or LQ factorization of A.
- gels(Layout, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsd(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
- gelsd(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsd(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
- gelsd(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsd(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
- gelsd(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsd(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a divide and conquer algorithm with the singular value decomposition (SVD) of A.
- gelsd(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gelss(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
- gelss(Layout, int, int, int, double[], int, double[], int, double[], double, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gelss(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
- gelss(Layout, int, int, int, float[], int, float[], int, float[], float, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gelss(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
- gelss(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, double, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gelss(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using the singular value decomposition (SVD) of A.
- gelss(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, float, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsy(Layout, int, int, int, double[], int, double[], int, int[], double, int[]) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
- gelsy(Layout, int, int, int, double[], int, double[], int, int[], double, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsy(Layout, int, int, int, float[], int, float[], int, int[], float, int[]) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
- gelsy(Layout, int, int, int, float[], int, float[], int, int[], float, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsy(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, IntBuffer, double, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
- gelsy(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, IntBuffer, double, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gelsy(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, IntBuffer, float, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves an overdetermined or underdetermined system, using a complete orthogonal factorization of A.
- gelsy(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, IntBuffer, float, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gelu(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with GELU activation function.
- gelu(int, int, double) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with GELU activation function.
- GELU - Class in smile.deep.activation
-
Gaussian Error Linear Unit activation function.
- GELU(boolean) - Constructor for class smile.deep.activation.GELU
-
Constructor.
- gemm(Layout, Transpose, Transpose, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation.
- gemm(Layout, Transpose, Transpose, int, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemm(Layout, Transpose, Transpose, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation.
- gemm(Layout, Transpose, Transpose, int, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemm(Layout, Transpose, Transpose, int, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation.
- gemm(Layout, Transpose, Transpose, int, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemm(Layout, Transpose, Transpose, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation.
- gemm(Layout, Transpose, Transpose, int, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemm(Layout, Transpose, Transpose, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation.
- gemm(Layout, Transpose, Transpose, int, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemv(Layout, Transpose, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation.
- gemv(Layout, Transpose, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemv(Layout, Transpose, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation.
- gemv(Layout, Transpose, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemv(Layout, Transpose, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation.
- gemv(Layout, Transpose, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemv(Layout, Transpose, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation.
- gemv(Layout, Transpose, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gemv(Layout, Transpose, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation.
- gemv(Layout, Transpose, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- generate(int[][], int, double, double, boolean, Long, SubmissionPublisher<String>) - Method in class smile.llm.llama.Llama
-
Generates text sequences based on provided prompts.
- generateSeed() - Static method in class smile.math.MathEx
-
Returns a random number to seed other random number generators.
- generateSeed(int) - Static method in class smile.math.MathEx
-
Returns the given number of random bytes to seed other random number generators.
- GeneticAlgorithm<T> - Class in smile.gap
-
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.
- GeneticAlgorithm(T[]) - Constructor for class smile.gap.GeneticAlgorithm
-
Constructor.
- GeneticAlgorithm(T[], Selection, int) - Constructor for class smile.gap.GeneticAlgorithm
-
Constructor.
- GeometricDistribution - Class in smile.stat.distribution
-
The geometric distribution is a discrete probability distribution of the number X of Bernoulli trials needed to get one success, supported on the set
{1, 2, 3, …}
. - GeometricDistribution(double) - Constructor for class smile.stat.distribution.GeometricDistribution
-
Constructor.
- geqrf(Layout, int, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
-
Computes a QR factorization of a general M-by-N matrix A.
- geqrf(Layout, int, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- geqrf(Layout, int, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
-
Computes a QR factorization of a general M-by-N matrix A.
- geqrf(Layout, int, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- geqrf(Layout, int, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes a QR factorization of a general M-by-N matrix A.
- geqrf(Layout, int, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- geqrf(Layout, int, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes a QR factorization of a general M-by-N matrix A.
- geqrf(Layout, int, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- geqrf(Layout, int, int, DoublePointer, int, DoublePointer) - Method in interface smile.math.blas.LAPACK
-
Computes a QR factorization of a general M-by-N matrix A.
- geqrf(Layout, int, int, DoublePointer, int, DoublePointer) - Method in class smile.math.blas.openblas.OpenBLAS
- ger(Layout, int, int, double, double[], int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation.
- ger(Layout, int, int, double, double[], int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ger(Layout, int, int, double, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation.
- ger(Layout, int, int, double, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- ger(Layout, int, int, double, DoublePointer, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation.
- ger(Layout, int, int, double, DoublePointer, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- ger(Layout, int, int, float, float[], int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation.
- ger(Layout, int, int, float, float[], int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ger(Layout, int, int, float, FloatBuffer, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation.
- ger(Layout, int, int, float, FloatBuffer, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesdd(Layout, SVDJob, int, int, double[], int, double[], double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesdd(Layout, SVDJob, int, int, double[], int, double[], double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesdd(Layout, SVDJob, int, int, float[], int, float[], float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesdd(Layout, SVDJob, int, int, float[], int, float[], float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesdd(Layout, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesdd(Layout, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesdd(Layout, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesdd(Layout, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesdd(Layout, SVDJob, int, int, DoublePointer, int, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesdd(Layout, SVDJob, int, int, DoublePointer, int, DoublePointer, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesv(Layout, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gesv(Layout, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesv(Layout, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gesv(Layout, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesv(Layout, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gesv(Layout, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesv(Layout, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gesv(Layout, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesv(Layout, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- gesv(Layout, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- gesvd(Layout, SVDJob, SVDJob, int, int, double[], int, double[], double[], int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesvd(Layout, SVDJob, SVDJob, int, int, double[], int, double[], double[], int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gesvd(Layout, SVDJob, SVDJob, int, int, float[], int, float[], float[], int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesvd(Layout, SVDJob, SVDJob, int, int, float[], int, float[], float[], int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gesvd(Layout, SVDJob, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesvd(Layout, SVDJob, SVDJob, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gesvd(Layout, SVDJob, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors.
- gesvd(Layout, SVDJob, SVDJob, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- get(double[]) - Method in class smile.neighbor.lsh.Hash
-
Returns the bucket entry for the given point.
- get(int) - Method in interface smile.data.DataFrame
-
Returns the row at the specified index.
- get(int) - Method in interface smile.data.Dataset
-
Returns the instance at the specified index.
- get(int) - Method in class smile.data.IndexDataFrame
- get(int) - Method in interface smile.data.Tuple
-
Returns the value at position i.
- get(int) - Method in interface smile.data.vector.BaseVector
-
Returns the value at position i, which may be null.
- get(int) - Method in class smile.math.Complex.Array
-
Returns the i-th element.
- get(int) - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns the element at the storage index.
- get(int) - Method in class smile.math.matrix.SparseMatrix
-
Returns the element at the storage index.
- get(int) - Method in class smile.neighbor.lsh.Hash
-
Returns the bucket entry for the given hash value.
- get(int) - Method in class smile.sort.DoubleHeapSelect
-
Returns the i-th smallest value seen so far.
- get(int) - Method in class smile.sort.FloatHeapSelect
-
Returns the i-th smallest value seen so far.
- get(int) - Method in class smile.sort.HeapSelect
-
Returns the i-th smallest value seen so far.
- get(int) - Method in class smile.sort.IntHeapSelect
-
Returns the i-th smallest value seen so far.
- get(int) - Method in class smile.util.DoubleArrayList
-
Returns the value at the specified position in this list.
- get(int) - Method in class smile.util.IntArrayList
-
Returns the value at the specified position in this list.
- get(int) - Method in class smile.util.IntDoubleHashMap
-
Returns the value to which the specified key is mapped, or Double.NaN if this map contains no mapping for the key.
- get(int) - Method in class smile.util.SparseArray
-
Returns the value of i-th entry.
- get(int...) - Method in interface smile.data.vector.BaseVector
-
Returns a new vector with selected entries.
- get(int...) - Method in interface smile.data.vector.BooleanVector
- get(int...) - Method in interface smile.data.vector.ByteVector
- get(int...) - Method in interface smile.data.vector.CharVector
- get(int...) - Method in interface smile.data.vector.DoubleVector
- get(int...) - Method in interface smile.data.vector.FloatVector
- get(int...) - Method in interface smile.data.vector.IntVector
- get(int...) - Method in interface smile.data.vector.LongVector
- get(int...) - Method in interface smile.data.vector.ShortVector
- get(int...) - Method in interface smile.data.vector.StringVector
- get(int...) - Method in interface smile.data.vector.Vector
- get(int...) - Method in class smile.deep.tensor.Tensor
-
Returns a portion of tensor given the indices.
- get(int[], int[]) - Method in class smile.math.matrix.BigMatrix
-
Returns the matrix of selected rows and columns.
- get(int[], int[]) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the matrix of selected rows and columns.
- get(int[], int[]) - Method in class smile.math.matrix.Matrix
-
Returns the matrix of selected rows and columns.
- get(int, int) - Method in interface smile.data.BinarySparseDataset
-
Returns the binary value at entry (i, j) by binary search.
- get(int, int) - Method in interface smile.data.DataFrame
-
Returns the cell at (i, j).
- get(int, int) - Method in class smile.data.IndexDataFrame
- get(int, int) - Method in interface smile.data.SparseDataset
-
Returns the value at entry (i, j).
- get(int, int) - Method in class smile.math.matrix.BandMatrix
- get(int, int) - Method in class smile.math.matrix.BigMatrix
- get(int, int) - Method in class smile.math.matrix.fp32.BandMatrix
- get(int, int) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns
A[i,j]
. - get(int, int) - Method in class smile.math.matrix.fp32.Matrix
- get(int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
- get(int, int) - Method in class smile.math.matrix.fp32.SymmMatrix
- get(int, int) - Method in class smile.math.matrix.IMatrix
-
Returns
A[i,j]
. - get(int, int) - Method in class smile.math.matrix.Matrix
- get(int, int) - Method in class smile.math.matrix.SparseMatrix
- get(int, int) - Method in class smile.math.matrix.SymmMatrix
- get(int, int) - Method in interface smile.plot.swing.Hexmap.Tooltip
-
Gets the tooltip of cell at (i, j).
- get(int, int) - Method in class smile.util.Array2D
-
Returns A[i, j].
- get(int, int) - Method in class smile.util.IntArray2D
-
Returns A[i, j].
- get(int, String) - Method in interface smile.data.DataFrame
-
Returns the cell at (i, j).
- get(long...) - Method in class smile.deep.tensor.Tensor
-
Returns a portion of tensor given the indices.
- get(String) - Method in interface smile.data.Tuple
-
Returns the value by field name.
- get(String) - Method in class smile.hash.PerfectHash
-
Returns the index of a keyword.
- get(String) - Method in class smile.hash.PerfectMap
-
Returns the value associated with the key.
- get(String) - Method in class smile.nlp.embedding.Word2Vec
-
Returns the embedding vector of a word.
- get(String) - Static method in class smile.nlp.pos.EnglishPOSLexicon
-
Returns the part-of-speech tags for given word, or null if the word does not exist in the dictionary.
- get(K) - Method in class smile.nlp.Trie
-
Returns the node of a given key.
- get(K[]) - Method in class smile.nlp.Trie
-
Returns the associated value of a given key.
- get(Index...) - Method in class smile.deep.tensor.Tensor
-
Returns a portion of tensor given the indices.
- get(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns a portion of tensor given the indices.
- getAbbreviation(String) - Method in interface smile.nlp.dictionary.Abbreviations
-
Returns the abbreviation for a word.
- getAnchor() - Method in interface smile.nlp.AnchorText
-
Returns the anchor text if any.
- getAnchor() - Method in class smile.nlp.SimpleText
-
Returns the anchor text if any.
- getArray(int) - Method in interface smile.data.Tuple
-
Returns the value at position i of array type.
- getArray(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) of array type.
- getArray(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value of array type.
- getArray(String) - Method in interface smile.data.Tuple
-
Returns the field value of array type.
- getAs(int) - Method in interface smile.data.Tuple
-
Returns the value at position i.
- getAs(String) - Method in interface smile.data.Tuple
-
Returns the value of a given fieldName.
- getAxis(int) - Method in class smile.plot.swing.Canvas
-
Returns the i-th axis.
- getAxisLabel(int) - Method in class smile.plot.swing.Canvas
-
Returns the label/legend of an axis.
- getAxisLabels() - Method in class smile.plot.swing.Canvas
-
Returns the labels/legends of axes.
- getBoolean(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive boolean.
- getBoolean(int) - Method in interface smile.data.vector.BaseVector
-
Returns the boolean value at position i.
- getBoolean(int) - Method in interface smile.data.vector.ByteVector
- getBoolean(int) - Method in interface smile.data.vector.CharVector
- getBoolean(int) - Method in interface smile.data.vector.DoubleVector
- getBoolean(int) - Method in interface smile.data.vector.FloatVector
- getBoolean(int) - Method in interface smile.data.vector.IntVector
- getBoolean(int) - Method in interface smile.data.vector.LongVector
- getBoolean(int) - Method in interface smile.data.vector.ShortVector
- getBoolean(int) - Method in interface smile.data.vector.StringVector
- getBoolean(int) - Method in interface smile.data.vector.Vector
- getBoolean(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive boolean.
- getBoolean(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive boolean.
- getBoolean(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive boolean.
- getByte(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive byte.
- getByte(int) - Method in interface smile.data.vector.BaseVector
-
Returns the byte value at position i.
- getByte(int) - Method in interface smile.data.vector.BooleanVector
- getByte(int) - Method in interface smile.data.vector.CharVector
- getByte(int) - Method in interface smile.data.vector.DoubleVector
- getByte(int) - Method in interface smile.data.vector.FloatVector
- getByte(int) - Method in interface smile.data.vector.IntVector
- getByte(int) - Method in interface smile.data.vector.LongVector
- getByte(int) - Method in interface smile.data.vector.ShortVector
- getByte(int) - Method in interface smile.data.vector.StringVector
- getByte(int) - Method in interface smile.data.vector.Vector
- getByte(int...) - Method in class smile.deep.tensor.Tensor
-
Returns the byte value of element at given index.
- getByte(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive byte.
- getByte(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive byte.
- getByte(long...) - Method in class smile.deep.tensor.Tensor
-
Returns the byte value of element at given index.
- getByte(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive byte.
- getCellEditor(int, int) - Method in class smile.swing.Table
- getCellEditorValue() - Method in class smile.swing.table.ButtonCellRenderer
- getCellEditorValue() - Method in class smile.swing.table.ColorCellEditor
- getCellEditorValue() - Method in class smile.swing.table.DateCellEditor
- getCellEditorValue() - Method in class smile.swing.table.DoubleArrayCellEditor
- getCellEditorValue() - Method in class smile.swing.table.DoubleCellEditor
- getCellEditorValue() - Method in class smile.swing.table.FontCellEditor
- getCellEditorValue() - Method in class smile.swing.table.IntegerArrayCellEditor
- getCellEditorValue() - Method in class smile.swing.table.IntegerCellEditor
- getCellRenderer(int, int) - Method in class smile.swing.Table
- getChar(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive byte.
- getChar(int) - Method in interface smile.data.vector.BaseVector
-
Returns the character value at position i.
- getChar(int) - Method in interface smile.data.vector.BooleanVector
- getChar(int) - Method in interface smile.data.vector.ByteVector
- getChar(int) - Method in interface smile.data.vector.DoubleVector
- getChar(int) - Method in interface smile.data.vector.FloatVector
- getChar(int) - Method in interface smile.data.vector.IntVector
- getChar(int) - Method in interface smile.data.vector.LongVector
- getChar(int) - Method in interface smile.data.vector.ShortVector
- getChar(int) - Method in interface smile.data.vector.StringVector
- getChar(int) - Method in interface smile.data.vector.Vector
- getChar(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive byte.
- getChar(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive byte.
- getChar(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive byte.
- getChild(K) - Method in class smile.nlp.Trie.Node
-
Returns the child with the key.
- getChild(K[], int) - Method in class smile.nlp.Trie.Node
-
Returns the value matching the key sequence.
- getClipNorm() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the gradient clipping norm.
- getClipValue() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the gradient clipping value.
- getColor() - Method in class smile.plot.swing.Graphics
-
Get the current color.
- getComponentType() - Method in class smile.data.type.ArrayType
-
Returns the type of array elements.
- getConcept(String) - Method in class smile.taxonomy.Taxonomy
-
Returns the concept node which synset contains the keyword.
- getConcepts() - Method in class smile.taxonomy.Taxonomy
-
Returns all named concepts in the taxonomy.
- getCoordinateSpace() - Method in class smile.plot.swing.Base
-
Returns the coordinates.
- getDate(int) - Method in interface smile.data.Tuple
-
Returns the value at position i of date type as java.time.LocalDate.
- getDate(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) of date type as java.time.LocalDate.
- getDate(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value of date type as java.time.LocalDate.
- getDate(String) - Method in interface smile.data.Tuple
-
Returns the field value of date type as java.time.LocalDate.
- getDateTime(int) - Method in interface smile.data.Tuple
-
Returns the value at position i of date type as java.time.LocalDateTime.
- getDateTime(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as java.time.LocalDateTime.
- getDateTime(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as java.time.LocalDateTime.
- getDateTime(String) - Method in interface smile.data.Tuple
-
Returns the field value of date type as java.time.LocalDateTime.
- getDecimal(int) - Method in interface smile.data.Tuple
-
Returns the value at position i of decimal type as java.math.BigDecimal.
- getDecimal(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) of decimal type as java.math.BigDecimal.
- getDecimal(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value of decimal type as java.math.BigDecimal.
- getDecimal(String) - Method in interface smile.data.Tuple
-
Returns the field value of decimal type as java.math.BigDecimal.
- getDefault() - Static method in class smile.nlp.pos.HMMPOSTagger
-
Returns the default English POS tagger.
- getDegree(int) - Method in class smile.graph.Graph
-
Returns the degree of the specified vertex.
- getDescription() - Method in class smile.swing.FileChooser.SimpleFileFilter
-
Returns the human-readable description of this filter.
- getDimension() - Method in class smile.plot.swing.Base
-
Returns the dimensionality of coordinates.
- getDistance(int, int) - Method in class smile.graph.Graph
-
Returns the distance between two vertices.
- getDouble(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive double.
- getDouble(int) - Method in interface smile.data.vector.BaseVector
-
Returns the double value at position i.
- getDouble(int) - Method in interface smile.data.vector.BooleanVector
- getDouble(int) - Method in interface smile.data.vector.ByteVector
- getDouble(int) - Method in interface smile.data.vector.CharVector
- getDouble(int) - Method in interface smile.data.vector.FloatVector
- getDouble(int) - Method in interface smile.data.vector.IntVector
- getDouble(int) - Method in interface smile.data.vector.LongVector
- getDouble(int) - Method in interface smile.data.vector.ShortVector
- getDouble(int) - Method in interface smile.data.vector.StringVector
- getDouble(int) - Method in interface smile.data.vector.Vector
- getDouble(int...) - Method in class smile.deep.tensor.Tensor
-
Returns the double value of element at given index.
- getDouble(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive double.
- getDouble(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive double.
- getDouble(long...) - Method in class smile.deep.tensor.Tensor
-
Returns the double value of element at given index.
- getDouble(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive double.
- getEdges(int) - Method in class smile.graph.AdjacencyList
- getEdges(int) - Method in class smile.graph.AdjacencyMatrix
- getEdges(int) - Method in class smile.graph.Graph
-
Returns the edges from the specified vertex.
- getExtension(File) - Static method in class smile.swing.FileChooser
-
Returns the file name extension in lower case.
- getExtensionLevel() - Method in class smile.anomaly.IsolationForest
-
Returns the extension level.
- getFloat(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive float.
- getFloat(int) - Method in interface smile.data.vector.BaseVector
-
Returns the float value at position i.
- getFloat(int) - Method in interface smile.data.vector.BooleanVector
- getFloat(int) - Method in interface smile.data.vector.ByteVector
- getFloat(int) - Method in interface smile.data.vector.CharVector
- getFloat(int) - Method in interface smile.data.vector.DoubleVector
- getFloat(int) - Method in interface smile.data.vector.IntVector
- getFloat(int) - Method in interface smile.data.vector.LongVector
- getFloat(int) - Method in interface smile.data.vector.ShortVector
- getFloat(int) - Method in interface smile.data.vector.StringVector
- getFloat(int) - Method in interface smile.data.vector.Vector
- getFloat(int...) - Method in class smile.deep.tensor.Tensor
-
Returns the float value of element at given index.
- getFloat(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive float.
- getFloat(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive float.
- getFloat(long...) - Method in class smile.deep.tensor.Tensor
-
Returns the float value of element at given index.
- getFloat(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive float.
- getFocusBorder() - Method in class smile.swing.table.ButtonCellRenderer
-
Get foreground color of the button when the cell has focus
- getFont() - Method in class smile.plot.swing.Graphics
-
Get the current font.
- getFull(String) - Method in interface smile.nlp.dictionary.Abbreviations
-
Returns the full word of an abbreviation.
- getGraphics() - Method in class smile.plot.swing.Graphics
-
Returns the Java2D graphics object.
- getHeight() - Method in class smile.plot.swing.Dendrogram
-
Returns the height of tree.
- getIcon(JTable, int) - Method in class smile.swing.table.DefaultTableHeaderCellRenderer
-
Overloaded to return an icon suitable to the primary sorted column, or null if the column is not the primary sort key.
- getIcon(JTable, int) - Method in class smile.swing.table.MultiColumnSortTableHeaderCellRenderer
-
Overridden to return an icon suitable to a sorted column, or null if the column is unsorted.
- getIconHeight() - Method in record class smile.swing.AlphaIcon
-
Gets the height of the bounding rectangle of this
AlphaIcon
. - getIconWidth() - Method in record class smile.swing.AlphaIcon
-
Gets the width of the bounding rectangle of this
AlphaIcon
. - getInDegree(int) - Method in class smile.graph.AdjacencyList
- getInDegree(int) - Method in class smile.graph.AdjacencyMatrix
- getInDegree(int) - Method in class smile.graph.Graph
-
Returns the in-degree of the specified vertex.
- getInitialStateProbabilities() - Method in class smile.sequence.HMM
-
Returns the initial state probabilities.
- getInputSize() - Method in class smile.base.mlp.Layer
-
Returns the dimension of input vector (not including bias value).
- getInstance() - Static method in interface smile.math.blas.BLAS
-
Creates an instance.
- getInstance() - Static method in interface smile.math.blas.LAPACK
-
Creates an instance.
- getInstance() - Static method in class smile.nlp.dictionary.EnglishPunctuations
-
Returns the singleton instance.
- getInstance() - Static method in class smile.nlp.normalizer.SimpleNormalizer
-
Returns the singleton instance.
- getInstance() - Static method in class smile.nlp.tokenizer.PennTreebankTokenizer
-
Returns the singleton instance.
- getInstance() - Static method in class smile.nlp.tokenizer.SimpleParagraphSplitter
-
Returns the singleton instance.
- getInstance() - Static method in class smile.nlp.tokenizer.SimpleSentenceSplitter
-
Returns the singleton instance.
- getInstance() - Static method in class smile.stat.distribution.GaussianDistribution
-
Returns the standard normal distribution.
- getInstance() - Static method in class smile.swing.FileChooser
-
Returns the shared file chooser instance.
- getInstance() - Static method in class smile.swing.FontChooser
-
Returns the shared font chooser instance.
- getInstance() - Static method in class smile.swing.table.DoubleCellEditor
-
Returns the default instance.
- getInt(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive int.
- getInt(int) - Method in interface smile.data.vector.BaseVector
-
Returns the integer value at position i.
- getInt(int) - Method in interface smile.data.vector.BooleanVector
- getInt(int) - Method in interface smile.data.vector.ByteVector
- getInt(int) - Method in interface smile.data.vector.CharVector
- getInt(int) - Method in interface smile.data.vector.DoubleVector
- getInt(int) - Method in interface smile.data.vector.FloatVector
- getInt(int) - Method in interface smile.data.vector.LongVector
- getInt(int) - Method in interface smile.data.vector.ShortVector
- getInt(int) - Method in interface smile.data.vector.StringVector
- getInt(int) - Method in interface smile.data.vector.Vector
- getInt(int...) - Method in class smile.deep.tensor.Tensor
-
Returns the int value of element at given index.
- getInt(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive int.
- getInt(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive int.
- getInt(long...) - Method in class smile.deep.tensor.Tensor
-
Returns the int value of element at given index.
- getInt(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive int.
- getKey() - Method in class smile.nlp.Trie.Node
-
Returns the key.
- getLabel() - Method in class smile.plot.swing.Axis
-
Returns the label of the axis.
- getLearningRate() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the learning rate.
- getLearningRate() - Method in class smile.classification.LogisticRegression
-
Returns the learning rate of stochastic gradient descent.
- getLearningRate() - Method in class smile.classification.Maxent
-
Returns the learning rate of stochastic gradient descent.
- getLearningRate() - Method in class smile.classification.SparseLogisticRegression
-
Returns the learning rate of stochastic gradient descent.
- getLocalSearchSteps() - Method in class smile.gap.GeneticAlgorithm
-
Gets the number of iterations of local search in Lamarckian algorithm.
- getLong(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive long.
- getLong(int) - Method in interface smile.data.vector.BaseVector
-
Returns the long value at position i.
- getLong(int) - Method in interface smile.data.vector.BooleanVector
- getLong(int) - Method in interface smile.data.vector.ByteVector
- getLong(int) - Method in interface smile.data.vector.CharVector
- getLong(int) - Method in interface smile.data.vector.DoubleVector
- getLong(int) - Method in interface smile.data.vector.FloatVector
- getLong(int) - Method in interface smile.data.vector.IntVector
- getLong(int) - Method in interface smile.data.vector.ShortVector
- getLong(int) - Method in interface smile.data.vector.StringVector
- getLong(int) - Method in interface smile.data.vector.Vector
- getLong(int...) - Method in class smile.deep.tensor.Tensor
-
Returns the long value of element at given index.
- getLong(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive long.
- getLong(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive long.
- getLong(long...) - Method in class smile.deep.tensor.Tensor
-
Returns the long value of element at given index.
- getLong(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive long.
- getLowerBound() - Method in class smile.plot.swing.BarPlot
- getLowerBound() - Method in class smile.plot.swing.BoxPlot
- getLowerBound() - Method in class smile.plot.swing.Contour
- getLowerBound() - Method in class smile.plot.swing.Dendrogram
- getLowerBound() - Method in class smile.plot.swing.Graphics
-
Returns the lower bounds of coordinate space.
- getLowerBound() - Method in class smile.plot.swing.Grid
- getLowerBound() - Method in class smile.plot.swing.Heatmap
- getLowerBound() - Method in class smile.plot.swing.Hexmap
- getLowerBound() - Method in class smile.plot.swing.Histogram3D
- getLowerBound() - Method in class smile.plot.swing.LinePlot
- getLowerBound() - Method in class smile.plot.swing.Plot
-
Returns the lower bound of data.
- getLowerBound() - Method in class smile.plot.swing.QQPlot
- getLowerBound() - Method in class smile.plot.swing.ScatterPlot
- getLowerBound() - Method in class smile.plot.swing.ScreePlot
- getLowerBound() - Method in class smile.plot.swing.SparseMatrixPlot
- getLowerBound() - Method in class smile.plot.swing.StaircasePlot
- getLowerBound() - Method in class smile.plot.swing.Surface
- getLowerBound() - Method in class smile.plot.swing.TextPlot
- getLowerBound() - Method in class smile.plot.swing.Wireframe
- getLowerBounds() - Method in class smile.plot.swing.Base
-
Returns the lower bounds.
- getLowerBounds() - Method in class smile.plot.swing.Canvas
-
Returns the lower bounds.
- getMargin() - Method in class smile.plot.swing.Canvas
-
Returns the size of margin, which is not used as plot area.
- getMessage(String) - Method in class smile.swing.FontChooser
- getMnemonic() - Method in class smile.swing.table.ButtonCellRenderer
- getMomentum() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the momentum factor.
- getNumberFormat() - Method in class smile.swing.table.NumberCellRenderer
-
Returns the number format used for rendering.
- getNumThreads() - Static method in class smile.deep.tensor.Device
-
Returns the number of threads used for intraop parallelism on CPU.
- getObjectClass() - Method in class smile.data.type.ObjectType
-
Returns the class of objects.
- getOutDegree(int) - Method in class smile.graph.AdjacencyList
- getOutDegree(int) - Method in class smile.graph.AdjacencyMatrix
- getOutDegree(int) - Method in class smile.graph.Graph
-
Returns the out-degree of the specified vertex.
- getOutputSize() - Method in class smile.base.mlp.Layer
-
Returns the dimension of output vector.
- getPage() - Method in class smile.swing.table.PageTableModel
-
Returns the current page.
- getPageCount() - Method in class smile.swing.table.PageTableModel
-
Returns the number of pages.
- getPageSize() - Method in class smile.swing.table.PageTableModel
-
Returns the page size.
- getPaint() - Method in class smile.plot.swing.Graphics
-
Get the current paint object.
- getPathDistance(int[]) - Method in class smile.graph.Graph
-
Returns the distance of path.
- getPathFromRoot() - Method in class smile.taxonomy.Concept
-
Returns the path from root to this node.
- getPathToRoot() - Method in class smile.taxonomy.Concept
-
Returns the path from this node to the root.
- getPrecisionDigits() - Method in class smile.plot.swing.Base
-
Returns the precision unit digits of axes.
- getPrecisionUnit() - Method in class smile.plot.swing.Base
-
Returns the precision units of axes.
- getPrinter() - Static method in class smile.swing.Printer
-
Returns the printer controller object.
- getProbeSequence(double[], double, int) - Method in class smile.neighbor.lsh.PosterioriModel
-
Generate query-directed probes.
- getProjection() - Method in class smile.classification.FLD
-
Returns the projection matrix W.
- getProjection() - Method in class smile.plot.swing.Graphics
-
Returns the projection object.
- getProjection(double) - Method in class smile.feature.extraction.PCA
-
Returns the projection with top principal components that contain (more than) the given percentage of variance.
- getProjection(int) - Method in class smile.feature.extraction.PCA
-
Returns the projection with given number of principal components.
- getPropertyChangeListeners() - Method in class smile.plot.swing.Canvas
-
Returns an array of all the listeners that were added to the PropertyChangeSupport object with addPropertyChangeListener().
- getReadableImageFilter() - Static method in class smile.swing.FileChooser.SimpleFileFilter
-
Returns the filter for readable images.
- getRealRow(int) - Method in class smile.swing.table.PageTableModel
-
Returns the row number of data given the row number of current page.
- getRealRowCount() - Method in class smile.swing.table.PageTableModel
-
The subclass should implement this method to return the real number of rows in the model.
- getRequireGrad() - Method in class smile.deep.tensor.Tensor
-
Returns true if autograd should record operations on this tensor.
- getrf(Layout, int, int, double[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf(Layout, int, int, double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf(Layout, int, int, float[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf(Layout, int, int, float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf(Layout, int, int, DoublePointer, int, IntPointer) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf(Layout, int, int, DoublePointer, int, IntPointer) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf2(Layout, int, int, double[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf2(Layout, int, int, double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf2(Layout, int, int, float[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf2(Layout, int, int, float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf2(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf2(Layout, int, int, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- getrf2(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
- getrf2(Layout, int, int, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- getRoot() - Method in class smile.taxonomy.Taxonomy
-
Returns the root node of taxonomy tree.
- getRowCount() - Method in class smile.swing.table.PageTableModel
- getRowCount() - Method in class smile.swing.Table.RowHeader
-
Delegate method to main table
- getRowHeader() - Method in class smile.swing.Table
-
Returns a row header for this table.
- getRowHeight(int) - Method in class smile.swing.Table.RowHeader
- getrs(Layout, Transpose, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- getrs(Layout, Transpose, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- getrs(Layout, Transpose, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- getrs(Layout, Transpose, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- getrs(Layout, Transpose, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- getrs(Layout, Transpose, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- getrs(Layout, Transpose, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- getrs(Layout, Transpose, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- getrs(Layout, Transpose, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- getrs(Layout, Transpose, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- getScale(int) - Method in interface smile.data.Tuple
-
Returns the value at position i of NominalScale or OrdinalScale.
- getScale(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) of NominalScale or OrdinalScale.
- getScale(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value of NominalScale or OrdinalScale.
- getScale(String) - Method in interface smile.data.Tuple
-
Returns the field value of NominalScale or OrdinalScale.
- getScrollableTracksViewportWidth() - Method in class smile.swing.Table
- getSelectedFont() - Method in class smile.swing.FontChooser
-
Get the selected font.
- getSelectedFontFamily() - Method in class smile.swing.FontChooser
-
Get the family name of the selected font.
- getSelectedFontSize() - Method in class smile.swing.FontChooser
-
Get the size of the selected font.
- getSelectedFontStyle() - Method in class smile.swing.FontChooser
-
Get the style of the selected font.
- getShapes() - Method in class smile.plot.swing.Canvas
-
Returns the list of shapes in the canvas.
- getShort(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a primitive short.
- getShort(int) - Method in interface smile.data.vector.BaseVector
-
Returns the short value at position i.
- getShort(int) - Method in interface smile.data.vector.BooleanVector
- getShort(int) - Method in interface smile.data.vector.ByteVector
- getShort(int) - Method in interface smile.data.vector.CharVector
- getShort(int) - Method in interface smile.data.vector.DoubleVector
- getShort(int) - Method in interface smile.data.vector.FloatVector
- getShort(int) - Method in interface smile.data.vector.IntVector
- getShort(int) - Method in interface smile.data.vector.LongVector
- getShort(int) - Method in interface smile.data.vector.StringVector
- getShort(int) - Method in interface smile.data.vector.Vector
- getShort(int...) - Method in class smile.deep.tensor.Tensor
-
Returns the short value of element at given index.
- getShort(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a primitive short.
- getShort(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a primitive short.
- getShort(long...) - Method in class smile.deep.tensor.Tensor
-
Returns the short value of element at given index.
- getShort(String) - Method in interface smile.data.Tuple
-
Returns the field value as a primitive short.
- getSortKey(JTable, int) - Method in class smile.swing.table.DefaultTableHeaderCellRenderer
-
Returns the current sort key, or null if the column is unsorted.
- getStateTransitionProbabilities() - Method in class smile.sequence.HMM
-
Returns the state transition probabilities.
- getString(int) - Method in interface smile.data.Tuple
-
Returns the value at position i as a String object.
- getString(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) as a String object.
- getString(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value as a String object.
- getString(String) - Method in interface smile.data.Tuple
-
Returns the field value as a String object.
- getStroke() - Method in class smile.plot.swing.Graphics
-
Get the current stroke.
- getStruct(int) - Method in interface smile.data.Tuple
-
Returns the value at position i of struct type.
- getStruct(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) of struct type.
- getStruct(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value of struct type.
- getStruct(String) - Method in interface smile.data.Tuple
-
Returns the field value of struct type.
- getSymbolEmissionProbabilities() - Method in class smile.sequence.HMM
-
Returns the symbol emission probabilities.
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.ButtonCellRenderer
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.ColorCellEditor
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.DateCellEditor
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.DoubleArrayCellEditor
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.DoubleCellEditor
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.FontCellEditor
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.IntegerArrayCellEditor
- getTableCellEditorComponent(JTable, Object, boolean, int, int) - Method in class smile.swing.table.IntegerCellEditor
- getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class smile.swing.table.ButtonCellRenderer
- getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class smile.swing.table.ColorCellRenderer
- getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class smile.swing.table.DefaultTableHeaderCellRenderer
-
Returns the default table header cell renderer.
- getTestData(String...) - Static method in interface smile.util.Paths
-
Get the file path of a test sample dataset.
- getTestDataLines(String...) - Static method in interface smile.util.Paths
-
Returns the reader of a test data.
- getTestDataReader(String...) - Static method in interface smile.util.Paths
-
Returns the reader of a test data.
- getTime(int) - Method in interface smile.data.Tuple
-
Returns the value at position i of date type as java.time.LocalTime.
- getTime(int, int) - Method in interface smile.data.DataFrame
-
Returns the value at position (i, j) of date type as java.time.LocalTime.
- getTime(int, String) - Method in interface smile.data.DataFrame
-
Returns the field value of date type as java.time.LocalTime.
- getTime(String) - Method in interface smile.data.Tuple
-
Returns the field value of date type as java.time.LocalTime.
- getTitle() - Method in class smile.plot.swing.Canvas
-
Returns the main title of canvas.
- getTitleColor() - Method in class smile.plot.swing.Canvas
-
Returns the color for title.
- getTitleFont() - Method in class smile.plot.swing.Canvas
-
Returns the font for title.
- getToolbar() - Method in class smile.plot.swing.PlotPanel
-
Returns a toolbar to control the plot.
- getToolbar() - Method in class smile.swing.table.PageTableModel
-
Returns a toolbar to control the plot.
- getUpperBound() - Method in class smile.plot.swing.BarPlot
- getUpperBound() - Method in class smile.plot.swing.BoxPlot
- getUpperBound() - Method in class smile.plot.swing.Contour
- getUpperBound() - Method in class smile.plot.swing.Dendrogram
- getUpperBound() - Method in class smile.plot.swing.Graphics
-
Returns the upper bounds of coordinate space.
- getUpperBound() - Method in class smile.plot.swing.Grid
- getUpperBound() - Method in class smile.plot.swing.Heatmap
- getUpperBound() - Method in class smile.plot.swing.Hexmap
- getUpperBound() - Method in class smile.plot.swing.Histogram3D
- getUpperBound() - Method in class smile.plot.swing.LinePlot
- getUpperBound() - Method in class smile.plot.swing.Plot
-
Returns the upper bound of data.
- getUpperBound() - Method in class smile.plot.swing.QQPlot
- getUpperBound() - Method in class smile.plot.swing.ScatterPlot
- getUpperBound() - Method in class smile.plot.swing.ScreePlot
- getUpperBound() - Method in class smile.plot.swing.SparseMatrixPlot
- getUpperBound() - Method in class smile.plot.swing.StaircasePlot
- getUpperBound() - Method in class smile.plot.swing.Surface
- getUpperBound() - Method in class smile.plot.swing.TextPlot
- getUpperBound() - Method in class smile.plot.swing.Wireframe
- getUpperBounds() - Method in class smile.plot.swing.Base
-
Returns the upper bounds.
- getUpperBounds() - Method in class smile.plot.swing.Canvas
-
Returns the upper bounds.
- getValue() - Method in class smile.nlp.Trie.Node
-
Returns the value.
- getValue(String) - Static method in enum class smile.nlp.pos.PennTreebankPOS
-
Returns an enum value from a string.
- getValueAt(int, int) - Method in class smile.swing.table.PageTableModel
- getValueAt(int, int) - Method in class smile.swing.Table.RowHeader
-
This table does not use any data from the main TableModel, so just return a value based on the row parameter.
- getValueAtRealRow(int, int) - Method in class smile.swing.table.PageTableModel
-
Returns the value for the cell at real row index.
- getVertexCount() - Method in class smile.graph.AdjacencyList
- getVertexCount() - Method in class smile.graph.AdjacencyMatrix
- getVertexCount() - Method in class smile.graph.Graph
-
Returns the number of vertices.
- getWeight(int, int) - Method in class smile.graph.AdjacencyList
- getWeight(int, int) - Method in class smile.graph.AdjacencyMatrix
- getWeight(int, int) - Method in class smile.graph.Graph
-
Returns the weight assigned to a given edge.
- getWeightDecay() - Method in class smile.base.mlp.MultilayerPerceptron
-
Returns the weight decay factor.
- getWritableImageFIlter() - Static method in class smile.swing.FileChooser.SimpleFileFilter
-
Returns the filter for writable images.
- ggglm(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in interface smile.math.blas.LAPACK
-
Solves a general Gauss-Markov linear model (GLM) problem.
- ggglm(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- ggglm(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in interface smile.math.blas.LAPACK
-
Solves a general Gauss-Markov linear model (GLM) problem.
- ggglm(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- ggglm(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves a general Gauss-Markov linear model (GLM) problem.
- ggglm(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- ggglm(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves a general Gauss-Markov linear model (GLM) problem.
- ggglm(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gglse(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in interface smile.math.blas.LAPACK
-
Solves a linear equality-constrained least squares (LSE) problem.
- gglse(Layout, int, int, int, double[], int, double[], int, double[], double[], double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gglse(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in interface smile.math.blas.LAPACK
-
Solves a linear equality-constrained least squares (LSE) problem.
- gglse(Layout, int, int, int, float[], int, float[], int, float[], float[], float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- gglse(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves a linear equality-constrained least squares (LSE) problem.
- gglse(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- gglse(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Solves a linear equality-constrained least squares (LSE) problem.
- gglse(Layout, int, int, int, FloatBuffer, int, FloatBuffer, int, FloatBuffer, FloatBuffer, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- GHA - Class in smile.feature.extraction
-
Generalized Hebbian Algorithm.
- GHA(double[][], TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
-
Constructor.
- GHA(int, int, TimeFunction, String...) - Constructor for class smile.feature.extraction.GHA
-
Constructor.
- GINI - Enum constant in enum class smile.base.cart.SplitRule
-
Used by the CART algorithm, Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it were randomly labeled according to the distribution of labels in the subset.
- GLM - Class in smile.glm
-
Generalized linear models.
- GLM(Formula, String[], Model, double[], double, double, double, double[], double[], double[][]) - Constructor for class smile.glm.GLM
-
Constructor.
- GloVe - Class in smile.nlp.embedding
-
Global Vectors for Word Representation.
- GloVe() - Constructor for class smile.nlp.embedding.GloVe
- GLU - Class in smile.deep.activation
-
Gated Linear Unit activation function.
- GLU() - Constructor for class smile.deep.activation.GLU
-
Constructor.
- GMeans - Class in smile.clustering
-
G-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters by normality test.
- GMeans(double, double[][], int[]) - Constructor for class smile.clustering.GMeans
-
Constructor.
- GOLD - Static variable in interface smile.plot.swing.Palette
- GoodTuring - Class in smile.stat
-
Good–Turing frequency estimation.
- GOOGLE - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
-
The stop words list used by Google.
- gradient() - Method in class smile.base.mlp.Layer
-
Returns the output gradient vector.
- gradientLength(double) - Method in class smile.plot.vega.Legend
-
Sets the length in pixels of the primary axis of a color gradient.
- gradientOpacity(double) - Method in class smile.plot.vega.Legend
-
Sets the opacity of the color gradient.
- gradientStrokeColor(String) - Method in class smile.plot.vega.Legend
-
Sets the color of the gradient stroke.
- gradientStrokeWidth(double) - Method in class smile.plot.vega.Legend
-
Sets the width of the gradient stroke.
- gradientThickness(double) - Method in class smile.plot.vega.Legend
-
Sets the thickness in pixels of the color gradient.
- GradientTreeBoost - Class in smile.classification
-
Gradient boosting for classification.
- GradientTreeBoost - Class in smile.regression
-
Gradient boosting for regression.
- GradientTreeBoost(Formula, RegressionTree[][], double, double[]) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of multi-class.
- GradientTreeBoost(Formula, RegressionTree[][], double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of multi-class.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of binary class.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[]) - Constructor for class smile.regression.GradientTreeBoost
-
Constructor.
- GradientTreeBoost(Formula, RegressionTree[], double, double, double[], IntSet) - Constructor for class smile.classification.GradientTreeBoost
-
Constructor of binary class.
- graph(boolean) - Method in record class smile.graph.NearestNeighborGraph
-
Returns the nearest neighbor graph.
- Graph - Class in smile.graph
-
A graph is an abstract representation of a set of objects where some pairs of the objects are connected by links.
- Graph(boolean) - Constructor for class smile.graph.Graph
-
Constructor.
- Graph.Edge - Record Class in smile.graph
-
Graph edge.
- Graphics - Class in smile.plot.swing
-
Graphics provides methods to draw graphical primitives in logical/mathematical coordinates.
- Graphics(Projection) - Constructor for class smile.plot.swing.Graphics
-
Constructor.
- GRASS_GREEN - Static variable in interface smile.plot.swing.Palette
- GREEN - Static variable in interface smile.plot.swing.Palette
- grid() - Method in class smile.hpo.Hyperparameters
-
Generates a stream of hyperparameters for grid search.
- grid(boolean) - Method in class smile.plot.vega.Axis
-
Sets if gridlines should be included as part of the axis.
- Grid - Class in smile.plot.swing
-
A 2D grid plot.
- Grid(double[][][], Color) - Constructor for class smile.plot.swing.Grid
-
Constructor.
- gridAlign(String) - Method in class smile.plot.vega.Legend
-
Sets the alignment to apply to symbol legends rows and columns.
- gridCap(String) - Method in class smile.plot.vega.Axis
-
Sets the stroke cap for gridlines' ending style.
- gridColor(String) - Method in class smile.plot.vega.Axis
-
Sets the color of gridlines.
- gridDash(double, double) - Method in class smile.plot.vega.Axis
-
Sets the alternating [stroke, space] lengths for dashed gridlines.
- gridOpacity(double) - Method in class smile.plot.vega.Axis
-
Sets the stroke opacity of grid.
- gridWidth(double) - Method in class smile.plot.vega.Axis
-
Sets the grid width.
- groupby(String...) - Method in class smile.plot.vega.ImputeTransform
-
Sets the data fields by which to group the values.
- groupby(String...) - Method in class smile.plot.vega.LoessTransform
-
Sets the data fields to group by.
- groupby(String...) - Method in class smile.plot.vega.PivotTransform
-
Sets the data fields to group by.
- groupby(String...) - Method in class smile.plot.vega.QuantileTransform
-
Sets the data fields to group by.
- groupby(String...) - Method in class smile.plot.vega.RegressionTransform
-
Sets the data fields to group by.
- groupby(String...) - Method in class smile.plot.vega.WindowTransform
-
Sets the data fields for partitioning the data objects into separate windows.
- GroupNormLayer - Class in smile.deep.layer
-
Group normalization.
- GroupNormLayer(int, int) - Constructor for class smile.deep.layer.GroupNormLayer
-
Constructor.
- GroupNormLayer(int, int, double, boolean) - Constructor for class smile.deep.layer.GroupNormLayer
-
Constructor.
- groups() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
groups
record component. - GrowingNeuralGas - Class in smile.vq
-
Growing Neural Gas.
- GrowingNeuralGas(int) - Constructor for class smile.vq.GrowingNeuralGas
-
Constructor.
- GrowingNeuralGas(int, double, double, int, int, double, double) - Constructor for class smile.vq.GrowingNeuralGas
-
Constructor.
- gt(double) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise greater-than comparison.
- gt(int) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise greater-than comparison.
- gt(Tensor) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise greater-than comparison.
H
- H - Variable in class smile.neighbor.LSH
-
The size of hash table.
- H - Variable in class smile.neighbor.lsh.NeighborHashValueModel
-
The hash values of query object.
- HaarWavelet - Class in smile.wavelet
-
Haar wavelet.
- HaarWavelet() - Constructor for class smile.wavelet.HaarWavelet
-
Constructor.
- HadoopInput - Interface in smile.io
-
Static methods that return the InputStream/Reader of a HDFS/S3.
- HammingDistance - Class in smile.math.distance
-
In information theory, the Hamming distance between two strings of equal length is the number of positions for which the corresponding symbols are different.
- HammingDistance() - Constructor for class smile.math.distance.HammingDistance
-
Constructor.
- hardShrink(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with hard shrink activation function.
- HardShrink - Class in smile.deep.activation
-
Hard Shrink activation function.
- HardShrink() - Constructor for class smile.deep.activation.HardShrink
-
Constructor.
- HardShrink(double) - Constructor for class smile.deep.activation.HardShrink
-
Constructor.
- harwell(Path) - Static method in class smile.math.matrix.fp32.SparseMatrix
-
Reads a sparse matrix from a Harwell-Boeing Exchange Format file.
- harwell(Path) - Static method in class smile.math.matrix.SparseMatrix
-
Reads a sparse matrix from a Harwell-Boeing Exchange Format file.
- hasEdge(int, int) - Method in class smile.graph.AdjacencyList
- hasEdge(int, int) - Method in class smile.graph.AdjacencyMatrix
- hasEdge(int, int) - Method in class smile.graph.Graph
-
Returns true if and only if this graph contains an edge going from the source vertex to the target vertex.
- hash - Variable in class smile.neighbor.LSH
-
Hash functions.
- hash(double[]) - Method in class smile.neighbor.lsh.Hash
-
Apply hash functions on given vector x.
- hash(Hash, PrZ[]) - Method in class smile.neighbor.lsh.Probe
-
Returns the bucket number of the probe.
- hash(T) - Method in interface smile.hash.SimHash
-
Return the hash code.
- Hash - Class in smile.neighbor.lsh
-
The hash function for Euclidean spaces.
- Hash(int, int, double, int) - Constructor for class smile.neighbor.lsh.Hash
-
Constructor.
- hash128(ByteBuffer, int, int, long, long[]) - Static method in class smile.hash.MurmurHash3
-
128-bit MurmurHash3 for x64.
- hash32(byte[], int, int, int) - Static method in class smile.hash.MurmurHash3
-
32-bit MurmurHash3.
- hash32(String, int) - Static method in class smile.hash.MurmurHash3
-
32-bit MurmurHash3.
- hash32(ByteBuffer, int, int, int) - Static method in interface smile.hash.MurmurHash2
-
32-bit MurmurHash.
- hash64(ByteBuffer, int, int, long) - Static method in interface smile.hash.MurmurHash2
-
64-bit MurmurHash.
- hashCode() - Method in record class smile.association.AssociationRule
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.association.ItemSet
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.data.formula.Intercept
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.data.formula.Variable
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.data.SampleInstance
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.deep.SampleBatch
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.feature.selection.InformationValue
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.feature.selection.SignalNoiseRatio
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.feature.selection.SumSquaresRatio
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.graph.Graph.Edge
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.graph.NearestNeighborGraph
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.llm.CompletionPrediction
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.llm.llama.ModelArgs
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.llm.Message
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.manifold.IsotonicMDS
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.manifold.MDS
-
Returns a hash code value for this object.
- hashCode() - Method in class smile.math.Complex
- hashCode() - Method in record class smile.neighbor.lsh.PrH
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.neighbor.lsh.PrZ
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.neighbor.Neighbor
-
Returns a hash code value for this object.
- hashCode() - Method in class smile.nlp.Bigram
- hashCode() - Method in class smile.nlp.NGram
- hashCode() - Method in class smile.nlp.SimpleText
- hashCode() - Method in record class smile.plot.vega.SortField
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.plot.vega.WindowTransformField
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.distribution.DiscreteMixture.Component
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.distribution.Mixture.Component
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.distribution.MultivariateMixture.Component
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.hypothesis.ChiSqTest
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.hypothesis.CorTest
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.hypothesis.FTest
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.hypothesis.KSTest
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.stat.hypothesis.TTest
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.swing.AlphaIcon
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.util.Bytes
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.util.IntPair
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.util.SparseArray.Entry
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.util.Tuple2
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.validation.Bag
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.validation.ClassificationMetrics
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.validation.metric.ConfusionMatrix
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.validation.RegressionMetrics
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns a hash code value for this object.
- hashCode() - Method in record class smile.vision.layer.MBConvConfig
-
Returns a hash code value for this object.
- HashEncoder - Class in smile.feature.extraction
-
Feature hashing, also known as the hashing trick, is a fast and space-efficient way of vectorizing features, i.e.
- HashEncoder(Function<String, String[]>, int) - Constructor for class smile.feature.extraction.HashEncoder
-
Constructor.
- HashEncoder(Function<String, String[]>, int, boolean) - Constructor for class smile.feature.extraction.HashEncoder
-
Constructor.
- HashValueParzenModel - Class in smile.neighbor.lsh
-
Hash value Parzen model for multi-probe hash.
- HashValueParzenModel(MultiProbeHash, MultiProbeSample[], double) - Constructor for class smile.neighbor.lsh.HashValueParzenModel
-
Constructor.
- hasMissing(Tuple) - Static method in class smile.feature.imputation.SimpleImputer
-
Return true if the tuple x has missing values.
- hasNull() - Method in interface smile.data.Tuple
-
Returns true if the tuple has null/missing values.
- header(String) - Method in class smile.plot.vega.FacetField
-
Sets the header of facet.
- Headless - Class in smile.plot.swing
-
Aids in creating swing components in a "headless" environment.
- Headless(JComponent, int, int) - Constructor for class smile.plot.swing.Headless
- heapify() - Method in class smile.sort.HeapSelect
-
In case of avoiding creating new objects frequently, one may check and update the peek object directly and call this method to sort the internal array in heap order.
- HeapSelect<T> - Class in smile.sort
-
This class tracks the smallest values seen thus far in a stream of values.
- HeapSelect(Class<?>, int) - Constructor for class smile.sort.HeapSelect
-
Constructor.
- HeapSelect(T[]) - Constructor for class smile.sort.HeapSelect
-
Constructor.
- HeapSort - Interface in smile.sort
-
Heapsort is a comparison-based sorting algorithm, and is part of the selection sort family.
- heat(int) - Static method in interface smile.plot.swing.Palette
-
Generate heat color palette.
- heat(int, float) - Static method in interface smile.plot.swing.Palette
-
Generate heat color palette.
- Heatmap - Class in smile.plot.swing
-
A heat map is a graphical representation of data where the values taken by a variable in a two-dimensional map are represented as colors.
- Heatmap(double[], double[], double[][], Color[]) - Constructor for class smile.plot.swing.Heatmap
-
Constructor.
- Heatmap(String[], String[], double[][], Color[]) - Constructor for class smile.plot.swing.Heatmap
-
Constructor.
- height - Variable in class smile.plot.swing.Projection
-
The height of canvas in Java2D coordinate space.
- height() - Method in class smile.clustering.HierarchicalClustering
-
Returns a set of n-1 non-decreasing real values, which are the clustering height, i.e., the value of the criterion associated with the clustering method for the particular agglomeration.
- height(double) - Method in class smile.plot.vega.Mark
-
Sets the height of the marks.
- height(int) - Method in class smile.plot.vega.Layer
- height(int) - Method in class smile.plot.vega.View
-
Sets the height of a plot with a continuous y-field, or the fixed height of a plot a discrete y-field or no y-field.
- height(String) - Method in class smile.plot.vega.Layer
- height(String) - Method in class smile.plot.vega.View
-
To enable responsive sizing on height.
- heightStep(int) - Method in class smile.plot.vega.Layer
- heightStep(int) - Method in class smile.plot.vega.View
-
For a discrete y-field, sets the height per discrete step.
- heldKarp() - Method in class smile.graph.Graph
-
Returns the optimal TSP tour with Held-Karp algorithm.
- HellingerKernel - Class in smile.math.kernel
-
The Hellinger kernel.
- HellingerKernel() - Constructor for class smile.math.kernel.HellingerKernel
-
Constructor.
- Hexmap - Class in smile.plot.swing
-
Hexmap is a variant of heat map by replacing rectangle cells with hexagon cells.
- Hexmap(double[][], Color[], Hexmap.Tooltip) - Constructor for class smile.plot.swing.Hexmap
-
Constructor.
- Hexmap.Tooltip - Interface in smile.plot.swing
-
The lambda interface to retrieve the tooltip of cell.
- HHMM - Static variable in class smile.swing.table.DateCellEditor
- HHMM - Static variable in class smile.swing.table.DateCellRenderer
- HHMMSS - Static variable in class smile.swing.table.DateCellEditor
- HHMMSS - Static variable in class smile.swing.table.DateCellRenderer
- hi() - Method in class smile.math.kernel.BinarySparseGaussianKernel
- hi() - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
- hi() - Method in class smile.math.kernel.BinarySparseLaplacianKernel
- hi() - Method in class smile.math.kernel.BinarySparseLinearKernel
- hi() - Method in class smile.math.kernel.BinarySparseMaternKernel
- hi() - Method in class smile.math.kernel.BinarySparsePolynomialKernel
- hi() - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
- hi() - Method in class smile.math.kernel.GaussianKernel
- hi() - Method in class smile.math.kernel.HellingerKernel
- hi() - Method in class smile.math.kernel.HyperbolicTangentKernel
- hi() - Method in class smile.math.kernel.LaplacianKernel
- hi() - Method in class smile.math.kernel.LinearKernel
- hi() - Method in class smile.math.kernel.MaternKernel
- hi() - Method in interface smile.math.kernel.MercerKernel
-
Returns the upper bound of hyperparameters (in hyperparameter tuning).
- hi() - Method in class smile.math.kernel.PearsonKernel
- hi() - Method in class smile.math.kernel.PolynomialKernel
- hi() - Method in class smile.math.kernel.ProductKernel
- hi() - Method in class smile.math.kernel.SparseGaussianKernel
- hi() - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
- hi() - Method in class smile.math.kernel.SparseLaplacianKernel
- hi() - Method in class smile.math.kernel.SparseLinearKernel
- hi() - Method in class smile.math.kernel.SparseMaternKernel
- hi() - Method in class smile.math.kernel.SparsePolynomialKernel
- hi() - Method in class smile.math.kernel.SparseThinPlateSplineKernel
- hi() - Method in class smile.math.kernel.SumKernel
- hi() - Method in class smile.math.kernel.ThinPlateSplineKernel
- HiddenLayer - Class in smile.base.mlp
-
A hidden layer in the neural network.
- HiddenLayer(int, int, double, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayer
-
Constructor.
- HiddenLayerBuilder - Class in smile.base.mlp
-
The builder of hidden layers.
- HiddenLayerBuilder(int, double, ActivationFunction) - Constructor for class smile.base.mlp.HiddenLayerBuilder
-
Constructor.
- HierarchicalClustering - Class in smile.clustering
-
Agglomerative Hierarchical Clustering.
- HierarchicalClustering(int[][], double[]) - Constructor for class smile.clustering.HierarchicalClustering
-
Constructor.
- hingeEmbedding() - Static method in interface smile.deep.Loss
-
Hinge Embedding Loss Function.
- Histogram - Class in smile.plot.swing
-
A histogram is a graphical display of tabulated frequencies, shown as bars.
- Histogram - Interface in smile.math
-
Histogram utilities.
- Histogram() - Constructor for class smile.plot.swing.Histogram
- Histogram3D - Class in smile.plot.swing
-
A histogram is a graphical display of tabulated frequencies, shown as bars.
- Histogram3D(double[][], int, int, boolean, Color[]) - Constructor for class smile.plot.swing.Histogram3D
-
Constructor.
- HMM - Class in smile.sequence
-
First-order Hidden Markov Model.
- HMM(double[], Matrix, Matrix) - Constructor for class smile.sequence.HMM
-
Constructor.
- HMMLabeler<T> - Class in smile.sequence
-
First-order Hidden Markov Model sequence labeler.
- HMMLabeler(HMM, ToIntFunction<T>) - Constructor for class smile.sequence.HMMLabeler
-
Constructor.
- HMMPOSTagger - Class in smile.nlp.pos
-
Part-of-speech tagging with hidden Markov model.
- HMMPOSTagger() - Constructor for class smile.nlp.pos.HMMPOSTagger
-
Constructor.
- home - Static variable in interface smile.util.Paths
-
Smile home directory.
- horizontal(VegaLite...) - Static method in class smile.plot.vega.Concat
-
Returns a horizontal concatenation of views.
- HOUR - Enum constant in enum class smile.data.formula.DateFeature
-
The hours represented by an integer from 0 to 23.
- hstack(Tensor...) - Static method in class smile.deep.tensor.Tensor
-
Stacks tensors in sequence horizontally (column wise).
- hsv(float, float, float, float) - Static method in interface smile.plot.swing.Palette
-
Generate a color based on HSV model.
- html() - Method in class smile.plot.vega.VegaLite
-
Returns the HTML of plot specification with Vega Embed.
- html(String) - Method in class smile.plot.vega.VegaLite
-
Returns the HTML of plot specification with Vega Embed.
- htmlEscape(String) - Static method in interface smile.util.Strings
-
Turn special characters into HTML character references.
- htmlEscape(String, String) - Static method in interface smile.util.Strings
-
Turn special characters into HTML character references.
- huber(double) - Static method in interface smile.base.cart.Loss
-
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
- Huber - Enum constant in enum class smile.base.cart.Loss.Type
-
Huber loss function for M-regression, which attempts resistance to long-tailed error distributions and outliers while maintaining high efficiency for normally distributed errors.
- HyperbolicTangent - Class in smile.math.kernel
-
The hyperbolic tangent kernel.
- HyperbolicTangent(double, double, double[], double[]) - Constructor for class smile.math.kernel.HyperbolicTangent
-
Constructor.
- HyperbolicTangentKernel - Class in smile.math.kernel
-
The hyperbolic tangent kernel.
- HyperbolicTangentKernel() - Constructor for class smile.math.kernel.HyperbolicTangentKernel
-
Constructor with scale 1.0 and offset 0.0.
- HyperbolicTangentKernel(double, double) - Constructor for class smile.math.kernel.HyperbolicTangentKernel
-
Constructor.
- HyperbolicTangentKernel(double, double, double[], double[]) - Constructor for class smile.math.kernel.HyperbolicTangentKernel
-
Constructor.
- HyperGeometricDistribution - Class in smile.stat.distribution
-
The hypergeometric distribution is a discrete probability distribution that describes the number of successes in a sequence of n draws from a finite population without replacement, just as the binomial distribution describes the number of successes for draws with replacement.
- HyperGeometricDistribution(int, int, int) - Constructor for class smile.stat.distribution.HyperGeometricDistribution
-
Constructor.
- hyperparameters() - Method in class smile.math.kernel.BinarySparseGaussianKernel
- hyperparameters() - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
- hyperparameters() - Method in class smile.math.kernel.BinarySparseLaplacianKernel
- hyperparameters() - Method in class smile.math.kernel.BinarySparseLinearKernel
- hyperparameters() - Method in class smile.math.kernel.BinarySparseMaternKernel
- hyperparameters() - Method in class smile.math.kernel.BinarySparsePolynomialKernel
- hyperparameters() - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
- hyperparameters() - Method in class smile.math.kernel.GaussianKernel
- hyperparameters() - Method in class smile.math.kernel.HellingerKernel
- hyperparameters() - Method in class smile.math.kernel.HyperbolicTangentKernel
- hyperparameters() - Method in class smile.math.kernel.LaplacianKernel
- hyperparameters() - Method in class smile.math.kernel.LinearKernel
- hyperparameters() - Method in class smile.math.kernel.MaternKernel
- hyperparameters() - Method in interface smile.math.kernel.MercerKernel
-
Returns the hyperparameters of kernel.
- hyperparameters() - Method in class smile.math.kernel.PearsonKernel
- hyperparameters() - Method in class smile.math.kernel.PolynomialKernel
- hyperparameters() - Method in class smile.math.kernel.ProductKernel
- hyperparameters() - Method in class smile.math.kernel.SparseGaussianKernel
- hyperparameters() - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
- hyperparameters() - Method in class smile.math.kernel.SparseLaplacianKernel
- hyperparameters() - Method in class smile.math.kernel.SparseLinearKernel
- hyperparameters() - Method in class smile.math.kernel.SparseMaternKernel
- hyperparameters() - Method in class smile.math.kernel.SparsePolynomialKernel
- hyperparameters() - Method in class smile.math.kernel.SparseThinPlateSplineKernel
- hyperparameters() - Method in class smile.math.kernel.SumKernel
- hyperparameters() - Method in class smile.math.kernel.ThinPlateSplineKernel
- Hyperparameters - Class in smile.hpo
-
Hyperparameter configuration.
- Hyperparameters() - Constructor for class smile.hpo.Hyperparameters
-
Constructor.
- Hypothesis - Interface in smile.stat
-
Hypothesis test functions.
- Hypothesis.chisq - Interface in smile.stat
-
Chi-square test.
- Hypothesis.cor - Interface in smile.stat
-
Correlation test.
- Hypothesis.F - Interface in smile.stat
-
F-test.
- Hypothesis.KS - Interface in smile.stat
-
The Kolmogorov-Smirnov test (K-S test).
- Hypothesis.t - Interface in smile.stat
-
t-test.
I
- i - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
-
The row index.
- i - Variable in class smile.math.matrix.SparseMatrix.Entry
-
The row index.
- iamax(double[]) - Method in interface smile.math.blas.BLAS
-
Searches a vector for the first occurrence of the maximum absolute value.
- iamax(float[]) - Method in interface smile.math.blas.BLAS
-
Searches a vector for the first occurrence of the maximum absolute value.
- iamax(int, double[], int) - Method in interface smile.math.blas.BLAS
-
Searches a vector for the first occurrence of the maximum absolute value.
- iamax(int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- iamax(int, float[], int) - Method in interface smile.math.blas.BLAS
-
Searches a vector for the first occurrence of the maximum absolute value.
- iamax(int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ICA - Class in smile.ica
-
Independent Component Analysis (ICA) is a computational method for separating a multivariate signal into additive components.
- icon() - Method in record class smile.swing.AlphaIcon
-
Returns the value of the
icon
record component. - id - Variable in class smile.nlp.Text
-
The id of document in the corpus.
- id() - Method in class smile.data.type.ArrayType
- id() - Method in class smile.data.type.BooleanType
- id() - Method in class smile.data.type.ByteType
- id() - Method in class smile.data.type.CharType
- id() - Method in interface smile.data.type.DataType
-
Returns the type ID enum.
- id() - Method in class smile.data.type.DateTimeType
- id() - Method in class smile.data.type.DateType
- id() - Method in class smile.data.type.DecimalType
- id() - Method in class smile.data.type.DoubleType
- id() - Method in class smile.data.type.FloatType
- id() - Method in class smile.data.type.IntegerType
- id() - Method in class smile.data.type.LongType
- id() - Method in class smile.data.type.ObjectType
- id() - Method in class smile.data.type.ShortType
- id() - Method in class smile.data.type.StringType
- id() - Method in class smile.data.type.StructType
- id() - Method in class smile.data.type.TimeType
- iframe() - Method in class smile.plot.vega.VegaLite
-
Returns the HTML wrapped in an iframe to render in notebooks.
- iframe(String) - Method in class smile.plot.vega.VegaLite
-
Returns the HTML wrapped in an iframe to render in notebooks.
- ignorePeers(boolean) - Method in class smile.plot.vega.WindowTransform
-
Sets if the sliding window frame should ignore peer values (data that are considered identical by the sort criteria).
- im - Variable in class smile.math.Complex
-
The imaginary part.
- ImageDataset - Class in smile.vision
-
Each of these directories should contain one subdirectory for each class in the dataset.
- ImageDataset(int, String, Transform, ToIntFunction<String>) - Constructor for class smile.vision.ImageDataset
-
Constructor.
- ImageNet - Interface in smile.vision
-
ImageNet class labels.
- IMatrix - Class in smile.math.matrix.fp32
-
Matrix base class.
- IMatrix - Class in smile.math.matrix
-
Matrix base class.
- IMatrix() - Constructor for class smile.math.matrix.fp32.IMatrix
- IMatrix() - Constructor for class smile.math.matrix.IMatrix
- IMatrix.Preconditioner - Interface in smile.math.matrix.fp32
-
The preconditioner matrix.
- IMatrix.Preconditioner - Interface in smile.math.matrix
-
The preconditioner matrix.
- importance - Variable in class smile.base.cart.CART
-
Variable importance.
- importance() - Method in class smile.base.cart.CART
-
Returns the variable importance.
- importance() - Method in class smile.classification.AdaBoost
-
Returns the variable importance.
- importance() - Method in class smile.classification.GradientTreeBoost
-
Returns the variable importance.
- importance() - Method in class smile.classification.RandomForest
-
Returns the variable importance.
- importance() - Method in class smile.regression.GradientTreeBoost
-
Returns the variable importance.
- importance() - Method in class smile.regression.RandomForest
-
Returns the variable importance.
- impurity() - Method in class smile.base.cart.RegressionNode
-
Returns the residual sum of squares.
- impurity(LeafNode) - Method in class smile.base.cart.CART
-
Returns the impurity of node.
- impurity(LeafNode) - Method in class smile.classification.DecisionTree
- impurity(LeafNode) - Method in class smile.regression.RegressionTree
- impurity(SplitRule) - Method in class smile.base.cart.DecisionNode
-
Returns the impurity of node.
- impurity(SplitRule, int, int[]) - Static method in class smile.base.cart.DecisionNode
-
Returns the impurity of samples.
- impute(double[][]) - Static method in class smile.feature.imputation.SimpleImputer
-
Impute the missing values with column averages.
- impute(double[][], int, int) - Static method in interface smile.feature.imputation.SVDImputer
-
Impute missing values in the dataset.
- impute(String, String) - Method in class smile.plot.vega.Transform
-
Adds an impute transform.
- ImputeTransform - Class in smile.plot.vega
-
The impute transform groups data and determines missing values of the key field within each group.
- in() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
in
record component. - IN - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Preposition or subordinating conjunction.
- increment() - Method in class smile.util.MutableInt
-
Increment by one.
- increment(int) - Method in class smile.util.MutableInt
-
Increment.
- index - Variable in class smile.base.cart.CART
-
An index of samples to their original locations in training dataset.
- index - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
-
The index to the matrix storage.
- index - Variable in class smile.math.matrix.SparseMatrix.Entry
-
The index to the matrix storage.
- index - Variable in class smile.util.IntSet
-
Map of values to index.
- index() - Method in class smile.deep.tensor.Device
-
Returns the device index or ordinal, which identifies the specific compute device when there is more than one of a certain type.
- index() - Method in record class smile.graph.NearestNeighborGraph
-
Returns the value of the
index
record component. - index() - Method in record class smile.neighbor.Neighbor
-
Returns the value of the
index
record component. - index() - Method in record class smile.util.SparseArray.Entry
-
Returns the value of the
index
record component. - index(int, int) - Method in class smile.math.matrix.BigMatrix
-
Returns the linearized index of matrix element.
- index(int, int) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the linearized index of matrix element.
- index(int, int) - Method in class smile.math.matrix.Matrix
-
Returns the linearized index of matrix element.
- Index - Class in smile.deep.tensor
-
Indexing a tensor.
- INDEX - Enum constant in enum class smile.math.blas.EigenRange
-
The IL-th through IU-th eigenvalues will be found.
- IndexDataFrame - Class in smile.data
-
A data frame with a new index instead of the default [0, n) row index.
- IndexDataFrame(DataFrame, int[]) - Constructor for class smile.data.IndexDataFrame
-
Constructor.
- indexOf(int) - Method in class smile.util.IntSet
-
Maps the value to index.
- indexOf(int[]) - Method in class smile.classification.ClassLabels
-
Maps the class labels to index.
- indexOf(String) - Method in interface smile.data.DataFrame
-
Returns the index of a given column name.
- indexOf(String) - Method in class smile.data.IndexDataFrame
- indexOf(String) - Method in interface smile.data.Tuple
-
Returns the index of a given field name.
- indexOf(String) - Method in class smile.data.type.StructType
-
Returns the index of a field.
- indexStream() - Method in class smile.util.SparseArray
-
Returns the stream of the indices of nonzero entries.
- infer(String) - Static method in interface smile.data.type.DataType
-
Infers the type of string.
- inferSchema(BufferedReader, int) - Method in class smile.io.JSON
-
Infer the schema from the top n rows.
- inferSchema(Reader, int) - Method in class smile.io.CSV
-
Infer the schema from the top n rows.
- info - Variable in class smile.math.matrix.BandMatrix.LU
-
If
info = 0
, the LU decomposition was successful. - info - Variable in class smile.math.matrix.BigMatrix.LU
-
If
info = 0
, the LU decomposition was successful. - info - Variable in class smile.math.matrix.fp32.BandMatrix.LU
-
If
info = 0
, the LU decomposition was successful. - info - Variable in class smile.math.matrix.fp32.Matrix.LU
-
If
info = 0
, the LU decomposition was successful. - info - Variable in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
If
info = 0
, the LU decomposition was successful. - info - Variable in class smile.math.matrix.Matrix.LU
-
If
info = 0
, the LU decomposition was successful. - info - Variable in class smile.math.matrix.SymmMatrix.BunchKaufman
-
If
info = 0
, the LU decomposition was successful. - InformationValue - Record Class in smile.feature.selection
-
Information Value (IV) measures the predictive strength of a feature for a binary dependent variable.
- InformationValue(String, double, double[], double[]) - Constructor for record class smile.feature.selection.InformationValue
-
Creates an instance of a
InformationValue
record class. - initHashTable(int, int, int, double, int) - Method in class smile.neighbor.LSH
-
Initialize the hash tables.
- initHashTable(int, int, int, double, int) - Method in class smile.neighbor.MPLSH
- innerRadius(double) - Method in class smile.plot.vega.Mark
-
Sets the secondary (inner) radius in pixels for arc mark.
- input(int) - Static method in class smile.base.mlp.Layer
-
Returns an input layer.
- input(int, double) - Static method in class smile.base.mlp.Layer
-
Returns an input layer.
- Input - Interface in smile.io
-
Static methods that return the InputStream/Reader of a file or URL.
- inputChannels() - Method in record class smile.vision.layer.MBConvConfig
-
Returns the value of the
inputChannels
record component. - InputLayer - Class in smile.base.mlp
-
An input layer in the neural network.
- InputLayer(int) - Constructor for class smile.base.mlp.InputLayer
-
Constructor.
- InputLayer(int, double) - Constructor for class smile.base.mlp.InputLayer
-
Constructor.
- insert(int) - Method in class smile.util.PriorityQueue
-
Insert a new item into queue.
- instance - Static variable in class smile.validation.metric.Accuracy
-
Default instance.
- instance - Static variable in class smile.validation.metric.AdjustedRandIndex
-
Default instance.
- instance - Static variable in class smile.validation.metric.AUC
-
Default instance.
- instance - Static variable in class smile.validation.metric.Error
-
Default instance.
- instance - Static variable in class smile.validation.metric.Fallout
-
Default instance.
- instance - Static variable in class smile.validation.metric.FDR
-
Default instance.
- instance - Static variable in class smile.validation.metric.LogLoss
-
Default instance.
- instance - Static variable in class smile.validation.metric.MAD
-
Default instance.
- instance - Static variable in class smile.validation.metric.MatthewsCorrelation
-
Default instance.
- instance - Static variable in class smile.validation.metric.MSE
-
Default instance.
- instance - Static variable in class smile.validation.metric.MutualInformation
-
Default instance.
- instance - Static variable in class smile.validation.metric.Precision
-
Default instance.
- instance - Static variable in class smile.validation.metric.R2
-
Default instance.
- instance - Static variable in class smile.validation.metric.RandIndex
-
Default instance.
- instance - Static variable in class smile.validation.metric.Recall
-
Default instance.
- instance - Static variable in class smile.validation.metric.RMSE
-
Default instance.
- instance - Static variable in class smile.validation.metric.RSS
-
Default instance.
- instance - Static variable in class smile.validation.metric.Sensitivity
-
Default instance.
- instance - Static variable in class smile.validation.metric.Specificity
-
Default instance.
- Int16 - Enum constant in enum class smile.deep.tensor.ScalarType
-
16-bit integer.
- Int32 - Enum constant in enum class smile.deep.tensor.ScalarType
-
32-bit integer.
- Int64 - Enum constant in enum class smile.deep.tensor.ScalarType
-
64-bit integer.
- Int8 - Enum constant in enum class smile.deep.tensor.ScalarType
-
8-bit integer.
- intArray() - Method in class smile.deep.tensor.Tensor
-
Returns the integer array of tensor elements
- IntArray2D - Class in smile.util
-
2-dimensional array of integers.
- IntArray2D(int[][]) - Constructor for class smile.util.IntArray2D
-
Constructor.
- IntArray2D(int, int) - Constructor for class smile.util.IntArray2D
-
Constructor of all-zero matrix.
- IntArray2D(int, int, int) - Constructor for class smile.util.IntArray2D
-
Constructor.
- IntArray2D(int, int, int[]) - Constructor for class smile.util.IntArray2D
-
Constructor.
- IntArrayList - Class in smile.util
-
A resizeable, array-backed list of integer primitives.
- IntArrayList() - Constructor for class smile.util.IntArrayList
-
Constructs an empty list.
- IntArrayList(int) - Constructor for class smile.util.IntArrayList
-
Constructs an empty list with the specified initial capacity.
- IntArrayList(int[]) - Constructor for class smile.util.IntArrayList
-
Constructs a list containing the values of the specified array.
- IntDoubleHashMap - Class in smile.util
-
HashMap<int, double>
for primitive types. - IntDoubleHashMap() - Constructor for class smile.util.IntDoubleHashMap
-
Constructs an empty HashMap with the default initial capacity (16) and the default load factor (0.75).
- IntDoubleHashMap(int, float) - Constructor for class smile.util.IntDoubleHashMap
-
Constructor.
- Integer - Enum constant in enum class smile.data.type.DataType.ID
-
Integer type ID.
- INTEGER - Static variable in class smile.swing.table.NumberCellRenderer
- INTEGER - Static variable in interface smile.util.Regex
-
Integer regular expression pattern.
- INTEGER_REGEX - Static variable in interface smile.util.Regex
-
Integer regular expression.
- IntegerArrayCellEditor - Class in smile.swing.table
-
Implements a cell editor that uses a formatted text field to edit int[] values.
- IntegerArrayCellEditor() - Constructor for class smile.swing.table.IntegerArrayCellEditor
-
Constructor.
- IntegerArrayCellRenderer - Class in smile.swing.table
-
Integer array renderer in JTable.
- IntegerArrayCellRenderer() - Constructor for class smile.swing.table.IntegerArrayCellRenderer
-
Constructor.
- IntegerArrayFormatter - Class in smile.swing.text
-
Text formatter for integer array values.
- IntegerArrayFormatter() - Constructor for class smile.swing.text.IntegerArrayFormatter
- IntegerArrayType - Static variable in class smile.data.type.DataTypes
-
Integer Array data type.
- IntegerCellEditor - Class in smile.swing.table
-
Implements a cell editor that uses a formatted text field to edit Integer values.
- IntegerCellEditor() - Constructor for class smile.swing.table.IntegerCellEditor
-
Constructor.
- IntegerCellEditor(int, int) - Constructor for class smile.swing.table.IntegerCellEditor
-
Constructor.
- IntegerObjectType - Static variable in class smile.data.type.DataTypes
-
Integer Object data type.
- IntegerType - Class in smile.data.type
-
Integer data type.
- IntegerType - Static variable in class smile.data.type.DataTypes
-
Integer data type.
- interact(String...) - Static method in interface smile.data.formula.Terms
-
Factor interaction of two or more factors.
- intercept() - Method in class smile.base.svm.KernelMachine
-
Returns the intercept.
- intercept() - Method in class smile.regression.LinearModel
-
Returns the intercept.
- intercept() - Method in class smile.timeseries.AR
-
Returns the intercept.
- intercept() - Method in class smile.timeseries.ARMA
-
Returns the intercept.
- intercept(double[]) - Method in interface smile.base.cart.Loss
-
Returns the intercept of model.
- Intercept - Record Class in smile.data.formula
-
The flag if intercept should be included in the model.
- Intercept(boolean) - Constructor for record class smile.data.formula.Intercept
-
Creates an instance of a
Intercept
record class. - InternalNode - Class in smile.base.cart
-
An internal node in CART.
- InternalNode(int, double, double, Node, Node) - Constructor for class smile.base.cart.InternalNode
-
Constructor.
- interpolate(double) - Method in class smile.interpolation.AbstractInterpolation
- interpolate(double) - Method in interface smile.interpolation.Interpolation
-
Given a value x, return an interpolated value.
- interpolate(double) - Method in class smile.interpolation.KrigingInterpolation1D
- interpolate(double) - Method in class smile.interpolation.RBFInterpolation1D
- interpolate(double) - Method in class smile.interpolation.ShepardInterpolation1D
- interpolate(double...) - Method in class smile.interpolation.KrigingInterpolation
-
Interpolate the function at given point.
- interpolate(double...) - Method in class smile.interpolation.RBFInterpolation
-
Interpolate the function at given point.
- interpolate(double...) - Method in class smile.interpolation.ShepardInterpolation
-
Interpolate the function at given point.
- interpolate(double[][]) - Static method in class smile.interpolation.LaplaceInterpolation
-
Laplace interpolation.
- interpolate(double[][], double) - Static method in class smile.interpolation.LaplaceInterpolation
-
Laplace interpolation.
- interpolate(double[][], double, int) - Static method in class smile.interpolation.LaplaceInterpolation
-
Laplace interpolation.
- interpolate(double, double) - Method in class smile.interpolation.BicubicInterpolation
- interpolate(double, double) - Method in class smile.interpolation.BilinearInterpolation
- interpolate(double, double) - Method in class smile.interpolation.CubicSplineInterpolation2D
- interpolate(double, double) - Method in interface smile.interpolation.Interpolation2D
-
Interpolate the data at a given 2-dimensional point.
- interpolate(double, double) - Method in class smile.interpolation.KrigingInterpolation2D
- interpolate(double, double) - Method in class smile.interpolation.RBFInterpolation2D
- interpolate(double, double) - Method in class smile.interpolation.ShepardInterpolation2D
- interpolate(String) - Method in class smile.plot.vega.Mark
-
Sets the line interpolation method to use for line and area marks.
- Interpolation - Interface in smile.interpolation
-
In numerical analysis, interpolation is a method of constructing new data points within the range of a discrete set of known data points.
- Interpolation2D - Interface in smile.interpolation
-
Interpolation of 2-dimensional data.
- IntervalScale - Class in smile.data.measure
-
The interval scale allows for the degree of difference between items, but not the ratio between them.
- IntervalScale(NumberFormat) - Constructor for class smile.data.measure.IntervalScale
-
Constructor.
- IntFunction - Class in smile.data.formula
-
The generic term of applying an integer function.
- IntFunction - Interface in smile.math
-
An interface representing a univariate int function.
- IntFunction(String, Term, IntFunction) - Constructor for class smile.data.formula.IntFunction
-
Constructor.
- IntHashSet - Class in smile.util
-
HashSet<int>
for primitive types. - IntHashSet() - Constructor for class smile.util.IntHashSet
-
Constructs an empty HashSet with the default initial capacity (16) and the default load factor (0.75).
- IntHashSet(int, float) - Constructor for class smile.util.IntHashSet
-
Constructor.
- IntHeapSelect - Class in smile.sort
-
This class tracks the smallest values seen thus far in a stream of values.
- IntHeapSelect(int) - Constructor for class smile.sort.IntHeapSelect
-
Constructor.
- IntHeapSelect(int[]) - Constructor for class smile.sort.IntHeapSelect
-
Constructor.
- IntPair - Record Class in smile.util
-
A tuple of 2 integer elements.
- IntPair(int, int) - Constructor for record class smile.util.IntPair
-
Creates an instance of a
IntPair
record class. - IntSet - Class in smile.util
-
A set of integers.
- IntSet(int[]) - Constructor for class smile.util.IntSet
-
Constructor.
- intValue() - Method in class smile.deep.tensor.Tensor
-
Returns the int value when the tensor holds a single value.
- intVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- intVector(int) - Method in class smile.data.IndexDataFrame
- intVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- intVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- IntVector - Interface in smile.data.vector
-
An immutable integer vector.
- inv(double) - Method in interface smile.math.Function
-
Computes the value of the inverse function at x.
- inv(double) - Method in class smile.math.Scaler
- invalid(String) - Method in class smile.plot.vega.Mark
-
Sets how Vega-Lite should handle marks for invalid values (null and NaN).
- inverf(double) - Static method in class smile.math.special.Erf
-
The inverse error function.
- inverfc(double) - Static method in class smile.math.special.Erf
-
The inverse complementary error function.
- inverse() - Method in class smile.math.matrix.BandMatrix.Cholesky
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.BandMatrix.LU
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.BigMatrix.Cholesky
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.BigMatrix
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.BigMatrix.LU
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.fp32.BandMatrix.LU
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.fp32.Matrix.Cholesky
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.fp32.Matrix.LU
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.Matrix.Cholesky
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.Matrix
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.Matrix.LU
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
-
Returns the inverse of matrix.
- inverse() - Method in class smile.math.matrix.SymmMatrix.Cholesky
-
Returns the inverse of matrix.
- inverse(double[]) - Method in class smile.wavelet.Wavelet
-
Inverse discrete wavelet transform.
- inverse(double, double) - Static method in interface smile.math.TimeFunction
-
Returns the inverse decay function.
- inverse(double, double, double) - Static method in interface smile.math.TimeFunction
-
Returns the inverse decay function.
- inverse(double, double, double, boolean) - Static method in interface smile.math.TimeFunction
-
Returns the inverse decay function.
- inverseCDF() - Method in class smile.stat.distribution.GaussianDistribution
-
Generates a Gaussian random number with the inverse CDF method.
- InverseMultiquadricRadialBasis - Class in smile.math.rbf
-
Inverse multiquadric RBF.
- InverseMultiquadricRadialBasis() - Constructor for class smile.math.rbf.InverseMultiquadricRadialBasis
-
Constructor.
- InverseMultiquadricRadialBasis(double) - Constructor for class smile.math.rbf.InverseMultiquadricRadialBasis
-
Constructor.
- inverseRegularizedIncompleteBetaFunction(double, double, double) - Static method in class smile.math.special.Beta
-
Inverse of regularized incomplete beta function.
- inverseRegularizedIncompleteGamma(double, double) - Static method in class smile.math.special.Gamma
-
The inverse of regularized incomplete gamma function.
- inverseTransformSampling() - Method in interface smile.stat.distribution.Distribution
-
Use inverse transform sampling (also known as the inverse probability integral transform or inverse transformation method or Smirnov transform) to draw a sample from the given distribution.
- invert(DataFrame) - Method in class smile.data.transform.InvertibleColumnTransform
- invert(DataFrame) - Method in interface smile.data.transform.InvertibleTransform
-
Inverse transform a data frame.
- invert(Tuple) - Method in class smile.data.transform.InvertibleColumnTransform
- invert(Tuple) - Method in interface smile.data.transform.InvertibleTransform
-
Inverse transform a tuple.
- InvertibleColumnTransform - Class in smile.data.transform
-
Invertible column-wise transformation.
- InvertibleColumnTransform(String, Map<String, Function>, Map<String, Function>) - Constructor for class smile.data.transform.InvertibleColumnTransform
-
Constructor.
- InvertibleTransform - Interface in smile.data.transform
-
Invertible data transformation.
- invlink(double) - Method in interface smile.glm.model.Model
-
The inverse of link function (aka the mean function).
- ipiv - Variable in class smile.math.matrix.BandMatrix.LU
-
The pivot vector.
- ipiv - Variable in class smile.math.matrix.BigMatrix.LU
-
The pivot vector.
- ipiv - Variable in class smile.math.matrix.fp32.BandMatrix.LU
-
The pivot vector.
- ipiv - Variable in class smile.math.matrix.fp32.Matrix.LU
-
The pivot vector.
- ipiv - Variable in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
The pivot vector.
- ipiv - Variable in class smile.math.matrix.Matrix.LU
-
The pivot vector.
- ipiv - Variable in class smile.math.matrix.SymmMatrix.BunchKaufman
-
The pivot vector.
- ipython - Enum constant in enum class smile.llm.Role
-
Python code.
- IQAgent - Class in smile.sort
-
Incremental quantile estimation.
- IQAgent() - Constructor for class smile.sort.IQAgent
-
Constructor.
- IQAgent(int) - Constructor for class smile.sort.IQAgent
-
Constructor.
- isAncestorOf(Concept) - Method in class smile.taxonomy.Concept
-
Returns true if this concept is an ancestor of the given concept.
- isAvailable() - Static method in interface smile.deep.CUDA
-
Returns true if CUDA is available.
- isBF16Supported() - Static method in class smile.deep.tensor.Tensor
-
Checks if the CUDA device supports bf16.
- isBoolean() - Method in class smile.data.type.BooleanType
- isBoolean() - Method in interface smile.data.type.DataType
-
Returns true if the type is boolean or Boolean.
- isBoolean() - Method in class smile.data.type.ObjectType
- isByte() - Method in class smile.data.type.ByteType
- isByte() - Method in interface smile.data.type.DataType
-
Returns true if the type is byte or Byte.
- isByte() - Method in class smile.data.type.ObjectType
- isCellEditable(int, int) - Method in class smile.swing.Table.RowHeader
-
Don't edit data in the main TableModel by mistake
- isChar() - Method in class smile.data.type.CharType
- isChar() - Method in interface smile.data.type.DataType
-
Returns true if the type is char or Char.
- isChar() - Method in class smile.data.type.ObjectType
- isCPU() - Method in class smile.deep.tensor.Device
-
Returns true if the device is CPU.
- isCUDA() - Method in class smile.deep.tensor.Device
-
Returns true if the device is CUDA.
- isDigraph() - Method in class smile.graph.Graph
-
Return true if the graph is directed.
- isDouble() - Method in interface smile.data.type.DataType
-
Returns true if the type is double or Double.
- isDouble() - Method in class smile.data.type.DoubleType
- isDouble() - Method in class smile.data.type.ObjectType
- isDouble(DataType) - Static method in interface smile.data.type.DataType
-
Returns true if the given type is of double, either primitive or boxed.
- isEmpty() - Method in interface smile.data.DataFrame
-
Returns true if the data frame is empty.
- isEmpty() - Method in interface smile.data.Dataset
-
Returns true if the dataset is empty.
- isEmpty() - Method in class smile.plot.swing.Isoline
-
Returns true if the isoline doesn't have any points.
- isEmpty() - Method in class smile.util.DoubleArrayList
-
Returns true if this list contains no values.
- isEmpty() - Method in class smile.util.IntArrayList
-
Returns true if this list contains no values.
- isEmpty() - Method in class smile.util.PairingHeap
- isEmpty() - Method in class smile.util.PriorityQueue
-
Returns true if the queue is empty.
- isEmpty() - Method in class smile.util.SparseArray
-
Returns true if the array is empty.
- isExpandable() - Method in class smile.neighbor.lsh.Probe
-
Returns true if the probe is expandable.
- isExtendable() - Method in class smile.neighbor.lsh.Probe
-
Returns true if the probe is extendable.
- isFloat() - Method in interface smile.data.type.DataType
-
Returns true if the type is float or Float.
- isFloat() - Method in class smile.data.type.FloatType
- isFloat() - Method in class smile.data.type.ObjectType
- isFloat(DataType) - Static method in interface smile.data.type.DataType
-
Returns true if the given type is of float, either primitive or boxed.
- isFloating() - Method in interface smile.data.type.DataType
-
Returns true if the type is float or double.
- isFrameVisible() - Method in class smile.plot.swing.Axis
-
Returns the visibility of the frame grid lines and their labels.
- isGridVisible() - Method in class smile.plot.swing.Axis
-
Returns the visibility of the grid lines and their labels.
- isin(Tensor) - Method in class smile.deep.tensor.Tensor
-
Tests if each element of this tensor is in other tensor.
- isInplace() - Method in class smile.deep.activation.ActivationFunction
-
Returns true if the operation executes in-place.
- isInt() - Method in interface smile.data.type.DataType
-
Returns true if the type is int or Integer.
- isInt() - Method in class smile.data.type.IntegerType
- isInt() - Method in class smile.data.type.ObjectType
- isInt(double) - Static method in class smile.math.MathEx
-
Returns true if x is an integer.
- isInt(float) - Static method in class smile.math.MathEx
-
Returns true if x is an integer.
- isInt(DataType) - Static method in interface smile.data.type.DataType
-
Returns true if the given type is of int, short, byte, char, either primitive or boxed.
- isIntegral() - Method in interface smile.data.type.DataType
-
Returns true if the type is int, long, short or byte.
- isLeaf() - Method in class smile.taxonomy.Concept
-
Check if a node is a leaf in the taxonomy tree.
- isLegendVisible() - Method in class smile.plot.swing.Canvas
-
Returns true if legends are visible.
- isLong() - Method in interface smile.data.type.DataType
-
Returns true if the type is long or Long.
- isLong() - Method in class smile.data.type.LongType
- isLong() - Method in class smile.data.type.ObjectType
- isLong(DataType) - Static method in interface smile.data.type.DataType
-
Returns true if the given type is of long, either primitive or boxed.
- isMPS() - Method in class smile.deep.tensor.Device
-
Returns true if the device is MPS.
- isNormalized() - Method in class smile.classification.RBFNetwork
-
Returns true if the model is normalized.
- isNormalized() - Method in class smile.regression.RBFNetwork
-
Returns true if the model is normalized.
- isNullAt(int) - Method in interface smile.data.Tuple
-
Checks whether the value at position i is null.
- isNullAt(int) - Method in interface smile.data.vector.Vector
-
Checks if the value at position i is null.
- isNullAt(int, int) - Method in interface smile.data.DataFrame
-
Checks whether the value at position (i, j) is null.
- isNullAt(int, String) - Method in interface smile.data.DataFrame
-
Checks whether the field value is null.
- isNullAt(String) - Method in interface smile.data.Tuple
-
Checks whether the field value is null.
- isNullOrEmpty(String) - Static method in interface smile.util.Strings
-
Returns true if the string is null or empty.
- isNumeric() - Method in interface smile.data.type.DataType
-
Returns true if the type is numeric (integral or floating).
- isNumeric() - Method in class smile.data.type.StructField
-
Returns true if the field is of integer or floating but not nominal scale.
- ISO8601 - Static variable in class smile.swing.table.DateCellEditor
- ISO8601 - Static variable in class smile.swing.table.DateCellRenderer
- isObject() - Method in interface smile.data.type.DataType
-
Returns true if the type is ObjectType.
- isObject() - Method in class smile.data.type.ObjectType
- isObject() - Method in class smile.data.type.StringType
- IsolationForest - Class in smile.anomaly
-
Isolation forest is an unsupervised learning algorithm for anomaly detection that works on the principle of isolating anomalies.
- IsolationForest(int, int, IsolationTree...) - Constructor for class smile.anomaly.IsolationForest
-
Constructor.
- IsolationTree - Class in smile.anomaly
-
Isolation tree.
- IsolationTree(List<double[]>, int, int) - Constructor for class smile.anomaly.IsolationTree
-
Constructor.
- Isoline - Class in smile.plot.swing
-
Contour contains a list of segments.
- Isoline(double, boolean) - Constructor for class smile.plot.swing.Isoline
-
Constructor.
- IsoMap - Class in smile.manifold
-
Isometric feature mapping.
- IsoMap() - Constructor for class smile.manifold.IsoMap
- IsotonicMDS - Record Class in smile.manifold
-
Kruskal's non-metric MDS.
- IsotonicMDS(double, double[][]) - Constructor for record class smile.manifold.IsotonicMDS
-
Creates an instance of a
IsotonicMDS
record class. - IsotonicRegressionScaling - Class in smile.classification
-
A method to calibrate decision function value to probability.
- IsotonicRegressionScaling(double[], double[]) - Constructor for class smile.classification.IsotonicRegressionScaling
-
Constructor.
- IsotropicKernel - Interface in smile.math.kernel
-
Isotropic kernel.
- isPower2(int) - Static method in class smile.math.MathEx
-
Returns true if x is a power of 2.
- isPrimitive() - Method in interface smile.data.type.DataType
-
Returns true if this is a primitive data type.
- isProbablePrime(long, int) - Static method in class smile.math.MathEx
-
Returns true if n is probably prime, false if it's definitely composite.
- isShiftable() - Method in class smile.neighbor.lsh.Probe
-
Returns true if the probe is shiftable.
- isShort() - Method in interface smile.data.type.DataType
-
Returns true if the type is short or Short.
- isShort() - Method in class smile.data.type.ObjectType
- isShort() - Method in class smile.data.type.ShortType
- isSingular() - Method in class smile.math.matrix.BandMatrix.LU
-
Returns true if the matrix is singular.
- isSingular() - Method in class smile.math.matrix.BigMatrix.LU
-
Returns true if the matrix is singular.
- isSingular() - Method in class smile.math.matrix.fp32.BandMatrix.LU
-
Returns true if the matrix is singular.
- isSingular() - Method in class smile.math.matrix.fp32.Matrix.LU
-
Returns true if the matrix is singular.
- isSingular() - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
Returns true if the matrix is singular.
- isSingular() - Method in class smile.math.matrix.Matrix.LU
-
Returns true if the matrix is singular.
- isSingular() - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
-
Returns true if the matrix is singular.
- isSpecialTokenAllowed() - Method in class smile.llm.tokenizer.Tiktoken
-
Returns how special tokens will be encoded.
- isString() - Method in interface smile.data.type.DataType
-
Returns true if the type is String.
- isString() - Method in class smile.data.type.StringType
- isSymmetric() - Method in class smile.math.matrix.BandMatrix
-
Return true if the matrix is symmetric (uplo != null).
- isSymmetric() - Method in class smile.math.matrix.BigMatrix
-
Return true if the matrix is symmetric (
uplo != null && diag == null
). - isSymmetric() - Method in class smile.math.matrix.fp32.BandMatrix
-
Return true if the matrix is symmetric (uplo != null).
- isSymmetric() - Method in class smile.math.matrix.fp32.Matrix
-
Return true if the matrix is symmetric (
uplo != null && diag == null
). - isSymmetric() - Method in class smile.math.matrix.Matrix
-
Return true if the matrix is symmetric (
uplo != null && diag == null
). - isTickVisible() - Method in class smile.plot.swing.Axis
-
Returns the visibility of the axis label.
- isTraining() - Method in class smile.deep.layer.LayerBlock
-
Returns true if the layer block is in training mode.
- isVariable() - Method in interface smile.data.formula.Feature
-
Returns true if the term represents a plain variable/column in the data frame.
- isZero(double) - Static method in class smile.math.MathEx
-
Tests if a floating number is zero in machine precision.
- isZero(double, double) - Static method in class smile.math.MathEx
-
Tests if a floating number is zero in given precision.
- isZero(float) - Static method in class smile.math.MathEx
-
Tests if a floating number is zero in machine precision.
- isZero(float, float) - Static method in class smile.math.MathEx
-
Tests if a floating number is zero in given precision.
- items() - Method in record class smile.association.ItemSet
-
Returns the value of the
items
record component. - ItemSet - Record Class in smile.association
-
A set of items.
- ItemSet(int[], int) - Constructor for record class smile.association.ItemSet
-
Creates an instance of a
ItemSet
record class. - iterator() - Method in class smile.association.ARM
- iterator() - Method in class smile.association.FPGrowth
- iterator() - Method in class smile.data.IndexDataFrame
- iterator() - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns the iterator of nonzero entries.
- iterator() - Method in class smile.math.matrix.SparseMatrix
-
Returns the iterator of nonzero entries.
- iterator() - Method in interface smile.nlp.dictionary.Dictionary
-
Returns an iterator over the words in this dictionary.
- iterator() - Method in enum class smile.nlp.dictionary.EnglishDictionary
- iterator() - Method in class smile.nlp.dictionary.EnglishPunctuations
- iterator() - Method in enum class smile.nlp.dictionary.EnglishStopWords
- iterator() - Method in class smile.nlp.dictionary.SimpleDictionary
- iterator() - Method in class smile.util.PairingHeap
- iterator() - Method in class smile.util.SparseArray
- iterator() - Method in class smile.vision.ImageDataset
- iterator(int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns the iterator of nonzero entries.
- iterator(int, int) - Method in class smile.math.matrix.SparseMatrix
-
Returns the iterator of nonzero entries.
- iv() - Method in record class smile.feature.selection.InformationValue
-
Returns the value of the
iv
record component.
J
- j - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
-
The column index.
- j - Variable in class smile.math.matrix.SparseMatrix.Entry
-
The column index.
- JaccardDistance<T> - Class in smile.math.distance
-
The Jaccard index, also known as the Jaccard similarity coefficient is a statistic used for comparing the similarity and diversity of sample sets.
- JaccardDistance() - Constructor for class smile.math.distance.JaccardDistance
-
Constructor.
- Jacobi() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns a simple Jacobi preconditioner matrix that is the trivial diagonal part of A in some cases.
- Jacobi() - Method in class smile.math.matrix.IMatrix
-
Returns a simple Jacobi preconditioner matrix that is the trivial diagonal part of A in some cases.
- JensenShannonDistance - Class in smile.math.distance
-
The Jensen-Shannon divergence is a popular method of measuring the similarity between two probability distributions.
- JensenShannonDistance() - Constructor for class smile.math.distance.JensenShannonDistance
-
Constructor.
- JensenShannonDivergence(double[], double[]) - Static method in class smile.math.MathEx
-
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
- JensenShannonDivergence(double[], SparseArray) - Static method in class smile.math.MathEx
-
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
- JensenShannonDivergence(SparseArray, double[]) - Static method in class smile.math.MathEx
-
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
- JensenShannonDivergence(SparseArray, SparseArray) - Static method in class smile.math.MathEx
-
Jensen-Shannon divergence JS(P||Q) = (KL(P||M) + KL(Q||M)) / 2, where M = (P+Q)/2.
- jet(int) - Static method in interface smile.plot.swing.Palette
-
Generate jet color palette.
- jet(int, float) - Static method in interface smile.plot.swing.Palette
-
Generate jet color palette.
- JJ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Adjective.
- JJR - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Adjective, comparative.
- JJS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Adjective, superlative.
- joinAggregate(String, String, String, String...) - Method in class smile.plot.vega.Transform
-
The join-aggregate transform extends the input data objects with aggregate values in a new field.
- joint(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / H(y1, y2).
- JOINT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / H(y1, y2)
- JOINT - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with max normalization.
- JointPrediction(T[], double[], double[], Matrix) - Constructor for class smile.regression.GaussianProcessRegression.JointPrediction
-
Constructor.
- json(String) - Static method in interface smile.io.Read
-
Reads a JSON file.
- json(String, String) - Method in class smile.plot.vega.Data
-
Loads a JSON file.
- json(String, String...) - Method in class smile.data.SQL
-
Creates an in-memory table from json files.
- json(String, String, Map<String, String>, String...) - Method in class smile.data.SQL
-
Creates an in-memory table from json files.
- json(String, JSON.Mode, StructType) - Static method in interface smile.io.Read
-
Reads a JSON file.
- json(Path) - Static method in interface smile.io.Read
-
Reads a JSON file.
- json(Path, JSON.Mode, StructType) - Static method in interface smile.io.Read
-
Reads a JSON file.
- JSON - Class in smile.io
-
Reads JSON datasets.
- JSON() - Constructor for class smile.io.JSON
-
Constructor.
- JSON.Mode - Enum Class in smile.io
-
JSON files in single-line or multi-line mode.
K
- k - Variable in class smile.classification.ClassLabels
-
The number of classes.
- k - Variable in class smile.clustering.PartitionClustering
-
The number of clusters.
- k - Variable in class smile.neighbor.LSH
-
The number of random projections per hash value.
- k - Variable in class smile.stat.distribution.GammaDistribution
-
The shape parameter.
- k - Variable in class smile.stat.distribution.WeibullDistribution
-
The shape parameter.
- k() - Method in record class smile.graph.NearestNeighborGraph
-
Returns the value of the
k
record component. - k(double) - Method in class smile.math.kernel.BinarySparseLinearKernel
- k(double) - Method in interface smile.math.kernel.DotProductKernel
-
Computes the dot product kernel function.
- k(double) - Method in class smile.math.kernel.Gaussian
- k(double) - Method in class smile.math.kernel.HyperbolicTangent
- k(double) - Method in interface smile.math.kernel.IsotropicKernel
-
Computes the isotropic kernel function.
- k(double) - Method in class smile.math.kernel.Laplacian
- k(double) - Method in class smile.math.kernel.LinearKernel
- k(double) - Method in class smile.math.kernel.Matern
- k(double) - Method in class smile.math.kernel.Polynomial
- k(double) - Method in class smile.math.kernel.SparseLinearKernel
- k(double) - Method in class smile.math.kernel.ThinPlateSpline
- k(double[], double[]) - Method in class smile.math.kernel.GaussianKernel
- k(double[], double[]) - Method in class smile.math.kernel.HellingerKernel
- k(double[], double[]) - Method in class smile.math.kernel.HyperbolicTangentKernel
- k(double[], double[]) - Method in class smile.math.kernel.LaplacianKernel
- k(double[], double[]) - Method in class smile.math.kernel.LinearKernel
- k(double[], double[]) - Method in class smile.math.kernel.MaternKernel
- k(double[], double[]) - Method in class smile.math.kernel.PearsonKernel
- k(double[], double[]) - Method in class smile.math.kernel.PolynomialKernel
- k(double[], double[]) - Method in class smile.math.kernel.ThinPlateSplineKernel
- k(int[], int[]) - Method in class smile.math.kernel.BinarySparseGaussianKernel
- k(int[], int[]) - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
- k(int[], int[]) - Method in class smile.math.kernel.BinarySparseLaplacianKernel
- k(int[], int[]) - Method in class smile.math.kernel.BinarySparseLinearKernel
- k(int[], int[]) - Method in class smile.math.kernel.BinarySparseMaternKernel
- k(int[], int[]) - Method in class smile.math.kernel.BinarySparsePolynomialKernel
- k(int[], int[]) - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
- k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseGaussianKernel
- k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
- k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLaplacianKernel
- k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLinearKernel
- k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseMaternKernel
- k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparsePolynomialKernel
- k(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseThinPlateSplineKernel
- k(T, T) - Method in interface smile.math.kernel.MercerKernel
-
Kernel function.
- k(T, T) - Method in class smile.math.kernel.ProductKernel
- k(T, T) - Method in class smile.math.kernel.SumKernel
- K(Matrix) - Method in interface smile.math.kernel.DotProductKernel
-
Computes the kernel matrix.
- K(Matrix) - Method in interface smile.math.kernel.IsotropicKernel
-
Computes the kernel matrix.
- K(T[]) - Method in interface smile.math.kernel.MercerKernel
-
Computes the kernel matrix.
- K(T[], T[]) - Method in interface smile.math.kernel.MercerKernel
-
Returns the kernel matrix.
- KDTree<E> - Class in smile.neighbor
-
A KD-tree (short for k-dimensional tree) is a space-partitioning dataset structure for organizing points in a k-dimensional space.
- KDTree(double[][], E[]) - Constructor for class smile.neighbor.KDTree
-
Constructor.
- kendall(double[], double[]) - Static method in class smile.math.MathEx
-
The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant.
- kendall(double[], double[]) - Static method in record class smile.stat.hypothesis.CorTest
-
Kendall rank correlation test.
- kendall(float[], float[]) - Static method in class smile.math.MathEx
-
The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant.
- kendall(int[], int[]) - Static method in class smile.math.MathEx
-
The Kendall Tau Rank Correlation Coefficient is used to measure the degree of correspondence between sets of rankings where the measures are not equidistant.
- kernel - Variable in class smile.regression.GaussianProcessRegression
-
The covariance/kernel function.
- kernel() - Method in class smile.base.svm.KernelMachine
-
Returns the kernel function.
- kernel() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
kernel
record component. - kernel() - Method in record class smile.vision.layer.MBConvConfig
-
Returns the value of the
kernel
record component. - KernelDensity - Class in smile.stat.distribution
-
Kernel density estimation is a non-parametric way of estimating the probability density function of a random variable.
- KernelDensity(double[]) - Constructor for class smile.stat.distribution.KernelDensity
-
Constructor.
- KernelDensity(double[], double) - Constructor for class smile.stat.distribution.KernelDensity
-
Constructor.
- KernelMachine<T> - Class in smile.base.svm
-
Kernel machines.
- KernelMachine<T> - Class in smile.regression
-
The learning methods building on kernels.
- KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.base.svm.KernelMachine
-
Constructor.
- KernelMachine(MercerKernel<T>, T[], double[]) - Constructor for class smile.regression.KernelMachine
-
Constructor.
- KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.base.svm.KernelMachine
-
Constructor.
- KernelMachine(MercerKernel<T>, T[], double[], double) - Constructor for class smile.regression.KernelMachine
-
Constructor.
- KernelPCA - Class in smile.feature.extraction
-
Kernel PCA transform.
- KernelPCA(KPCA<double[]>, String...) - Constructor for class smile.feature.extraction.KernelPCA
-
Constructor.
- key() - Method in record class smile.neighbor.Neighbor
-
Returns the value of the
key
record component. - keys - Variable in class smile.neighbor.LSH
-
The object keys.
- keys() - Method in class smile.neighbor.MutableLSH
-
Returns the keys.
- keyvals(double[]) - Method in class smile.plot.vega.ImputeTransform
-
Sets the key values that should be considered for imputation.
- keyvals(double, double, double) - Method in class smile.plot.vega.ImputeTransform
-
Sets the sequence of key values that should be considered for imputation.
- keywords() - Method in class smile.taxonomy.Concept
-
Returns the concept synonym set.
- kg(double) - Method in class smile.math.kernel.BinarySparseLinearKernel
- kg(double) - Method in interface smile.math.kernel.DotProductKernel
-
Computes the dot product kernel function and its gradient over hyperparameters.
- kg(double) - Method in class smile.math.kernel.Gaussian
- kg(double) - Method in class smile.math.kernel.HyperbolicTangent
- kg(double) - Method in interface smile.math.kernel.IsotropicKernel
-
Computes the isotropic kernel function and its gradient over hyperparameters.
- kg(double) - Method in class smile.math.kernel.Laplacian
- kg(double) - Method in class smile.math.kernel.LinearKernel
- kg(double) - Method in class smile.math.kernel.Matern
- kg(double) - Method in class smile.math.kernel.Polynomial
- kg(double) - Method in class smile.math.kernel.SparseLinearKernel
- kg(double) - Method in class smile.math.kernel.ThinPlateSpline
- kg(double[], double[]) - Method in class smile.math.kernel.GaussianKernel
- kg(double[], double[]) - Method in class smile.math.kernel.HellingerKernel
- kg(double[], double[]) - Method in class smile.math.kernel.HyperbolicTangentKernel
- kg(double[], double[]) - Method in class smile.math.kernel.LaplacianKernel
- kg(double[], double[]) - Method in class smile.math.kernel.LinearKernel
- kg(double[], double[]) - Method in class smile.math.kernel.MaternKernel
- kg(double[], double[]) - Method in class smile.math.kernel.PearsonKernel
- kg(double[], double[]) - Method in class smile.math.kernel.PolynomialKernel
- kg(double[], double[]) - Method in class smile.math.kernel.ThinPlateSplineKernel
- kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseGaussianKernel
- kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
- kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseLaplacianKernel
- kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseLinearKernel
- kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseMaternKernel
- kg(int[], int[]) - Method in class smile.math.kernel.BinarySparsePolynomialKernel
- kg(int[], int[]) - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
- kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseGaussianKernel
- kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
- kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLaplacianKernel
- kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseLinearKernel
- kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseMaternKernel
- kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparsePolynomialKernel
- kg(SparseArray, SparseArray) - Method in class smile.math.kernel.SparseThinPlateSplineKernel
- kg(T, T) - Method in interface smile.math.kernel.MercerKernel
-
Computes the kernel and its gradient over hyperparameters.
- kg(T, T) - Method in class smile.math.kernel.ProductKernel
- kg(T, T) - Method in class smile.math.kernel.SumKernel
- KG(Matrix) - Method in interface smile.math.kernel.IsotropicKernel
-
Computes the kernel and gradient matrices.
- KG(T[]) - Method in interface smile.math.kernel.MercerKernel
-
Computes the kernel and gradient matrices.
- kl() - Static method in interface smile.deep.Loss
-
Kullback-Leibler Divergence Loss Function.
- kl() - Method in class smile.math.matrix.BandMatrix
-
Returns the number of subdiagonals.
- kl() - Method in class smile.math.matrix.fp32.BandMatrix
-
Returns the number of subdiagonals.
- KMeans - Class in smile.clustering
-
K-Means clustering.
- KMeans(double, double[][], int[]) - Constructor for class smile.clustering.KMeans
-
Constructor.
- KMedoidsImputer - Class in smile.feature.imputation
-
Missing value imputation by K-Medoids clustering.
- KMedoidsImputer(CLARANS<Tuple>) - Constructor for class smile.feature.imputation.KMedoidsImputer
-
Constructor.
- KModes - Class in smile.clustering
-
K-Modes clustering.
- KModes(double, int[][], int[]) - Constructor for class smile.clustering.KModes
-
Constructor.
- KNN<T> - Class in smile.classification
-
K-nearest neighbor classifier.
- KNN(KNNSearch<T, T>, int[], int) - Constructor for class smile.classification.KNN
-
Constructor.
- KNNImputer - Class in smile.feature.imputation
-
Missing value imputation with k-nearest neighbors.
- KNNImputer(DataFrame, int, String...) - Constructor for class smile.feature.imputation.KNNImputer
-
Constructor with Euclidean distance on selected columns.
- KNNImputer(DataFrame, int, Distance<Tuple>) - Constructor for class smile.feature.imputation.KNNImputer
-
Constructor.
- KNNSearch<K,
V> - Interface in smile.neighbor -
Retrieves the top k nearest neighbors to the query.
- kpca - Variable in class smile.feature.extraction.KernelPCA
-
Kernel PCA.
- KPCA<T> - Class in smile.manifold
-
Kernel principal component analysis.
- KPCA(T[], MercerKernel<T>, double[], double, double[][], double[], Matrix) - Constructor for class smile.manifold.KPCA
-
Constructor.
- KrigingInterpolation - Class in smile.interpolation
-
Kriging interpolation for the data points irregularly distributed in space.
- KrigingInterpolation(double[][], double[]) - Constructor for class smile.interpolation.KrigingInterpolation
-
Constructor.
- KrigingInterpolation(double[][], double[], Variogram, double[]) - Constructor for class smile.interpolation.KrigingInterpolation
-
Constructor.
- KrigingInterpolation1D - Class in smile.interpolation
-
Kriging interpolation for the data points irregularly distributed in space.
- KrigingInterpolation1D(double[], double[]) - Constructor for class smile.interpolation.KrigingInterpolation1D
-
Constructor.
- KrigingInterpolation1D(double[], double[], double) - Constructor for class smile.interpolation.KrigingInterpolation1D
-
Constructor.
- KrigingInterpolation2D - Class in smile.interpolation
-
Kriging interpolation for the data points irregularly distributed in space.
- KrigingInterpolation2D(double[], double[], double[]) - Constructor for class smile.interpolation.KrigingInterpolation2D
-
Constructor.
- KrigingInterpolation2D(double[], double[], double[], double) - Constructor for class smile.interpolation.KrigingInterpolation2D
-
Constructor.
- KSTest - Record Class in smile.stat.hypothesis
-
The Kolmogorov-Smirnov test (K-S test) is a form of minimum distance estimation used as a non-parametric test of equality of one-dimensional probability distributions.
- KSTest(String, double, double) - Constructor for record class smile.stat.hypothesis.KSTest
-
Creates an instance of a
KSTest
record class. - ku() - Method in class smile.math.matrix.BandMatrix
-
Returns the number of superdiagonals.
- ku() - Method in class smile.math.matrix.fp32.BandMatrix
-
Returns the number of superdiagonals.
- KullbackLeiblerDivergence(double[], double[]) - Static method in class smile.math.MathEx
-
Kullback-Leibler divergence.
- KullbackLeiblerDivergence(double[], SparseArray) - Static method in class smile.math.MathEx
-
Kullback-Leibler divergence.
- KullbackLeiblerDivergence(SparseArray, double[]) - Static method in class smile.math.MathEx
-
Kullback-Leibler divergence.
- KullbackLeiblerDivergence(SparseArray, SparseArray) - Static method in class smile.math.MathEx
-
Kullback-Leibler divergence.
- Kurtosis - Class in smile.ica
-
The kurtosis of the probability density function of a signal.
- Kurtosis() - Constructor for class smile.ica.Kurtosis
L
- L - Variable in class smile.regression.GaussianProcessRegression
-
The log marginal likelihood, which may be not available (NaN) when the model is fit with approximate methods.
- L - Variable in class smile.stat.distribution.DiscreteExponentialFamilyMixture
-
The log-likelihood when the distribution is fit on a sample data.
- L - Variable in class smile.stat.distribution.ExponentialFamilyMixture
-
The log-likelihood when the distribution is fit on a sample data.
- L - Variable in class smile.stat.distribution.MultivariateExponentialFamilyMixture
-
The log-likelihood when the distribution is fit on a sample data.
- L - Variable in class smile.vq.BIRCH
-
The number of CF entries in the leaf nodes.
- L_INF - Enum constant in enum class smile.feature.transform.Normalizer.Norm
-
Normalize L-infinity vector norm.
- l1() - Static method in interface smile.deep.Loss
-
Mean Absolute Error (L1) Loss Function.
- L1 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
-
Normalize L1 vector norm.
- L2 - Enum constant in enum class smile.feature.transform.Normalizer.Norm
-
Normalize L2 vector norm.
- LA - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
-
The largest algebraic eigenvalues.
- LA - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
-
The largest algebraic eigenvalues.
- Label - Class in smile.plot.swing
-
Label is a single line text.
- Label(String, double[], double, double, double, Font, Color) - Constructor for class smile.plot.swing.Label
-
Constructor.
- label2Id - Static variable in interface smile.vision.ImageNet
-
The map from label to class id.
- label2Target - Static variable in interface smile.vision.ImageNet
-
The functor mapping label to class id.
- labelAlign(String) - Method in class smile.plot.vega.Axis
-
Sets the horizontal text alignment of axis tick labels.
- labelAlign(String) - Method in class smile.plot.vega.Legend
-
Sets the alignment of the legend label.
- labelAngle(double) - Method in class smile.plot.vega.Axis
-
Sets the rotation angle of the axis labels.
- labelBaseline(String) - Method in class smile.plot.vega.Axis
-
Sets the vertical text baseline of axis tick labels.
- labelBaseline(String) - Method in class smile.plot.vega.Legend
-
Sets the position of the baseline of legend label.
- labelBound(boolean) - Method in class smile.plot.vega.Axis
-
Sets if labels should be hidden if they exceed the axis range.
- labelBound(double) - Method in class smile.plot.vega.Axis
-
Sets the pixel tolerance of label bounding box.
- labelColor(String) - Method in class smile.plot.vega.Axis
-
Sets the color of the tick label.
- labelColor(String) - Method in class smile.plot.vega.Legend
-
Sets the color of the legend label.
- labelExpr(String) - Method in class smile.plot.vega.Axis
-
Sets the Vega expression for customizing labels.
- labelExpr(String) - Method in class smile.plot.vega.Legend
-
Sets the Vega expression for customizing labels.
- labelFlush(boolean) - Method in class smile.plot.vega.Axis
-
Sets if the first and last axis labels should be aligned flush with the scale range.
- labelFlush(double) - Method in class smile.plot.vega.Axis
-
Sets the number of pixels by which to offset the first and last labels.
- labelFlushOffset(double) - Method in class smile.plot.vega.Axis
-
Sets the number of pixels by which to offset flush-adjusted labels.
- labelFont(String) - Method in class smile.plot.vega.Axis
-
Sets the font of the tick label.
- labelFont(String) - Method in class smile.plot.vega.Legend
-
Sets the font of the legend label.
- labelFontSize(double) - Method in class smile.plot.vega.Axis
-
Sets the font size of the label in pixels.
- labelFontSize(double) - Method in class smile.plot.vega.Legend
-
Sets the font size of the label in pixels.
- labelFontStyle(String) - Method in class smile.plot.vega.Axis
-
Sets the font style of the title.
- labelFontStyle(String) - Method in class smile.plot.vega.Legend
-
Sets the font style of the title.
- labelFontWeight(int) - Method in class smile.plot.vega.Axis
-
Sets the font weight of axis tick labels.
- labelFontWeight(int) - Method in class smile.plot.vega.Legend
-
Sets the font weight of legend labels.
- labelFontWeight(String) - Method in class smile.plot.vega.Axis
-
Sets the font weight of axis tick labels.
- labelFontWeight(String) - Method in class smile.plot.vega.Legend
-
Sets the font weight of legend labels.
- labelLimit(int) - Method in class smile.plot.vega.Axis
-
Sets the maximum allowed pixel width of axis tick labels.
- labelLimit(int) - Method in class smile.plot.vega.Legend
-
Sets the maximum allowed pixel width of legend labels.
- labelLineHeight(int) - Method in class smile.plot.vega.Axis
-
Sets the line height in pixels for multi-line label text.
- labelLineHeight(String) - Method in class smile.plot.vega.Axis
-
Sets the line height for multi-line label text.
- labelOffset(int) - Method in class smile.plot.vega.Axis
-
Sets the position offset in pixels to apply to labels, in addition to tickOffset.
- labelOffset(int) - Method in class smile.plot.vega.Legend
-
Sets the position offset in pixels to apply to labels.
- labelOpacity(double) - Method in class smile.plot.vega.Axis
-
Sets the opacity of the labels.
- labelOverlap(boolean) - Method in class smile.plot.vega.Axis
-
Sets the strategy to use for resolving overlap of axis labels.
- labelOverlap(boolean) - Method in class smile.plot.vega.Legend
-
Sets the strategy to use for resolving overlap of legend labels.
- labelOverlap(String) - Method in class smile.plot.vega.Axis
-
Sets the strategy to use for resolving overlap of axis labels.
- labelOverlap(String) - Method in class smile.plot.vega.Legend
-
Sets the strategy to use for resolving overlap of legend labels.
- labelPadding(double) - Method in class smile.plot.vega.Axis
-
Sets the padding in pixels between labels and ticks.
- labels - Static variable in interface smile.vision.ImageNet
-
Class labels.
- labels(boolean) - Method in class smile.plot.vega.Axis
-
Sets if labels should be included as part of the axis.
- labelSeparation(double) - Method in class smile.plot.vega.Axis
-
Sets the minimum separation that must be between label bounding boxes for them to be considered non-overlapping (default 0).
- lad() - Static method in interface smile.base.cart.Loss
-
Least absolute deviation regression loss.
- LamarckianChromosome<T> - Interface in smile.gap
-
Artificial chromosomes used in Lamarckian algorithm that is a hybrid of evolutionary computation and a local improver such as hill-climbing.
- lambda - Variable in class smile.base.mlp.MultilayerPerceptron
-
The L2 regularization factor, which is also the weight decay factor.
- lambda - Variable in class smile.stat.distribution.ExponentialDistribution
-
The rate parameter.
- lambda - Variable in class smile.stat.distribution.PoissonDistribution
-
The average number of events per interval.
- lambda - Variable in class smile.stat.distribution.WeibullDistribution
-
The scale parameter.
- LancasterStemmer - Class in smile.nlp.stemmer
-
The Paice/Husk Lancaster stemming algorithm.
- LancasterStemmer() - Constructor for class smile.nlp.stemmer.LancasterStemmer
-
Constructor with default rules.
- LancasterStemmer(boolean) - Constructor for class smile.nlp.stemmer.LancasterStemmer
-
Constructor with default rules.
- LancasterStemmer(InputStream) - Constructor for class smile.nlp.stemmer.LancasterStemmer
-
Constructor with customized rules.
- LancasterStemmer(InputStream, boolean) - Constructor for class smile.nlp.stemmer.LancasterStemmer
-
Constructor with customized rules.
- Lanczos - Class in smile.math.matrix
-
The Lanczos algorithm is a direct algorithm devised by Cornelius Lanczos that is an adaptation of power methods to find the most useful eigenvalues and eigenvectors of a nth order linear system with a limited number of operations, m, where m is much smaller than n.
- Lanczos() - Constructor for class smile.math.matrix.Lanczos
- lapack() - Method in enum class smile.math.blas.Diag
-
Returns the value for LAPACK.
- lapack() - Method in enum class smile.math.blas.EigenRange
-
Returns the byte value for LAPACK.
- lapack() - Method in enum class smile.math.blas.EVDJob
-
Returns the byte value for LAPACK.
- lapack() - Method in enum class smile.math.blas.Layout
-
Returns the byte value for LAPACK.
- lapack() - Method in enum class smile.math.blas.Side
-
Returns the byte value for LAPACK.
- lapack() - Method in enum class smile.math.blas.SVDJob
-
Returns the byte value for LAPACK.
- lapack() - Method in enum class smile.math.blas.Transpose
-
Returns the byte value for LAPACK.
- lapack() - Method in enum class smile.math.blas.UPLO
-
Returns the byte value for LAPACK.
- LAPACK - Interface in smile.math.blas
-
Linear Algebra Package.
- LaplaceInterpolation - Class in smile.interpolation
-
Laplace's interpolation to restore missing or unmeasured values on a 2-dimensional evenly spaced regular grid.
- LaplaceInterpolation() - Constructor for class smile.interpolation.LaplaceInterpolation
- Laplacian - Class in smile.math.kernel
-
Laplacian kernel, also referred as exponential kernel.
- Laplacian(double, double, double) - Constructor for class smile.math.kernel.Laplacian
-
Constructor.
- LaplacianEigenmap - Class in smile.manifold
-
Laplacian Eigenmaps.
- LaplacianEigenmap() - Constructor for class smile.manifold.LaplacianEigenmap
- LaplacianKernel - Class in smile.math.kernel
-
Laplacian kernel, also referred as exponential kernel.
- LaplacianKernel(double) - Constructor for class smile.math.kernel.LaplacianKernel
-
Constructor.
- LaplacianKernel(double, double, double) - Constructor for class smile.math.kernel.LaplacianKernel
-
Constructor.
- largest(boolean) - Method in record class smile.graph.NearestNeighborGraph
-
Returns the largest connected component of a nearest neighbor graph.
- LASSO - Class in smile.regression
-
Lasso (least absolute shrinkage and selection operator) regression.
- LASSO() - Constructor for class smile.regression.LASSO
- LASVM<T> - Class in smile.base.svm
-
LASVM is an approximate SVM solver that uses online approximation.
- LASVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.LASVM
-
Constructor.
- LASVM(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.LASVM
-
Constructor.
- latin(int, int) - Static method in interface smile.stat.Sampling
-
Latin hypercube sampling.
- lattice(int, int, double[][]) - Static method in class smile.vq.SOM
-
Creates a lattice of which the weight vectors are randomly selected from samples.
- Layer - Class in smile.base.mlp
-
A layer in the neural network.
- Layer - Class in smile.plot.vega
-
To superimpose one chart on top of another.
- Layer - Interface in smile.deep.layer
-
A layer in the neural network.
- Layer(int, int) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- Layer(int, int, double) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- Layer(Matrix, double[]) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- Layer(Matrix, double[], double) - Constructor for class smile.base.mlp.Layer
-
Constructor.
- Layer(View...) - Constructor for class smile.plot.vega.Layer
-
Constructor.
- LayerBlock - Class in smile.deep.layer
-
A block is combinations of one or more layers.
- LayerBlock() - Constructor for class smile.deep.layer.LayerBlock
-
Constructor.
- LayerBlock(String) - Constructor for class smile.deep.layer.LayerBlock
-
Constructor.
- LayerBlock(Module) - Constructor for class smile.deep.layer.LayerBlock
-
Constructor.
- LayerBuilder - Class in smile.base.mlp
-
The builder of layers.
- LayerBuilder(int, double) - Constructor for class smile.base.mlp.LayerBuilder
-
Constructor.
- layout() - Method in class smile.math.matrix.BandMatrix
-
Returns the matrix layout.
- layout() - Method in class smile.math.matrix.BigMatrix
-
Returns the matrix layout.
- layout() - Method in class smile.math.matrix.fp32.BandMatrix
-
Returns the matrix layout.
- layout() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the matrix layout.
- layout() - Method in class smile.math.matrix.fp32.SymmMatrix
-
Returns the matrix layout.
- layout() - Method in class smile.math.matrix.Matrix
-
Returns the matrix layout.
- layout() - Method in class smile.math.matrix.SymmMatrix
-
Returns the matrix layout.
- layout(Layout) - Method in class smile.deep.tensor.Tensor.Options
-
Sets strided (dense) or sparse tensor.
- Layout - Enum Class in smile.deep.tensor
-
The memory layout of a Tensor.
- Layout - Enum Class in smile.math.blas
-
Matrix layout.
- lchoose(int, int) - Static method in class smile.math.MathEx
-
The log of n choose k.
- ld() - Method in class smile.math.matrix.BandMatrix
-
Returns the leading dimension.
- ld() - Method in class smile.math.matrix.BigMatrix
-
Returns the leading dimension.
- ld() - Method in class smile.math.matrix.fp32.BandMatrix
-
Returns the leading dimension.
- ld() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the leading dimension.
- ld() - Method in class smile.math.matrix.Matrix
-
Returns the leading dimension.
- LDA - Class in smile.classification
-
Linear discriminant analysis.
- LDA(double[], double[][], double[], Matrix) - Constructor for class smile.classification.LDA
-
Constructor.
- LDA(double[], double[][], double[], Matrix, IntSet) - Constructor for class smile.classification.LDA
-
Constructor.
- le(double) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise less-than-or-equal-to comparison.
- le(int) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise less-than-or-equal-to comparison.
- le(Tensor) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise less-than-or-equal-to comparison.
- LeafNode - Class in smile.base.cart
-
A leaf node in decision tree.
- LeafNode(int) - Constructor for class smile.base.cart.LeafNode
-
Constructor.
- leafSamples() - Method in class smile.neighbor.RandomProjectionTree
-
Returns the list of samples in each leaf node.
- leaky() - Static method in interface smile.base.mlp.ActivationFunction
-
The leaky rectifier activation function
max(x, 0.01x)
. - leaky(double) - Static method in interface smile.base.mlp.ActivationFunction
-
The leaky rectifier activation function
max(x, ax)
where0 <= a < 1
. - leaky(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with leaky rectified linear activation function.
- leaky(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with leaky rectified linear activation function.
- leaky(int, double, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with leaky rectified linear activation function.
- leaky(int, int, double) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with leaky ReLU activation function.
- leaky(int, int, double, double) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with leaky ReLU activation function.
- LeakyReLU - Class in smile.deep.activation
-
Sigmoid Linear Unit activation function.
- LeakyReLU() - Constructor for class smile.deep.activation.LeakyReLU
-
Constructor.
- LeakyReLU(double, boolean) - Constructor for class smile.deep.activation.LeakyReLU
-
Constructor.
- learningRate - Variable in class smile.base.mlp.MultilayerPerceptron
-
The learning rate.
- LeastAbsoluteDeviation - Enum constant in enum class smile.base.cart.Loss.Type
-
Least absolute deviation regression.
- LeastSquares - Enum constant in enum class smile.base.cart.Loss.Type
-
Least squares regression.
- leaves() - Method in class smile.base.cart.InternalNode
- leaves() - Method in class smile.base.cart.LeafNode
- leaves() - Method in interface smile.base.cart.Node
-
Returns the number of leaf nodes in the subtree.
- LeeDistance - Class in smile.math.distance
-
In coding theory, the Lee distance is a distance between two strings
x1x2...xn
andy1y2...yn
of equal length n over the q-ary alphabet{0, 1, ..., q-1}
of sizeq >= 2
, defined as - LeeDistance(int) - Constructor for class smile.math.distance.LeeDistance
-
Constructor with a given size q of alphabet.
- LEFT - Enum constant in enum class smile.math.blas.Side
-
A * B
- leftPad(String, int, char) - Static method in interface smile.util.Strings
-
Left pad a string with a specified character.
- legend() - Method in class smile.plot.vega.Config
-
Returns the legend definition object.
- legend() - Method in class smile.plot.vega.Field
-
Returns the legend definition object.
- Legend - Class in smile.plot.swing
-
Legend is a single line text which coordinates are in proportional to the base coordinates.
- Legend - Class in smile.plot.vega
-
Similar to axes, legends visualize scales.
- Legend(String, Color) - Constructor for class smile.plot.swing.Legend
-
Constructor.
- legends() - Method in class smile.plot.swing.BarPlot
- legends() - Method in class smile.plot.swing.LinePlot
- legends() - Method in class smile.plot.swing.Plot
-
Returns the optional name of shape, which will be used to draw a legend outside the box.
- legends() - Method in class smile.plot.swing.ScatterPlot
- legends() - Method in class smile.plot.swing.ScreePlot
- legends() - Method in class smile.plot.swing.StaircasePlot
- length - Enum constant in enum class smile.llm.FinishReason
-
Incomplete model output due to token limit.
- length - Variable in class smile.math.Complex.Array
-
The length of array.
- length() - Method in interface smile.data.BinarySparseDataset
-
Returns the number of nonzero entries.
- length() - Method in interface smile.data.Tuple
-
Returns the number of elements in the Tuple.
- length() - Method in class smile.data.type.StructType
-
Returns the number of fields.
- length() - Method in class smile.deep.tensor.Tensor
-
Returns the number of tensor elements.
- length() - Method in class smile.gap.BitString
-
Returns the length of bit string.
- length() - Method in class smile.stat.distribution.BernoulliDistribution
- length() - Method in class smile.stat.distribution.BetaDistribution
- length() - Method in class smile.stat.distribution.BinomialDistribution
- length() - Method in class smile.stat.distribution.ChiSquareDistribution
- length() - Method in class smile.stat.distribution.DiscreteMixture
- length() - Method in interface smile.stat.distribution.Distribution
-
Returns the number of parameters of the distribution.
- length() - Method in class smile.stat.distribution.EmpiricalDistribution
- length() - Method in class smile.stat.distribution.ExponentialDistribution
- length() - Method in class smile.stat.distribution.FDistribution
- length() - Method in class smile.stat.distribution.GammaDistribution
- length() - Method in class smile.stat.distribution.GaussianDistribution
- length() - Method in class smile.stat.distribution.GeometricDistribution
- length() - Method in class smile.stat.distribution.HyperGeometricDistribution
- length() - Method in class smile.stat.distribution.KernelDensity
- length() - Method in class smile.stat.distribution.LogisticDistribution
- length() - Method in class smile.stat.distribution.LogNormalDistribution
- length() - Method in class smile.stat.distribution.Mixture
- length() - Method in interface smile.stat.distribution.MultivariateDistribution
-
The number of parameters of the distribution.
- length() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- length() - Method in class smile.stat.distribution.MultivariateMixture
- length() - Method in class smile.stat.distribution.NegativeBinomialDistribution
- length() - Method in class smile.stat.distribution.PoissonDistribution
- length() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- length() - Method in class smile.stat.distribution.TDistribution
- length() - Method in class smile.stat.distribution.WeibullDistribution
- length() - Method in record class smile.util.Bytes
-
Returns the length of byte string.
- level(int) - Method in class smile.data.measure.CategoricalMeasure
-
Returns the level string representation.
- LEVEL - Enum constant in enum class smile.data.CategoricalEncoder
-
Level of measurement.
- levels() - Method in class smile.data.measure.CategoricalMeasure
-
Returns the levels.
- LevenbergMarquardt - Class in smile.math
-
The Levenberg–Marquardt algorithm.
- levenshtein(char[], char[]) - Static method in class smile.math.distance.EditDistance
-
Levenshtein distance between two strings allows insertion, deletion, or substitution of characters.
- levenshtein(String, String) - Static method in class smile.math.distance.EditDistance
-
Levenshtein distance between two strings allows insertion, deletion, or substitution of characters.
- leverage() - Method in record class smile.association.AssociationRule
-
Returns the value of the
leverage
record component. - lfactorial(int) - Static method in class smile.math.MathEx
-
The log of factorial of n.
- lgamma(double) - Static method in class smile.math.special.Gamma
-
The log of the Gamma function.
- lhs(String) - Static method in class smile.data.formula.Formula
-
Factory method.
- lhs(Term) - Static method in class smile.data.formula.Formula
-
Factory method.
- LI - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
-
The eigenvalues of largest imaginary part.
- LI - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
The eigenvalues of largest imaginary part.
- libsvm(BufferedReader) - Static method in interface smile.io.Read
-
Reads a libsvm sparse dataset.
- libsvm(String) - Static method in interface smile.io.Read
-
Reads a libsvm sparse dataset.
- libsvm(Path) - Static method in interface smile.io.Read
-
Reads a libsvm sparse dataset.
- lift() - Method in record class smile.association.AssociationRule
-
Returns the value of the
lift
record component. - LIGHT_GRAY - Static variable in interface smile.plot.swing.Palette
- LIGHT_GREEN - Static variable in interface smile.plot.swing.Palette
- LIGHT_PURPLE - Static variable in interface smile.plot.swing.Palette
- LIGHT_SLATE_GRAY - Static variable in interface smile.plot.swing.Palette
- likelihood(double[]) - Method in interface smile.stat.distribution.Distribution
-
The likelihood of the sample set following this distribution.
- likelihood(double[]) - Method in class smile.stat.distribution.KernelDensity
-
The likelihood of the samples.
- likelihood(double[][]) - Method in interface smile.stat.distribution.MultivariateDistribution
-
The likelihood of the sample set following this distribution.
- likelihood(int[]) - Method in class smile.stat.distribution.DiscreteDistribution
-
The likelihood given a sample set following the distribution.
- LIKELIHOOD - Enum constant in enum class smile.base.mlp.Cost
-
Negative likelihood (or log-likelihood) cost.
- limit(double) - Method in class smile.plot.vega.PivotTransform
-
Sets the maximum number of pivoted fields to generate.
- line(boolean) - Method in class smile.plot.vega.Mark
-
Sets whether the line mark is shown.
- Line - Class in smile.plot.swing
-
This class represents a poly line in the plot.
- Line(double[][], Line.Style, char, Color) - Constructor for class smile.plot.swing.Line
-
Constructor.
- Line.Style - Enum Class in smile.plot.swing
-
The supported styles of lines.
- linear() - Static method in interface smile.base.mlp.ActivationFunction
-
Linear/Identity activation function.
- linear(double, double, double) - Static method in interface smile.math.TimeFunction
-
Returns the linear learning rate decay function that starts with an initial learning rate and reach an end learning rate in the given decay steps.
- linear(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with linear activation function.
- linear(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with linear activation function.
- linear(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a linear fully connected layer.
- LINEAR - Enum constant in enum class smile.base.mlp.OutputFunction
-
Linear/Identity function.
- LinearInterpolation - Class in smile.interpolation
-
Piecewise linear interpolation.
- LinearInterpolation(double[], double[]) - Constructor for class smile.interpolation.LinearInterpolation
-
Constructor.
- LinearKernel - Class in smile.math.kernel
-
The linear dot product kernel.
- LinearKernel() - Constructor for class smile.math.kernel.LinearKernel
-
Constructor.
- LinearKernelMachine - Class in smile.base.svm
-
Linear kernel machine.
- LinearKernelMachine(double[], double) - Constructor for class smile.base.svm.LinearKernelMachine
-
Constructor.
- LinearLayer - Class in smile.deep.layer
-
A fully connected linear layer.
- LinearLayer(int, int) - Constructor for class smile.deep.layer.LinearLayer
-
Constructor.
- LinearLayer(int, int, boolean) - Constructor for class smile.deep.layer.LinearLayer
-
Constructor.
- LinearModel - Class in smile.regression
-
Linear model.
- LinearModel(Formula, StructType, Matrix, double[], double[], double) - Constructor for class smile.regression.LinearModel
-
Constructor.
- LinearSearch<K,
V> - Class in smile.neighbor -
Brute force linear nearest neighbor search.
- LinearSearch(List<K>, List<V>, Distance<K>) - Constructor for class smile.neighbor.LinearSearch
-
Constructor.
- LinearSearch(List<V>, Distance<K>, Function<V, K>) - Constructor for class smile.neighbor.LinearSearch
-
Constructor.
- LinearSearch(K[], V[], Distance<K>) - Constructor for class smile.neighbor.LinearSearch
-
Constructor.
- LinearSearch(V[], Distance<K>, Function<V, K>) - Constructor for class smile.neighbor.LinearSearch
-
Constructor.
- lineBreak(String) - Method in class smile.plot.vega.Config
-
Sets a delimiter, such as a newline character, upon which to break text strings into multiple lines.
- LinePlot - Class in smile.plot.swing
-
Line plot is a special scatter plot which connects points by straight lines.
- LinePlot(Line...) - Constructor for class smile.plot.swing.LinePlot
-
Constructor.
- LinePlot(Line[], Legend[]) - Constructor for class smile.plot.swing.LinePlot
-
Constructor.
- link(double) - Method in interface smile.glm.model.Model
-
The link function.
- Linkage - Class in smile.clustering.linkage
-
A measure of dissimilarity between clusters (i.e.
- Linkage(double[][]) - Constructor for class smile.clustering.linkage.Linkage
-
Constructor.
- Linkage(int, float[]) - Constructor for class smile.clustering.linkage.Linkage
-
Constructor.
- ljung(double[], int) - Static method in class smile.timeseries.BoxTest
-
Box-Pierce test.
- Ljung_Box - Enum constant in enum class smile.timeseries.BoxTest.Type
-
Ljung-Box test.
- Llama - Class in smile.llm.llama
-
LLaMA model specification.
- Llama(String, Transformer, Tokenizer) - Constructor for class smile.llm.llama.Llama
-
Constructor.
- LLE - Class in smile.manifold
-
Locally Linear Embedding.
- LLE() - Constructor for class smile.manifold.LLE
- lloyd(double[][], int) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- lloyd(double[][], int, int, double) - Static method in class smile.clustering.KMeans
-
The implementation of Lloyd algorithm as a benchmark.
- LM - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
-
The eigenvalues largest in magnitude.
- LM - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
-
The eigenvalues largest in magnitude.
- LM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
The eigenvalues largest in magnitude.
- LM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
-
The eigenvalues largest in magnitude.
- lo() - Method in class smile.math.kernel.BinarySparseGaussianKernel
- lo() - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
- lo() - Method in class smile.math.kernel.BinarySparseLaplacianKernel
- lo() - Method in class smile.math.kernel.BinarySparseLinearKernel
- lo() - Method in class smile.math.kernel.BinarySparseMaternKernel
- lo() - Method in class smile.math.kernel.BinarySparsePolynomialKernel
- lo() - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
- lo() - Method in class smile.math.kernel.GaussianKernel
- lo() - Method in class smile.math.kernel.HellingerKernel
- lo() - Method in class smile.math.kernel.HyperbolicTangentKernel
- lo() - Method in class smile.math.kernel.LaplacianKernel
- lo() - Method in class smile.math.kernel.LinearKernel
- lo() - Method in class smile.math.kernel.MaternKernel
- lo() - Method in interface smile.math.kernel.MercerKernel
-
Returns the lower bound of hyperparameters (in hyperparameter tuning).
- lo() - Method in class smile.math.kernel.PearsonKernel
- lo() - Method in class smile.math.kernel.PolynomialKernel
- lo() - Method in class smile.math.kernel.ProductKernel
- lo() - Method in class smile.math.kernel.SparseGaussianKernel
- lo() - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
- lo() - Method in class smile.math.kernel.SparseLaplacianKernel
- lo() - Method in class smile.math.kernel.SparseLinearKernel
- lo() - Method in class smile.math.kernel.SparseMaternKernel
- lo() - Method in class smile.math.kernel.SparsePolynomialKernel
- lo() - Method in class smile.math.kernel.SparseThinPlateSplineKernel
- lo() - Method in class smile.math.kernel.SumKernel
- lo() - Method in class smile.math.kernel.ThinPlateSplineKernel
- load(String) - Method in class smile.deep.layer.LayerBlock
-
Loads a checkpoint.
- load(String) - Method in class smile.deep.Model
-
Loads a checkpoint.
- load(String) - Static method in class smile.llm.tokenizer.Tiktoken
-
Loads a tiktoken model file.
- loadings() - Method in class smile.feature.extraction.PCA
-
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
- loadings() - Method in class smile.feature.extraction.ProbabilisticPCA
-
Returns the variable loading matrix, ordered from largest to smallest by corresponding eigenvalues.
- loess(String, String) - Method in class smile.plot.vega.Transform
-
Adds a loess transform.
- LoessTransform - Class in smile.plot.vega
-
The loess transform (for locally-estimated scatterplot smoothing) uses locally-estimated regression to produce a trend line.
- log() - Static method in interface smile.glm.model.Poisson
-
log link function.
- log(double) - Static method in class smile.math.MathEx
-
Returns natural log without underflow.
- log(String) - Static method in interface smile.data.formula.Terms
-
The
log(x)
term. - log(Term) - Static method in interface smile.data.formula.Terms
-
The
log(x)
term. - log10(String) - Static method in interface smile.data.formula.Terms
-
The
log10(x)
term. - log10(Term) - Static method in interface smile.data.formula.Terms
-
The
log10(x)
term. - log1p(String) - Static method in interface smile.data.formula.Terms
-
The
log(1 + x)
term. - log1p(Term) - Static method in interface smile.data.formula.Terms
-
The
log(1 + x)
term. - log1pe(double) - Static method in class smile.math.MathEx
-
Returns natural log(1+exp(x)) without overflow.
- log2(double) - Static method in class smile.math.MathEx
-
Log of base 2.
- log2(String) - Static method in interface smile.data.formula.Terms
-
The
log2(x)
term. - log2(Term) - Static method in interface smile.data.formula.Terms
-
The
log2(x)
term. - LogCosh - Class in smile.ica
-
A good general-purpose contrast function for ICA.
- LogCosh() - Constructor for class smile.ica.LogCosh
- logdet() - Method in class smile.math.matrix.BandMatrix.Cholesky
-
Returns the log of matrix determinant.
- logdet() - Method in class smile.math.matrix.BigMatrix.Cholesky
-
Returns the log of matrix determinant.
- logdet() - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
-
Returns the log of matrix determinant.
- logdet() - Method in class smile.math.matrix.fp32.Matrix.Cholesky
-
Returns the log of matrix determinant.
- logdet() - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
-
Returns the log of matrix determinant.
- logdet() - Method in class smile.math.matrix.Matrix.Cholesky
-
Returns the log of matrix determinant.
- logdet() - Method in class smile.math.matrix.SymmMatrix.Cholesky
-
Returns the log of matrix determinant.
- logistic(int[]) - Static method in interface smile.base.cart.Loss
-
Logistic regression loss for binary classification.
- logistic(int, int, int[], double[][]) - Static method in interface smile.base.cart.Loss
-
Logistic regression loss for multi-class classification.
- LogisticDistribution - Class in smile.stat.distribution
-
The logistic distribution is a continuous probability distribution whose cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks.
- LogisticDistribution(double, double) - Constructor for class smile.stat.distribution.LogisticDistribution
-
Constructor.
- LogisticRegression - Class in smile.classification
-
Logistic regression.
- LogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.LogisticRegression
-
Constructor.
- LogisticRegression.Binomial - Class in smile.classification
-
Binomial logistic regression.
- LogisticRegression.Multinomial - Class in smile.classification
-
Multinomial logistic regression.
- logit() - Static method in interface smile.glm.model.Bernoulli
-
logit link function.
- logit(int[]) - Static method in interface smile.glm.model.Binomial
-
logit link function.
- loglikelihood() - Method in class smile.classification.LogisticRegression
-
Returns the log-likelihood of model.
- loglikelihood() - Method in class smile.classification.Maxent
-
Returns the log-likelihood of model.
- loglikelihood() - Method in class smile.classification.SparseLogisticRegression
-
Returns the log-likelihood of model.
- logLikelihood - Variable in class smile.glm.GLM
-
Log-likelihood.
- logLikelihood() - Method in class smile.glm.GLM
-
Returns the log-likelihood of model.
- logLikelihood(double[]) - Method in interface smile.stat.distribution.Distribution
-
The log likelihood of the sample set following this distribution.
- logLikelihood(double[]) - Method in class smile.stat.distribution.KernelDensity
-
The log likelihood of the samples.
- logLikelihood(double[][]) - Method in interface smile.stat.distribution.MultivariateDistribution
-
The log likelihood of the sample set following this distribution.
- logLikelihood(double[], double[]) - Method in interface smile.glm.model.Model
-
The log-likelihood function.
- logLikelihood(int[]) - Method in class smile.stat.distribution.DiscreteDistribution
-
The likelihood given a sample set following the distribution.
- logloss() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
logloss
record component. - LogLoss - Class in smile.validation.metric
-
Log loss is an evaluation metric for binary classifiers, and it is sometimes the optimization objective as well in case of logistic regression and neural networks.
- LogLoss() - Constructor for class smile.validation.metric.LogLoss
- LogNormalDistribution - Class in smile.stat.distribution
-
A log-normal distribution is a probability distribution of a random variable whose logarithm is normally distributed.
- LogNormalDistribution(double, double) - Constructor for class smile.stat.distribution.LogNormalDistribution
-
Constructor.
- logp(double) - Method in class smile.stat.distribution.BetaDistribution
- logp(double) - Method in class smile.stat.distribution.ChiSquareDistribution
- logp(double) - Method in class smile.stat.distribution.DiscreteDistribution
- logp(double) - Method in interface smile.stat.distribution.Distribution
-
The density at x in log scale, which may prevents the underflow problem.
- logp(double) - Method in class smile.stat.distribution.ExponentialDistribution
- logp(double) - Method in class smile.stat.distribution.FDistribution
- logp(double) - Method in class smile.stat.distribution.GammaDistribution
- logp(double) - Method in class smile.stat.distribution.GaussianDistribution
- logp(double) - Method in class smile.stat.distribution.KernelDensity
- logp(double) - Method in class smile.stat.distribution.LogisticDistribution
- logp(double) - Method in class smile.stat.distribution.LogNormalDistribution
- logp(double) - Method in class smile.stat.distribution.Mixture
- logp(double) - Method in class smile.stat.distribution.TDistribution
- logp(double) - Method in class smile.stat.distribution.WeibullDistribution
- logp(double[]) - Method in interface smile.stat.distribution.MultivariateDistribution
-
The density at x in log scale, which may prevents the underflow problem.
- logp(double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- logp(double[]) - Method in class smile.stat.distribution.MultivariateMixture
- logp(int) - Method in class smile.stat.distribution.BernoulliDistribution
- logp(int) - Method in class smile.stat.distribution.BinomialDistribution
- logp(int) - Method in class smile.stat.distribution.DiscreteDistribution
-
The probability mass function in log scale.
- logp(int) - Method in class smile.stat.distribution.DiscreteMixture
- logp(int) - Method in class smile.stat.distribution.EmpiricalDistribution
- logp(int) - Method in class smile.stat.distribution.GeometricDistribution
- logp(int) - Method in class smile.stat.distribution.HyperGeometricDistribution
- logp(int) - Method in class smile.stat.distribution.NegativeBinomialDistribution
- logp(int) - Method in class smile.stat.distribution.PoissonDistribution
- logp(int) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- logp(int[]) - Method in class smile.sequence.HMM
-
Returns the logarithm probability of an observation sequence given this HMM.
- logp(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the log joint probability of an observation sequence along a state sequence given this HMM.
- logp(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the logarithm probability of an observation sequence.
- logp(T[], int[]) - Method in class smile.sequence.HMMLabeler
-
Returns the log joint probability of an observation sequence along a state sequence.
- logprobs() - Method in record class smile.llm.CompletionPrediction
-
Returns the value of the
logprobs
record component. - logSigmoid(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with log sigmoid activation function.
- LogSigmoid - Class in smile.deep.activation
-
Log sigmoid activation function.
- LogSigmoid() - Constructor for class smile.deep.activation.LogSigmoid
-
Constructor.
- logSoftmax(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with log softmax activation function.
- LogSoftmax - Class in smile.deep.activation
-
Log softmax activation function.
- LogSoftmax() - Constructor for class smile.deep.activation.LogSoftmax
-
Constructor.
- Long - Enum constant in enum class smile.data.type.DataType.ID
-
Long type ID.
- LONG - Static variable in interface smile.util.Regex
-
Long regular expression pattern.
- LONG_DASH - Enum constant in enum class smile.plot.swing.Line.Style
- longArray() - Method in class smile.deep.tensor.Tensor
-
Returns the long integer array of tensor elements
- LongArrayCellRenderer - Class in smile.swing.table
-
Long array renderer in JTable.
- LongArrayCellRenderer() - Constructor for class smile.swing.table.LongArrayCellRenderer
-
Constructor.
- LongArrayType - Static variable in class smile.data.type.DataTypes
-
Long Array data type.
- LongObjectType - Static variable in class smile.data.type.DataTypes
-
Long Object data type.
- LongType - Class in smile.data.type
-
Long data type.
- LongType - Static variable in class smile.data.type.DataTypes
-
Long data type.
- longValue() - Method in class smile.deep.tensor.Tensor
-
Returns the long value when the tensor holds a single value.
- longVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- longVector(int) - Method in class smile.data.IndexDataFrame
- longVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- longVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- LongVector - Interface in smile.data.vector
-
An immutable long vector.
- LOOCV - Interface in smile.validation
-
Leave-one-out cross validation.
- lookup(String, String) - Method in class smile.plot.vega.Transform
-
Adds a lookup transformation.
- lookup(String, LookupData) - Method in class smile.plot.vega.Transform
-
Adds a lookup transformation.
- lookupData(String) - Method in class smile.plot.vega.Transform
-
Creates a lookup data.
- LookupData - Class in smile.plot.vega
-
The density transform performs one-dimensional kernel density estimation over an input data stream and generates a new data stream of samples of the estimated densities.
- Loss - Interface in smile.base.cart
-
Regression loss function.
- Loss - Interface in smile.deep
-
Loss functions.
- Loss.Type - Enum Class in smile.base.cart
-
The type of loss.
- lower(int) - Method in class smile.util.PriorityQueue
-
The value of item k is lower (higher priority) now.
- LOWER - Enum constant in enum class smile.math.blas.UPLO
-
Lower triangle is stored.
- lowestCommonAncestor(String, String) - Method in class smile.taxonomy.Taxonomy
-
Returns the lowest common ancestor (LCA) of concepts v and w.
- lowestCommonAncestor(Concept, Concept) - Method in class smile.taxonomy.Taxonomy
-
Returns the lowest common ancestor (LCA) of concepts v and w.
- LR - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
-
The eigenvalues of largest real part.
- LR - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
The eigenvalues of largest real part.
- ls() - Static method in interface smile.base.cart.Loss
-
Least squares regression loss.
- ls(double[]) - Static method in interface smile.base.cart.Loss
-
Least squares regression loss.
- LS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
List item marker.
- LSH<E> - Class in smile.neighbor
-
Locality-Sensitive Hashing.
- LSH(double[][], E[], double) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(double[][], E[], double, int) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(int, int, int, double) - Constructor for class smile.neighbor.LSH
-
Constructor.
- LSH(int, int, int, double, int) - Constructor for class smile.neighbor.LSH
-
Constructor.
- lt(double) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise less-than comparison.
- lt(int) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise less-than comparison.
- lt(Tensor) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise less-than comparison.
- lu - Variable in class smile.math.matrix.BandMatrix.Cholesky
-
The Cholesky decomposition.
- lu - Variable in class smile.math.matrix.BandMatrix.LU
-
The LU decomposition.
- lu - Variable in class smile.math.matrix.BigMatrix.Cholesky
-
The Cholesky decomposition.
- lu - Variable in class smile.math.matrix.BigMatrix.LU
-
The LU decomposition.
- lu - Variable in class smile.math.matrix.fp32.BandMatrix.Cholesky
-
The Cholesky decomposition.
- lu - Variable in class smile.math.matrix.fp32.BandMatrix.LU
-
The LU decomposition.
- lu - Variable in class smile.math.matrix.fp32.Matrix.Cholesky
-
The Cholesky decomposition.
- lu - Variable in class smile.math.matrix.fp32.Matrix.LU
-
The LU decomposition.
- lu - Variable in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
The Bunch–Kaufman decomposition.
- lu - Variable in class smile.math.matrix.fp32.SymmMatrix.Cholesky
-
The Cholesky decomposition.
- lu - Variable in class smile.math.matrix.Matrix.Cholesky
-
The Cholesky decomposition.
- lu - Variable in class smile.math.matrix.Matrix.LU
-
The LU decomposition.
- lu - Variable in class smile.math.matrix.SymmMatrix.BunchKaufman
-
The Bunch–Kaufman decomposition.
- lu - Variable in class smile.math.matrix.SymmMatrix.Cholesky
-
The Cholesky decomposition.
- lu() - Method in class smile.math.matrix.BandMatrix
-
LU decomposition.
- lu() - Method in class smile.math.matrix.BigMatrix
-
LU decomposition.
- lu() - Method in class smile.math.matrix.fp32.BandMatrix
-
LU decomposition.
- lu() - Method in class smile.math.matrix.fp32.Matrix
-
LU decomposition.
- lu() - Method in class smile.math.matrix.Matrix
-
LU decomposition.
- lu(boolean) - Method in class smile.math.matrix.BigMatrix
-
LU decomposition.
- lu(boolean) - Method in class smile.math.matrix.fp32.Matrix
-
LU decomposition.
- lu(boolean) - Method in class smile.math.matrix.Matrix
-
LU decomposition.
- LU(BandMatrix, int[], int) - Constructor for class smile.math.matrix.BandMatrix.LU
-
Constructor.
- LU(BigMatrix, IntPointer, int) - Constructor for class smile.math.matrix.BigMatrix.LU
-
Constructor.
- LU(BandMatrix, int[], int) - Constructor for class smile.math.matrix.fp32.BandMatrix.LU
-
Constructor.
- LU(Matrix, int[], int) - Constructor for class smile.math.matrix.fp32.Matrix.LU
-
Constructor.
- LU(Matrix, int[], int) - Constructor for class smile.math.matrix.Matrix.LU
-
Constructor.
M
- m - Variable in class smile.math.matrix.BigMatrix.SVD
-
The number of rows of matrix.
- m - Variable in class smile.math.matrix.fp32.Matrix.SVD
-
The number of rows of matrix.
- m - Variable in class smile.math.matrix.Matrix.SVD
-
The number of rows of matrix.
- m - Variable in class smile.stat.distribution.HyperGeometricDistribution
-
The number of defects.
- m() - Method in record class smile.neighbor.lsh.PrZ
-
Returns the value of the
m
record component. - M(double[][], double[]) - Method in interface smile.stat.distribution.MultivariateExponentialFamily
-
The M step in the EM algorithm, which depends on the specific distribution.
- M(double[][], double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- M(double[], double[]) - Method in class smile.stat.distribution.BetaDistribution
- M(double[], double[]) - Method in class smile.stat.distribution.ChiSquareDistribution
- M(double[], double[]) - Method in class smile.stat.distribution.ExponentialDistribution
- M(double[], double[]) - Method in interface smile.stat.distribution.ExponentialFamily
-
The M step in the EM algorithm, which depends on the specific distribution.
- M(double[], double[]) - Method in class smile.stat.distribution.GammaDistribution
- M(double[], double[]) - Method in class smile.stat.distribution.GaussianDistribution
- M(int[], double[]) - Method in interface smile.stat.distribution.DiscreteExponentialFamily
-
The M step in the EM algorithm, which depends on the specific distribution.
- M(int[], double[]) - Method in class smile.stat.distribution.GeometricDistribution
- M(int[], double[]) - Method in class smile.stat.distribution.PoissonDistribution
- M(int[], double[]) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- ma() - Method in class smile.timeseries.ARMA
-
Returns the linear coefficients of MA(q).
- MACHEP - Static variable in class smile.math.MathEx
-
The largest negative integer such that 1.0 + RADIXMACHEP ≠ 1.0, except that machep is bounded below by -(DIGITS+3)
- Macro - Enum constant in enum class smile.deep.metric.Averaging
-
Macro-averaging calculates each class's performance metric (e.g., precision, recall) and then takes the arithmetic mean across all classes.
- Macro - Enum constant in enum class smile.validation.metric.Averaging
-
Macro-averaging calculates each class's performance metric (e.g., precision, recall) and then takes the arithmetic mean across all classes.
- mad() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
mad
record component. - mad(double[]) - Static method in class smile.math.MathEx
-
Returns the median absolute deviation (MAD).
- mad(float[]) - Static method in class smile.math.MathEx
-
Returns the median absolute deviation (MAD).
- mad(int[]) - Static method in class smile.math.MathEx
-
Returns the median absolute deviation (MAD).
- MAD - Class in smile.validation.metric
-
Mean absolute deviation error.
- MAD() - Constructor for class smile.validation.metric.MAD
- MAGENTA - Static variable in interface smile.plot.swing.Palette
- MahalanobisDistance - Class in smile.math.distance
-
In statistics, Mahalanobis distance is based on correlations between variables by which different patterns can be identified and analyzed.
- MahalanobisDistance(double[][]) - Constructor for class smile.math.distance.MahalanobisDistance
-
Constructor.
- main(String[]) - Static method in class smile.nlp.pos.HMMPOSTagger
-
Train the default model on WSJ and BROWN datasets.
- ManhattanDistance - Class in smile.math.distance
-
Manhattan distance, also known as L1 distance or L1 norm, is the sum of the (absolute) differences of their coordinates.
- ManhattanDistance() - Constructor for class smile.math.distance.ManhattanDistance
-
Constructor.
- ManhattanDistance(double[]) - Constructor for class smile.math.distance.ManhattanDistance
-
Constructor.
- map(double) - Method in class smile.stat.distribution.Mixture
-
Returns the index of component with maximum a posteriori probability.
- map(double[]) - Method in class smile.stat.distribution.MultivariateMixture
-
Returns the index of component with maximum a posteriori probability.
- map(int) - Method in class smile.stat.distribution.DiscreteMixture
-
Returns the index of component with maximum a posteriori probability.
- map(ArrayElementFunction) - Method in class smile.util.SparseArray
-
Returns a stream consisting of the results of applying the given function to the nonzero entries.
- mapEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyList
- mapEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyMatrix
- mapEdges(int, ArrayElementFunction) - Method in class smile.graph.Graph
-
Returns a stream consisting of the results of applying the given function to the edge weights of a vertex.
- marginRanking(Tensor, Tensor, Tensor) - Static method in interface smile.deep.Loss
-
Margin Ranking Loss Function.
- mark(String) - Method in class smile.plot.vega.View
-
Returns the mark definition object.
- Mark - Class in smile.plot.vega
-
Mark definition object.
- market(Path) - Static method in class smile.math.matrix.fp32.IMatrix
-
Reads a matrix from a Matrix Market File Format file.
- market(Path) - Static method in class smile.math.matrix.IMatrix
-
Reads a matrix from a Matrix Market File Format file.
- MARKS - Static variable in class smile.plot.swing.Point
-
The marks of point.
- mask - Variable in class smile.base.mlp.Layer
-
The dropout mask.
- Matern - Class in smile.math.kernel
-
The class of Matérn kernels is a generalization of the Gaussian/RBF.
- Matern(double, double, double, double) - Constructor for class smile.math.kernel.Matern
-
Constructor.
- MaternKernel - Class in smile.math.kernel
-
The class of Matérn kernels is a generalization of the Gaussian/RBF.
- MaternKernel(double, double) - Constructor for class smile.math.kernel.MaternKernel
-
Constructor.
- MaternKernel(double, double, double, double) - Constructor for class smile.math.kernel.MaternKernel
-
Constructor.
- MathEx - Class in smile.math
-
Extra basic numeric functions.
- matmul(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns the matrix product of two tensors.
- matrix() - Static method in interface smile.data.DataFrame.Collectors
-
Returns a stream collector that accumulates tuples into a Matrix.
- matrix() - Method in record class smile.validation.metric.ConfusionMatrix
-
Returns the value of the
matrix
record component. - matrix(DataFrame) - Method in class smile.data.formula.Formula
-
Returns the design matrix of predictors.
- matrix(DataFrame, boolean) - Method in class smile.data.formula.Formula
-
Returns the design matrix of predictors.
- Matrix - Class in smile.math.matrix.fp32
-
Dense matrix.
- Matrix - Class in smile.math.matrix
-
Dense matrix of double precision values.
- Matrix(int, int) - Constructor for class smile.math.matrix.fp32.Matrix
-
Constructor of zero matrix.
- Matrix(int, int) - Constructor for class smile.math.matrix.Matrix
-
Constructor of zero matrix.
- Matrix(int, int, double) - Constructor for class smile.math.matrix.Matrix
-
Constructor.
- Matrix(int, int, float) - Constructor for class smile.math.matrix.fp32.Matrix
-
Constructor.
- Matrix(int, int, int, double[]) - Constructor for class smile.math.matrix.Matrix
-
Constructor.
- Matrix(int, int, int, float[]) - Constructor for class smile.math.matrix.fp32.Matrix
-
Constructor.
- Matrix.Cholesky - Class in smile.math.matrix.fp32
-
The Cholesky decomposition of a symmetric, positive-definite matrix.
- Matrix.Cholesky - Class in smile.math.matrix
-
The Cholesky decomposition of a symmetric, positive-definite matrix.
- Matrix.EVD - Class in smile.math.matrix.fp32
-
Eigenvalue decomposition.
- Matrix.EVD - Class in smile.math.matrix
-
Eigenvalue decomposition.
- Matrix.LU - Class in smile.math.matrix.fp32
-
The LU decomposition.
- Matrix.LU - Class in smile.math.matrix
-
The LU decomposition.
- Matrix.QR - Class in smile.math.matrix.fp32
-
The QR decomposition.
- Matrix.QR - Class in smile.math.matrix
-
The QR decomposition.
- Matrix.SVD - Class in smile.math.matrix.fp32
-
Singular Value Decomposition.
- Matrix.SVD - Class in smile.math.matrix
-
Singular Value Decomposition.
- MatthewsCorrelation - Class in smile.validation.metric
-
Matthews correlation coefficient.
- MatthewsCorrelation() - Constructor for class smile.validation.metric.MatthewsCorrelation
- max - Variable in class smile.util.IntSet
-
The maximum of values.
- max(double[]) - Static method in class smile.math.MathEx
-
Returns the maximum value of an array.
- max(double[][]) - Static method in class smile.math.MathEx
-
Returns the maximum of a matrix.
- max(double, double, double) - Static method in class smile.math.MathEx
-
Returns the maximum of 4 double numbers.
- max(double, double, double, double) - Static method in class smile.math.MathEx
-
Returns the maximum of 4 double numbers.
- max(float[]) - Static method in class smile.math.MathEx
-
Returns the maximum value of an array.
- max(float, float, float) - Static method in class smile.math.MathEx
-
Returns the maximum of 4 float numbers.
- max(float, float, float, float) - Static method in class smile.math.MathEx
-
Returns the maximum of 4 float numbers.
- max(int[]) - Static method in class smile.math.MathEx
-
Returns the maximum value of an array.
- max(int[][]) - Static method in class smile.math.MathEx
-
Returns the maximum of a matrix.
- max(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (max(H(y1), H(y2)) - E(MI)).
- max(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / max(H(y1), H(y2)).
- max(int, int, int) - Static method in class smile.math.MathEx
-
Returns the maximum of 3 integer numbers.
- max(int, int, int, int) - Static method in class smile.math.MathEx
-
Returns the maximum of 4 integer numbers.
- MAX - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
I(y1, y2) / max(H(y1), H(y2))
- MAX - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / max(H(y1), H(y2))
- MAX - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with max normalization.
- MAX - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with max normalization.
- MaxAbsScaler - Class in smile.feature.transform
-
Scales each feature by its maximum absolute value.
- MaxAbsScaler() - Constructor for class smile.feature.transform.MaxAbsScaler
- maxBatchSize() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
maxBatchSize
record component. - maxBins(int) - Method in class smile.plot.vega.BinParams
-
Sets the maximum number of bins.
- maxDepth - Variable in class smile.base.cart.CART
-
The maximum depth of the tree.
- Maxent - Class in smile.classification
-
Maximum Entropy Classifier.
- Maxent(int, double, double, IntSet) - Constructor for class smile.classification.Maxent
-
Constructor.
- Maxent.Binomial - Class in smile.classification
-
Binomial maximum entropy classifier.
- Maxent.Multinomial - Class in smile.classification
-
Multinomial maximum entropy classifier.
- maxExtent(int) - Method in class smile.plot.vega.Axis
-
Sets the maximum extent in pixels that axis ticks and labels should use.
- maxNodes - Variable in class smile.base.cart.CART
-
The maximum number of leaf nodes in the tree.
- maxPool2d(int) - Static method in interface smile.deep.layer.Layer
-
Returns a max pooling layer that reduces a tensor by combining cells, and assigning the maximum value of the input cells to the output cell.
- MaxPool2dLayer - Class in smile.deep.layer
-
A max pooling layer that reduces a tensor by combining cells, and assigning the maximum value of the input cells to the output cell.
- MaxPool2dLayer(int) - Constructor for class smile.deep.layer.MaxPool2dLayer
-
Constructor.
- MaxPool2dLayer(int, int) - Constructor for class smile.deep.layer.MaxPool2dLayer
-
Constructor.
- maxSeqLen() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
maxSeqLen
record component. - maxSteps(int) - Method in class smile.plot.vega.DensityTransform
-
Sets the maximum number of samples to take along the extent domain for plotting the density.
- maxtf() - Method in class smile.nlp.SimpleText
- maxtf() - Method in interface smile.nlp.TextTerms
-
Returns the maximum term frequency over all terms in the document.
- MBConv - Class in smile.vision.layer
-
Mobile inverted bottleneck convolution.
- MBConv(MBConvConfig, double, IntFunction<Layer>) - Constructor for class smile.vision.layer.MBConv
-
Constructor.
- MBConv(double, int, int, int, int, int) - Static method in record class smile.vision.layer.MBConvConfig
-
Returns the config for MBConv block.
- MBConv(double, int, int, int, int, int, double, double) - Static method in record class smile.vision.layer.MBConvConfig
-
Returns the config for MBConv block.
- MBConvConfig - Record Class in smile.vision.layer
-
EfficientNet block configuration.
- MBConvConfig(double, int, int, int, int, int, String) - Constructor for record class smile.vision.layer.MBConvConfig
-
Creates an instance of a
MBConvConfig
record class. - mcc() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
mcc
record component. - MD - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Modal verb.
- MDS - Record Class in smile.manifold
-
Classical multidimensional scaling, also known as principal coordinates analysis.
- MDS(double[], double[], double[][]) - Constructor for record class smile.manifold.MDS
-
Creates an instance of a
MDS
record class. - mean - Variable in class smile.neighbor.lsh.NeighborHashValueModel
-
The mean of hash values of neighbors.
- mean - Variable in class smile.regression.GaussianProcessRegression
-
The mean of responsible variable.
- mean - Variable in class smile.stat.distribution.LogNormalDistribution
-
The mean.
- mean() - Method in class smile.base.cart.RegressionNode
-
Returns the mean of response variable.
- mean() - Method in class smile.deep.tensor.Tensor
-
Returns the mean of all elements in the tensor.
- mean() - Method in class smile.neighbor.lsh.HashValueParzenModel
-
Returns the mean.
- mean() - Method in class smile.stat.distribution.BernoulliDistribution
- mean() - Method in class smile.stat.distribution.BetaDistribution
- mean() - Method in class smile.stat.distribution.BinomialDistribution
- mean() - Method in class smile.stat.distribution.ChiSquareDistribution
- mean() - Method in class smile.stat.distribution.DiscreteMixture
- mean() - Method in interface smile.stat.distribution.Distribution
-
Returns the mean of distribution.
- mean() - Method in class smile.stat.distribution.EmpiricalDistribution
- mean() - Method in class smile.stat.distribution.ExponentialDistribution
- mean() - Method in class smile.stat.distribution.FDistribution
- mean() - Method in class smile.stat.distribution.GammaDistribution
- mean() - Method in class smile.stat.distribution.GaussianDistribution
- mean() - Method in class smile.stat.distribution.GeometricDistribution
- mean() - Method in class smile.stat.distribution.HyperGeometricDistribution
- mean() - Method in class smile.stat.distribution.KernelDensity
- mean() - Method in class smile.stat.distribution.LogisticDistribution
- mean() - Method in class smile.stat.distribution.LogNormalDistribution
- mean() - Method in class smile.stat.distribution.Mixture
- mean() - Method in interface smile.stat.distribution.MultivariateDistribution
-
The mean vector of distribution.
- mean() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- mean() - Method in class smile.stat.distribution.MultivariateMixture
- mean() - Method in class smile.stat.distribution.NegativeBinomialDistribution
- mean() - Method in class smile.stat.distribution.PoissonDistribution
- mean() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- mean() - Method in class smile.stat.distribution.TDistribution
- mean() - Method in class smile.stat.distribution.WeibullDistribution
- mean() - Method in class smile.timeseries.AR
-
Returns the mean of time series.
- mean() - Method in class smile.timeseries.ARMA
-
Returns the mean of time series.
- mean(double[]) - Static method in class smile.math.MathEx
-
Returns the mean of an array.
- mean(float[]) - Static method in class smile.math.MathEx
-
Returns the mean of an array.
- mean(int[]) - Static method in class smile.math.MathEx
-
Returns the mean of an array.
- mean(int, boolean) - Method in class smile.deep.tensor.Tensor
-
Returns the mean along a dimension in the tensor.
- MEAN_SQUARED_ERROR - Enum constant in enum class smile.base.mlp.Cost
-
Mean squares error cost.
- measure - Variable in class smile.data.type.StructField
-
Optional levels of measurements.
- measure() - Method in interface smile.data.vector.BaseVector
-
Returns the (optional) level of measurements.
- measure(int) - Method in class smile.data.type.StructType
-
Returns the field's level of measurements.
- Measure - Interface in smile.data.measure
-
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables.
- measures() - Method in interface smile.data.DataFrame
-
Returns the column's level of measurements.
- measures() - Method in interface smile.data.Tuple
-
Returns the field's level of measurements.
- measures() - Method in class smile.data.type.StructType
-
Returns the field's level of measurements.
- MEC<T> - Class in smile.clustering
-
Non-parametric Minimum Conditional Entropy Clustering.
- MEC(double, double, RNNSearch<T, T>, int, int[]) - Constructor for class smile.clustering.MEC
-
Constructor.
- median(double[]) - Static method in class smile.math.MathEx
-
Find the median of an array of type double.
- median(double[]) - Static method in interface smile.sort.QuickSelect
-
Find the median of an array of type double.
- median(float[]) - Static method in class smile.math.MathEx
-
Find the median of an array of type float.
- median(float[]) - Static method in interface smile.sort.QuickSelect
-
Find the median of an array of type float.
- median(int[]) - Static method in class smile.math.MathEx
-
Find the median of an array of type int.
- median(int[]) - Static method in interface smile.sort.QuickSelect
-
Find the median of an array of type integer.
- median(T[]) - Static method in class smile.math.MathEx
-
Find the median of an array of type double.
- median(T[]) - Static method in interface smile.sort.QuickSelect
-
Find the median of an array of type double.
- MercerKernel<T> - Interface in smile.math.kernel
-
Mercer kernel, also called covariance function in Gaussian process.
- merge() - Method in class smile.base.cart.InternalNode
- merge() - Method in class smile.base.cart.LeafNode
- merge() - Method in interface smile.base.cart.Node
-
Try to merge the children nodes and return a leaf node.
- merge(int, int) - Method in class smile.clustering.linkage.CompleteLinkage
- merge(int, int) - Method in class smile.clustering.linkage.Linkage
-
Merges two clusters into one and update the proximity matrix.
- merge(int, int) - Method in class smile.clustering.linkage.SingleLinkage
- merge(int, int) - Method in class smile.clustering.linkage.UPGMALinkage
- merge(int, int) - Method in class smile.clustering.linkage.UPGMCLinkage
- merge(int, int) - Method in class smile.clustering.linkage.WardLinkage
- merge(int, int) - Method in class smile.clustering.linkage.WPGMALinkage
- merge(int, int) - Method in class smile.clustering.linkage.WPGMCLinkage
- merge(RandomForest) - Method in class smile.classification.RandomForest
-
Merges two random forests.
- merge(DataFrame...) - Method in interface smile.data.DataFrame
-
Merges data frames horizontally by columns.
- merge(DataFrame...) - Method in class smile.data.IndexDataFrame
- merge(BaseVector...) - Method in interface smile.data.DataFrame
-
Merges vectors with this data frame.
- merge(BaseVector...) - Method in class smile.data.IndexDataFrame
- merge(RandomForest) - Method in class smile.regression.RandomForest
-
Merges two random forests.
- MersenneTwister - Class in smile.math.random
-
32-bit Mersenne Twister.
- MersenneTwister() - Constructor for class smile.math.random.MersenneTwister
-
Constructor.
- MersenneTwister(int) - Constructor for class smile.math.random.MersenneTwister
-
Constructor.
- MersenneTwister(long) - Constructor for class smile.math.random.MersenneTwister
-
Constructor.
- MersenneTwister64 - Class in smile.math.random
-
64-bit Mersenne Twister.
- MersenneTwister64() - Constructor for class smile.math.random.MersenneTwister64
-
Constructor.
- MersenneTwister64(long) - Constructor for class smile.math.random.MersenneTwister64
-
Constructor.
- Message - Record Class in smile.llm
-
Dialog messages.
- Message(Role, String) - Constructor for record class smile.llm.Message
-
Creates an instance of a
Message
record class. - method() - Method in record class smile.stat.hypothesis.ChiSqTest
-
Returns the value of the
method
record component. - method() - Method in record class smile.stat.hypothesis.CorTest
-
Returns the value of the
method
record component. - method() - Method in record class smile.stat.hypothesis.KSTest
-
Returns the value of the
method
record component. - method() - Method in record class smile.stat.hypothesis.TTest
-
Returns the value of the
method
record component. - method(String) - Method in class smile.plot.vega.ImputeTransform
-
Sets the imputation method to use for the field value of imputed data objects.
- method(String) - Method in class smile.plot.vega.RegressionTransform
-
Sets the functional form of the regression model.
- Metric - Interface in smile.deep.metric
-
The class metrics keeps track of metric states, which enables them to be able to calculate values through accumulations and synchronizations across multiple processes.
- Metric<T> - Interface in smile.math.distance
-
A metric function defines a distance between elements of a set.
- metrics - Variable in class smile.classification.RandomForest.Model
-
The performance metrics on out-of-bag samples.
- metrics - Variable in class smile.regression.RandomForest.Model
-
The performance metrics on out-of-bag samples.
- metrics - Variable in class smile.validation.ClassificationValidation
-
The classification metrics.
- metrics - Variable in class smile.validation.RegressionValidation
-
The regression metrics.
- metrics() - Method in class smile.classification.RandomForest
-
Returns the overall out-of-bag metric estimations.
- metrics() - Method in class smile.regression.RandomForest
-
Returns the overall out-of-bag metric estimations.
- Micro - Enum constant in enum class smile.deep.metric.Averaging
-
Micro-averaging aggregates the counts of true positives, false positives, and false negatives across all classes and then calculates the performance metric based on the total counts.
- Micro - Enum constant in enum class smile.validation.metric.Averaging
-
Micro-averaging aggregates the counts of true positives, false positives, and false negatives across all classes and then calculates the performance metric based on the total counts.
- MIDNIGHT_BLUE - Static variable in interface smile.plot.swing.Palette
- min - Variable in class smile.util.IntSet
-
The minimum of values.
- min(double[]) - Static method in class smile.math.MathEx
-
Returns the minimum value of an array.
- min(double[][]) - Static method in class smile.math.MathEx
-
Returns the minimum of a matrix.
- min(double, double, double) - Static method in class smile.math.MathEx
-
Returns the minimum of 3 double numbers.
- min(double, double, double, double) - Static method in class smile.math.MathEx
-
Returns the minimum of 4 double numbers.
- min(float[]) - Static method in class smile.math.MathEx
-
Returns the minimum value of an array.
- min(float, float, float) - Static method in class smile.math.MathEx
-
Returns the minimum of 3 float numbers.
- min(float, float, float, float) - Static method in class smile.math.MathEx
-
Returns the minimum of 4 float numbers.
- min(int[]) - Static method in class smile.math.MathEx
-
Returns the minimum value of an array.
- min(int[][]) - Static method in class smile.math.MathEx
-
Returns the minimum of a matrix.
- min(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (min(H(y1), H(y2)) - E(MI)).
- min(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / min(H(y1), H(y2)).
- min(int, int, int) - Static method in class smile.math.MathEx
-
Returns the minimum of 3 integer numbers.
- min(int, int, int, int) - Static method in class smile.math.MathEx
-
Returns the minimum of 4 integer numbers.
- MIN - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
I(y1, y2) / min(H(y1), H(y2))
- MIN - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / min(H(y1), H(y2))
- MIN - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with min normalization.
- MIN - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with min normalization.
- minExtent(int) - Method in class smile.plot.vega.Axis
-
Sets the minimum extent in pixels that axis ticks and labels should use.
- minimize(DifferentiableMultivariateFunction, double[], double, int) - Static method in class smile.math.BFGS
-
This method solves the unconstrained minimization problem
- minimize(DifferentiableMultivariateFunction, int, double[], double[], double[], double, int) - Static method in class smile.math.BFGS
-
This method solves the bound constrained minimization problem using the L-BFGS-B method.
- minimize(DifferentiableMultivariateFunction, int, double[], double, int) - Static method in class smile.math.BFGS
-
This method solves the unconstrained minimization problem
- MinkowskiDistance - Class in smile.math.distance
-
Minkowski distance of order p or Lp-norm, is a generalization of Euclidean distance that is actually L2-norm.
- MinkowskiDistance(int) - Constructor for class smile.math.distance.MinkowskiDistance
-
Constructor.
- MinkowskiDistance(int, double[]) - Constructor for class smile.math.distance.MinkowskiDistance
-
Constructor.
- minmax(double[]) - Static method in class smile.math.Scaler
-
Returns the scaler that map the values into the range [0, 1].
- minPts - Variable in class smile.clustering.DBSCAN
-
The minimum number of points required to form a cluster
- minStep(double) - Method in class smile.plot.vega.BinParams
-
Sets the minimum allowable step size (particularly useful for integer values).
- minSteps(int) - Method in class smile.plot.vega.DensityTransform
-
Sets the minimum number of samples to take along the extent domain for plotting the density.
- minSupport() - Method in class smile.association.FPTree
-
Returns the required minimum support of item sets in terms of frequency.
- MINUTE - Enum constant in enum class smile.data.formula.DateFeature
-
The minutes represented by an integer from 0 to 59 in the usual manner.
- Mixture - Class in smile.stat.distribution
-
A finite mixture model is a probabilistic model for density estimation using a mixture distribution.
- Mixture(Mixture.Component...) - Constructor for class smile.stat.distribution.Mixture
-
Constructor.
- Mixture.Component - Record Class in smile.stat.distribution
-
A component in the mixture distribution is defined by a distribution and its weight in the mixture.
- mle(int, OutputFunction) - Static method in class smile.base.mlp.Layer
-
Returns an output layer with (log-)likelihood cost function.
- MLP - Class in smile.classification
-
Fully connected multilayer perceptron neural network for classification.
- MLP - Class in smile.regression
-
Fully connected multilayer perceptron neural network for regression.
- MLP(LayerBuilder...) - Constructor for class smile.classification.MLP
-
Constructor.
- MLP(LayerBuilder...) - Constructor for class smile.regression.MLP
-
Constructor.
- MLP(Scaler, LayerBuilder...) - Constructor for class smile.regression.MLP
-
Constructor.
- MLP(IntSet, LayerBuilder...) - Constructor for class smile.classification.MLP
-
Constructor.
- mm(Transpose, BigMatrix, Transpose, BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Matrix-matrix multiplication.
- mm(Transpose, BigMatrix, Transpose, BigMatrix, double, double) - Method in class smile.math.matrix.BigMatrix
-
Matrix-matrix multiplication.
- mm(Transpose, Matrix, Transpose, Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Matrix-matrix multiplication.
- mm(Transpose, Matrix, Transpose, Matrix, float, float) - Method in class smile.math.matrix.fp32.Matrix
-
Matrix-matrix multiplication.
- mm(Transpose, Matrix, Transpose, Matrix) - Method in class smile.math.matrix.Matrix
-
Matrix-matrix multiplication.
- mm(Transpose, Matrix, Transpose, Matrix, double, double) - Method in class smile.math.matrix.Matrix
-
Matrix-matrix multiplication.
- mm(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Returns matrix multiplication
A * B
. - mm(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Returns matrix multiplication
A * B
. - mm(SparseMatrix) - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns the matrix multiplication C = A * B.
- mm(Matrix) - Method in class smile.math.matrix.Matrix
-
Returns matrix multiplication
A * B
. - mm(SparseMatrix) - Method in class smile.math.matrix.SparseMatrix
-
Returns the matrix multiplication C = A * B.
- MMDDYY - Static variable in class smile.swing.table.DateCellEditor
- MMDDYY - Static variable in class smile.swing.table.DateCellRenderer
- mnist(String, boolean, int) - Static method in interface smile.deep.Dataset
-
MNIST contains 70,000 images of handwritten digits: 60,000 for training and 10,000 for testing.
- mode(int[]) - Static method in class smile.math.MathEx
-
Returns the mode of the array, which is the most frequent element.
- mode(JSON.Mode) - Method in class smile.io.JSON
-
Sets the file mode (single-line or multi-line).
- model - Variable in class smile.glm.GLM
-
The model specifications (link function, deviance, etc.).
- model - Variable in class smile.sequence.CRFLabeler
-
The CRF model.
- model - Variable in class smile.sequence.HMMLabeler
-
The HMM model.
- model - Variable in class smile.validation.ClassificationValidation
-
The model.
- model - Variable in class smile.validation.RegressionValidation
-
The model.
- model() - Method in record class smile.llm.CompletionPrediction
-
Returns the value of the
model
record component. - Model - Class in smile.deep
-
The deep learning models.
- Model - Interface in smile.glm.model
-
The GLM model specification.
- Model(LayerBlock) - Constructor for class smile.deep.Model
-
Constructor.
- Model(LayerBlock, Function<Tensor, Tensor>) - Constructor for class smile.deep.Model
-
Constructor.
- ModelArgs - Record Class in smile.llm.llama
-
LLaMA model hyperparameters.
- ModelArgs() - Constructor for record class smile.llm.llama.ModelArgs
-
Constructor with default parameter values.
- ModelArgs(int, int, int, Integer, int, int, Double, double, double, boolean, int, int) - Constructor for record class smile.llm.llama.ModelArgs
-
Creates an instance of a
ModelArgs
record class. - models() - Method in class smile.classification.RandomForest
-
Returns the base models.
- models() - Method in class smile.regression.RandomForest
-
Returns the base models.
- ModelSelection - Interface in smile.validation
-
Model selection criteria.
- module - Variable in class smile.deep.layer.LayerBlock
-
The neural network module.
- momentum - Variable in class smile.base.mlp.MultilayerPerceptron
-
The momentum factor.
- MONTH - Enum constant in enum class smile.data.formula.DateFeature
-
The month represented by an integer from 1 to 12; 1 is January, 2 is February, and so forth; thus 12 is December.
- mouseClicked(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
- mouseEntered(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
- mouseExited(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
- mousePressed(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
- mouseReleased(MouseEvent) - Method in class smile.swing.table.ButtonCellRenderer
- MPLSH<E> - Class in smile.neighbor
-
Multi-Probe Locality-Sensitive Hashing.
- MPLSH(int, int, int, double) - Constructor for class smile.neighbor.MPLSH
-
Constructor.
- MPLSH(int, int, int, double, int) - Constructor for class smile.neighbor.MPLSH
-
Constructor.
- MPS - Enum constant in enum class smile.deep.tensor.DeviceType
-
GPU for macOS devices with Metal programming framework.
- MPS() - Static method in class smile.deep.tensor.Device
-
Returns the GPU for macOS devices with Metal programming framework.
- mse() - Static method in interface smile.deep.Loss
-
Mean Squared Error (L2) Loss Function.
- mse() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
mse
record component. - mse(int, OutputFunction) - Static method in class smile.base.mlp.Layer
-
Returns an output layer with mean squared error cost function.
- MSE - Class in smile.validation.metric
-
Mean squared error.
- MSE() - Constructor for class smile.validation.metric.MSE
- mt(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Returns matrix multiplication
A * B'
. - mt(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Returns matrix multiplication
A * B'
. - mt(Matrix) - Method in class smile.math.matrix.Matrix
-
Returns matrix multiplication
A * B'
. - mtry - Variable in class smile.base.cart.CART
-
The number of input variables to be used to determine the decision at a node of the tree.
- mu - Variable in class smile.glm.GLM
-
The fitted mean values.
- mu - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The mean of predictive distribution at query points.
- mu - Variable in class smile.stat.distribution.GaussianDistribution
-
The mean.
- mu - Variable in class smile.stat.distribution.LogisticDistribution
-
The location parameter.
- mu - Variable in class smile.stat.distribution.LogNormalDistribution
-
The mean of normal distribution.
- mu - Variable in class smile.stat.distribution.MultivariateGaussianDistribution
-
The mean vector.
- mul(double) - Method in class smile.deep.tensor.Tensor
-
Returns A * b.
- mul(double) - Method in class smile.math.matrix.BigMatrix
-
A *= b
- mul(double) - Method in class smile.math.matrix.Matrix
-
A *= b
- mul(double) - Method in class smile.util.Array2D
-
A *= x.
- mul(float) - Method in class smile.deep.tensor.Tensor
-
Returns A * b.
- mul(float) - Method in class smile.math.matrix.fp32.Matrix
-
A *= b
- mul(int) - Method in class smile.util.IntArray2D
-
A *= x.
- mul(int, int, double) - Method in class smile.math.matrix.BigMatrix
-
A[i,j] *= b
- mul(int, int, double) - Method in class smile.math.matrix.Matrix
-
A[i,j] *= b
- mul(int, int, double) - Method in class smile.util.Array2D
-
A[i, j] *= x.
- mul(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
-
A[i,j] *= b
- mul(int, int, int) - Method in class smile.util.IntArray2D
-
A[i, j] *= x.
- mul(String, String) - Static method in interface smile.data.formula.Terms
-
Multiplies two terms.
- mul(String, Term) - Static method in interface smile.data.formula.Terms
-
Multiplies two terms.
- mul(Term, String) - Static method in interface smile.data.formula.Terms
-
Multiplies two terms.
- mul(Term, Term) - Static method in interface smile.data.formula.Terms
-
Multiplies two terms.
- mul(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A * B element wisely.
- mul(Complex) - Method in class smile.math.Complex
-
Returns this * b.
- mul(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise multiplication A *= B
- mul(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise multiplication A *= B
- mul(Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise multiplication A *= B
- mul(Array2D) - Method in class smile.util.Array2D
-
A *= B.
- mul(IntArray2D) - Method in class smile.util.IntArray2D
-
A *= B.
- Mul - Class in smile.data.formula
-
The term of
a * b
expression. - Mul(Term, Term) - Constructor for class smile.data.formula.Mul
-
Constructor.
- mul_(double) - Method in class smile.deep.tensor.Tensor
-
Returns A *= b.
- mul_(float) - Method in class smile.deep.tensor.Tensor
-
Returns A *= b.
- mul_(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A *= B element wisely.
- MULTI_LINE - Enum constant in enum class smile.io.JSON.Mode
-
A JSON object may occupy multiple lines.
- MultiColumnSortTableHeaderCellRenderer - Class in smile.swing.table
-
An extension of
DefaultTableHeaderCellRenderer
that paints sort icons on the header of each sorted column with varying opacity. - MultiColumnSortTableHeaderCellRenderer() - Constructor for class smile.swing.table.MultiColumnSortTableHeaderCellRenderer
-
Constructs a
MultisortTableHeaderCellRenderer
with a default alpha of 0.5. - MultiColumnSortTableHeaderCellRenderer(float) - Constructor for class smile.swing.table.MultiColumnSortTableHeaderCellRenderer
-
Constructs a
MultisortTableHeaderCellRenderer
with the specified alpha. - MultilayerPerceptron - Class in smile.base.mlp
-
Fully connected multilayer perceptron neural network.
- MultilayerPerceptron(Layer...) - Constructor for class smile.base.mlp.MultilayerPerceptron
-
Constructor.
- multinomial(double[][], int[]) - Static method in class smile.classification.LogisticRegression
-
Fits multinomial logistic regression.
- multinomial(double[][], int[], double, double, int) - Static method in class smile.classification.LogisticRegression
-
Fits multinomial logistic regression.
- multinomial(double[][], int[], Properties) - Static method in class smile.classification.LogisticRegression
-
Fits multinomial logistic regression.
- multinomial(int, int[][], int[]) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- multinomial(int, int[][], int[], double, double, int) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- multinomial(int, int[][], int[], Properties) - Static method in class smile.classification.Maxent
-
Fits maximum entropy classifier.
- multinomial(SparseDataset<Integer>) - Static method in class smile.classification.SparseLogisticRegression
-
Fits multinomial logistic regression.
- multinomial(SparseDataset<Integer>, double, double, int) - Static method in class smile.classification.SparseLogisticRegression
-
Fits multinomial logistic regression.
- multinomial(SparseDataset<Integer>, Properties) - Static method in class smile.classification.SparseLogisticRegression
-
Fits multinomial logistic regression.
- Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.LogisticRegression.Multinomial
-
Constructor.
- Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.Maxent.Multinomial
-
Constructor.
- Multinomial(double[][], double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression.Multinomial
-
Constructor.
- MULTINOMIAL - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
The document multinomial model generates one term from the vocabulary in each position of the document.
- multipleOf() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
multipleOf
record component. - MultiProbeHash - Class in smile.neighbor.lsh
-
The hash function for data in Euclidean spaces.
- MultiProbeHash(int, int, double, int) - Constructor for class smile.neighbor.lsh.MultiProbeHash
-
Constructor.
- MultiProbeSample - Class in smile.neighbor.lsh
-
Training sample for MPLSH.
- MultiProbeSample(double[], List<double[]>) - Constructor for class smile.neighbor.lsh.MultiProbeSample
-
Constructor.
- MultiquadricRadialBasis - Class in smile.math.rbf
-
Multiquadric RBF.
- MultiquadricRadialBasis() - Constructor for class smile.math.rbf.MultiquadricRadialBasis
-
Constructor.
- MultiquadricRadialBasis(double) - Constructor for class smile.math.rbf.MultiquadricRadialBasis
-
Constructor.
- MultivariateDistribution - Interface in smile.stat.distribution
-
Probability distribution of multivariate random variable.
- MultivariateExponentialFamily - Interface in smile.stat.distribution
-
The purpose of this interface is mainly to define the method M that is the Maximization step in the EM algorithm.
- MultivariateExponentialFamilyMixture - Class in smile.stat.distribution
-
The finite mixture of distributions from multivariate exponential family.
- MultivariateExponentialFamilyMixture(MultivariateMixture.Component...) - Constructor for class smile.stat.distribution.MultivariateExponentialFamilyMixture
-
Constructor.
- MultivariateFunction - Interface in smile.math
-
An interface representing a multivariate real function.
- MultivariateGaussianDistribution - Class in smile.stat.distribution
-
Multivariate Gaussian distribution.
- MultivariateGaussianDistribution(double[], double) - Constructor for class smile.stat.distribution.MultivariateGaussianDistribution
-
Constructor.
- MultivariateGaussianDistribution(double[], double[]) - Constructor for class smile.stat.distribution.MultivariateGaussianDistribution
-
Constructor.
- MultivariateGaussianDistribution(double[], Matrix) - Constructor for class smile.stat.distribution.MultivariateGaussianDistribution
-
Constructor.
- MultivariateGaussianMixture - Class in smile.stat.distribution
-
Finite multivariate Gaussian mixture.
- MultivariateGaussianMixture(MultivariateMixture.Component...) - Constructor for class smile.stat.distribution.MultivariateGaussianMixture
-
Constructor.
- MultivariateMixture - Class in smile.stat.distribution
-
The finite mixture of multivariate distributions.
- MultivariateMixture(MultivariateMixture.Component...) - Constructor for class smile.stat.distribution.MultivariateMixture
-
Constructor.
- MultivariateMixture.Component - Record Class in smile.stat.distribution
-
A component in the mixture distribution is defined by a distribution and its weight in the mixture.
- MurmurHash2 - Interface in smile.hash
-
MurmurHash is a very fast, non-cryptographic hash suitable for general hash-based lookup.
- MurmurHash3 - Class in smile.hash
-
MurmurHash is a very fast, non-cryptographic hash suitable for general hash-based lookup.
- MurmurHash3() - Constructor for class smile.hash.MurmurHash3
- mustart(double) - Method in interface smile.glm.model.Model
-
The function to estimates the starting value of mean given y.
- MutableInt - Class in smile.util
-
A mutable int wrapper.
- MutableInt() - Constructor for class smile.util.MutableInt
-
Constructor.
- MutableInt(int) - Constructor for class smile.util.MutableInt
-
Constructor.
- MutableLSH<E> - Class in smile.neighbor
-
Mutable LSH.
- MutableLSH(int, int, int, double) - Constructor for class smile.neighbor.MutableLSH
-
Constructor.
- mutate() - Method in class smile.gap.BitString
- mutate() - Method in interface smile.gap.Chromosome
-
For genetic algorithms, this method mutates the chromosome randomly.
- MutualInformation - Class in smile.validation.metric
-
Mutual Information for comparing clustering.
- MutualInformation() - Constructor for class smile.validation.metric.MutualInformation
- mv(double[]) - Method in class smile.math.matrix.IMatrix
-
Returns the matrix-vector multiplication
A * x
. - mv(double[], double[]) - Method in class smile.math.matrix.IMatrix
-
Matrix-vector multiplication
y = A * x
. - mv(double[], int, int) - Method in class smile.math.matrix.BandMatrix
- mv(double[], int, int) - Method in class smile.math.matrix.BigMatrix
- mv(double[], int, int) - Method in class smile.math.matrix.IMatrix
-
Matrix-vector multiplication
A * x
. - mv(double[], int, int) - Method in class smile.math.matrix.Matrix
- mv(double[], int, int) - Method in class smile.math.matrix.SparseMatrix
- mv(double[], int, int) - Method in class smile.math.matrix.SymmMatrix
- mv(double, double[], double, double[]) - Method in class smile.math.matrix.IMatrix
-
Matrix-vector multiplication.
- mv(float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the matrix-vector multiplication
A * x
. - mv(float[], float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Matrix-vector multiplication
y = A * x
. - mv(float[], int, int) - Method in class smile.math.matrix.fp32.BandMatrix
- mv(float[], int, int) - Method in class smile.math.matrix.fp32.IMatrix
-
Matrix-vector multiplication
A * x
. - mv(float[], int, int) - Method in class smile.math.matrix.fp32.Matrix
- mv(float[], int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
- mv(float[], int, int) - Method in class smile.math.matrix.fp32.SymmMatrix
- mv(float, float[], float, float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Matrix-vector multiplication.
- mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.BandMatrix
- mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.BigMatrix
- mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.IMatrix
-
Matrix-vector multiplication.
- mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.Matrix
- mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.SparseMatrix
- mv(Transpose, double, double[], double, double[]) - Method in class smile.math.matrix.SymmMatrix
- mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.BandMatrix
- mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Matrix-vector multiplication.
- mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.Matrix
- mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.SparseMatrix
- mv(Transpose, float, float[], float, float[]) - Method in class smile.math.matrix.fp32.SymmMatrix
- MYSQL - Enum constant in enum class smile.nlp.dictionary.EnglishStopWords
-
The stop words list used by MySQL FullText feature.
N
- n - Variable in class smile.base.mlp.Layer
-
The number of neurons in this layer
- n - Variable in class smile.math.matrix.BigMatrix.SVD
-
The number of columns of matrix.
- n - Variable in class smile.math.matrix.fp32.Matrix.SVD
-
The number of columns of matrix.
- n - Variable in class smile.math.matrix.Matrix.SVD
-
The number of columns of matrix.
- n - Variable in class smile.stat.distribution.BinomialDistribution
-
The number of experiments.
- n - Variable in class smile.stat.distribution.HyperGeometricDistribution
-
The number of draws.
- n - Variable in class smile.validation.metric.ContingencyTable
-
The number of observations.
- N - Variable in class smile.stat.distribution.HyperGeometricDistribution
-
The number of total samples.
- n1 - Variable in class smile.validation.metric.ContingencyTable
-
The number of clusters of first clustering.
- n2 - Variable in class smile.validation.metric.ContingencyTable
-
The number of clusters of second clustering.
- NaiveBayes - Class in smile.classification
-
Naive Bayes classifier.
- NaiveBayes(double[], Distribution[][]) - Constructor for class smile.classification.NaiveBayes
-
Constructor of general naive Bayes classifier.
- NaiveBayes(double[], Distribution[][], IntSet) - Constructor for class smile.classification.NaiveBayes
-
Constructor of general naive Bayes classifier.
- name - Variable in class smile.data.type.StructField
-
Field name.
- name() - Method in interface smile.base.mlp.ActivationFunction
-
Returns the name of activation function.
- name() - Method in record class smile.data.formula.Variable
-
Returns the value of the
name
record component. - name() - Method in class smile.data.type.ArrayType
- name() - Method in class smile.data.type.BooleanType
- name() - Method in class smile.data.type.ByteType
- name() - Method in class smile.data.type.CharType
- name() - Method in interface smile.data.type.DataType
-
Returns the type name used in external catalogs.
- name() - Method in class smile.data.type.DateTimeType
- name() - Method in class smile.data.type.DateType
- name() - Method in class smile.data.type.DecimalType
- name() - Method in class smile.data.type.DoubleType
- name() - Method in class smile.data.type.FloatType
- name() - Method in class smile.data.type.IntegerType
- name() - Method in class smile.data.type.LongType
- name() - Method in class smile.data.type.ObjectType
- name() - Method in class smile.data.type.ShortType
- name() - Method in class smile.data.type.StringType
- name() - Method in class smile.data.type.StructType
- name() - Method in class smile.data.type.TimeType
- name() - Method in interface smile.data.vector.BaseVector
-
Returns the (optional) name of vector.
- name() - Method in class smile.deep.activation.ActivationFunction
-
Returns the name of activation function.
- name() - Method in class smile.deep.metric.Accuracy
- name() - Method in interface smile.deep.metric.Metric
-
Returns the name of metric.
- name() - Method in class smile.deep.metric.Precision
- name() - Method in class smile.deep.metric.Recall
- name() - Method in class smile.io.Arff
-
Returns the name of relation.
- name() - Method in class smile.llm.llama.Llama
-
Returns the model instance name.
- name(int) - Method in class smile.data.type.StructType
-
Returns the field name.
- name(String) - Method in class smile.plot.vega.Concat
- name(String) - Method in class smile.plot.vega.Data
-
Sets a placeholder name and bind data at runtime.
- name(String) - Method in class smile.plot.vega.Facet
- name(String) - Method in class smile.plot.vega.Repeat
- name(String) - Method in class smile.plot.vega.VegaLite
-
Sets the name of the visualization for later reference.
- name(String) - Method in class smile.plot.vega.View
- names() - Method in interface smile.data.DataFrame
-
Returns the column names.
- names() - Method in interface smile.data.Tuple
-
Returns the field names.
- names() - Method in class smile.data.type.StructType
-
Returns the field names.
- NAVY_BLUE - Static variable in interface smile.plot.swing.Palette
- ncol() - Method in interface smile.data.BinarySparseDataset
-
Returns the number of columns.
- ncol() - Method in interface smile.data.DataFrame
-
Returns the number of columns.
- ncol() - Method in class smile.data.IndexDataFrame
- ncol() - Method in interface smile.data.SparseDataset
-
Returns the number of columns.
- ncol() - Method in class smile.math.matrix.BandMatrix
- ncol() - Method in class smile.math.matrix.BigMatrix
- ncol() - Method in class smile.math.matrix.fp32.BandMatrix
- ncol() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the number of columns.
- ncol() - Method in class smile.math.matrix.fp32.Matrix
- ncol() - Method in class smile.math.matrix.fp32.SparseMatrix
- ncol() - Method in class smile.math.matrix.fp32.SymmMatrix
- ncol() - Method in class smile.math.matrix.IMatrix
-
Returns the number of columns.
- ncol() - Method in class smile.math.matrix.Matrix
- ncol() - Method in class smile.math.matrix.SparseMatrix
- ncol() - Method in class smile.math.matrix.SymmMatrix
- ncol() - Method in class smile.util.Array2D
-
Returns the number of columns.
- ncol() - Method in class smile.util.IntArray2D
-
Returns the number of columns.
- ne(double) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise inequality.
- ne(int) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise inequality.
- ne(Tensor) - Method in class smile.deep.tensor.Tensor
-
Computes element-wise inequality.
- nearest(double[]) - Method in class smile.neighbor.KDTree
- nearest(double[]) - Method in class smile.neighbor.LSH
- nearest(double[]) - Method in class smile.neighbor.MPLSH
- nearest(double[], double, int) - Method in class smile.neighbor.MPLSH
-
Returns the approximate nearest neighbor.
- nearest(K) - Method in interface smile.neighbor.KNNSearch
-
Returns the nearest neighbor.
- nearest(K) - Method in class smile.neighbor.LinearSearch
- nearestInsertion() - Method in class smile.graph.Graph
-
Returns the approximate solution to TSP with the nearest insertion heuristic.
- NearestNeighborGraph - Record Class in smile.graph
-
The k-nearest neighbor graph builder.
- NearestNeighborGraph(int, int[][], double[][]) - Constructor for record class smile.graph.NearestNeighborGraph
-
Constructor.
- NearestNeighborGraph(int, int[][], double[][], int[]) - Constructor for record class smile.graph.NearestNeighborGraph
-
Creates an instance of a
NearestNeighborGraph
record class. - neg() - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor with the negative of the elements of input.
- neg_() - Method in class smile.deep.tensor.Tensor
-
Returns the tensor with the negative of the elements of input.
- NegativeBinomialDistribution - Class in smile.stat.distribution
-
Negative binomial distribution arises as the probability distribution of the number of successes in a series of independent and identically distributed Bernoulli trials needed to get a specified (non-random) number r of failures.
- NegativeBinomialDistribution(double, double) - Constructor for class smile.stat.distribution.NegativeBinomialDistribution
-
Constructor.
- NEGEP - Static variable in class smile.math.MathEx
-
The largest negative integer such that 1.0 - RADIXNEGEP ≠ 1.0, except that negeps is bounded below by -(DIGITS+3)
- neighbor - Variable in class smile.vq.hebb.Edge
-
The neighbor neuron.
- Neighbor<K,
V> - Record Class in smile.neighbor -
The immutable object encapsulates the results of nearest neighbor search.
- Neighbor(K, V, int, double) - Constructor for record class smile.neighbor.Neighbor
-
Creates an instance of a
Neighbor
record class. - NeighborHashValueModel - Class in smile.neighbor.lsh
-
Gaussian model of hash values of nearest neighbor.
- NeighborHashValueModel(double[], double[], double[]) - Constructor for class smile.neighbor.lsh.NeighborHashValueModel
-
Constructor.
- Neighborhood - Interface in smile.vq
-
The neighborhood function for 2-dimensional lattice topology (e.g.
- neighbors - Variable in class smile.neighbor.lsh.MultiProbeSample
-
The neighbors of query object in terms of kNN or range search.
- neighbors() - Method in record class smile.graph.NearestNeighborGraph
-
Returns the value of the
neighbors
record component. - net - Variable in class smile.base.mlp.MultilayerPerceptron
-
The input and hidden layers.
- network() - Method in class smile.vq.NeuralGas
-
Returns the network of neurons.
- NeuralGas - Class in smile.vq
-
Neural Gas soft competitive learning algorithm.
- NeuralGas(double[][], TimeFunction, TimeFunction, TimeFunction) - Constructor for class smile.vq.NeuralGas
-
Constructor.
- NeuralMap - Class in smile.vq
-
NeuralMap is an efficient competitive learning algorithm inspired by growing neural gas and BIRCH.
- NeuralMap(double, double, double, int, double) - Constructor for class smile.vq.NeuralMap
-
Constructor.
- Neuron - Class in smile.vq.hebb
-
The neuron vertex in the growing neural gas network.
- Neuron(double[]) - Constructor for class smile.vq.hebb.Neuron
-
Constructor.
- Neuron(double[], double) - Constructor for class smile.vq.hebb.Neuron
-
Constructor.
- neurons - Variable in class smile.base.mlp.LayerBuilder
-
The number of neurons.
- neurons() - Method in class smile.base.mlp.LayerBuilder
-
Returns the number of neurons.
- neurons() - Method in class smile.vq.GrowingNeuralGas
-
Returns the neurons in the network.
- neurons() - Method in class smile.vq.NeuralGas
-
Returns the neurons.
- neurons() - Method in class smile.vq.NeuralMap
-
Returns the neurons.
- neurons() - Method in class smile.vq.SOM
-
Returns the lattice of neurons.
- newInstance() - Method in class smile.gap.BitString
- newInstance() - Method in interface smile.gap.Chromosome
-
Returns a new random instance.
- newInstance(byte[]) - Method in class smile.gap.BitString
-
Creates a new instance with given bits.
- newNode(int[]) - Method in class smile.base.cart.CART
-
Creates a new leaf node.
- newNode(int[]) - Method in class smile.classification.DecisionTree
- newNode(int[]) - Method in class smile.regression.RegressionTree
- newOnes(long...) - Method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with all ones.
- newZeros(long...) - Method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with all zeros.
- next(int) - Method in class smile.math.random.MersenneTwister
- next(int) - Method in class smile.math.random.MersenneTwister64
- next(int) - Method in interface smile.math.random.RandomNumberGenerator
-
Returns up to 32 random bits.
- next(int) - Method in class smile.math.random.UniversalGenerator
- nextDouble() - Method in class smile.math.random.MersenneTwister
- nextDouble() - Method in class smile.math.random.MersenneTwister64
- nextDouble() - Method in class smile.math.Random
-
Generator a random number uniformly distributed in [0, 1).
- nextDouble() - Method in interface smile.math.random.RandomNumberGenerator
-
Returns the next pseudorandom, uniformly distributed double value between 0.0 and 1.0 from this random number generator's sequence.
- nextDouble() - Method in class smile.math.random.UniversalGenerator
- nextDouble(double, double) - Method in class smile.math.Random
-
Generate a uniform random number in the range [lo, hi)
- nextDoubles(double[]) - Method in class smile.math.random.MersenneTwister
- nextDoubles(double[]) - Method in class smile.math.random.MersenneTwister64
- nextDoubles(double[]) - Method in class smile.math.Random
-
Generate n uniform random numbers in the range [0, 1)
- nextDoubles(double[]) - Method in interface smile.math.random.RandomNumberGenerator
-
Returns a vector of pseudorandom, uniformly distributed double values between 0.0 and 1.0 from this random number generator's sequence.
- nextDoubles(double[]) - Method in class smile.math.random.UniversalGenerator
- nextDoubles(double[], double, double) - Method in class smile.math.Random
-
Generate n uniform random numbers in the range [lo, hi)
- nextInt() - Method in class smile.math.random.MersenneTwister
- nextInt() - Method in class smile.math.random.MersenneTwister64
- nextInt() - Method in class smile.math.Random
-
Returns a random integer.
- nextInt() - Method in interface smile.math.random.RandomNumberGenerator
-
Returns the next pseudorandom, uniformly distributed int value from this random number generator's sequence.
- nextInt() - Method in class smile.math.random.UniversalGenerator
- nextInt(int) - Method in class smile.math.random.MersenneTwister
- nextInt(int) - Method in class smile.math.random.MersenneTwister64
- nextInt(int) - Method in class smile.math.Random
-
Returns a random integer in [0, n).
- nextInt(int) - Method in interface smile.math.random.RandomNumberGenerator
-
Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive), drawn from this random number generator's sequence.
- nextInt(int) - Method in class smile.math.random.UniversalGenerator
- nextLong() - Method in class smile.math.random.MersenneTwister
- nextLong() - Method in class smile.math.random.MersenneTwister64
- nextLong() - Method in class smile.math.Random
-
Returns a random long integer.
- nextLong() - Method in interface smile.math.random.RandomNumberGenerator
-
Returns the next pseudorandom, uniformly distributed long value from this random number generator's sequence.
- nextLong() - Method in class smile.math.random.UniversalGenerator
- NGram - Class in smile.nlp.collocation
-
An n-gram is a contiguous sequence of n words from a given sequence of text.
- NGram - Class in smile.nlp
-
An n-gram is a contiguous sequence of n words from a given sequence of text.
- NGram(String[]) - Constructor for class smile.nlp.NGram
-
Constructor.
- NGram(String[], int) - Constructor for class smile.nlp.collocation.NGram
-
Constructor.
- ni - Variable in class smile.classification.ClassLabels
-
The number of samples per classes.
- nice(int) - Method in class smile.plot.vega.BinParams
-
If true, attempts to make the bin boundaries use human-friendly boundaries, such as multiples of ten.
- nll() - Static method in interface smile.deep.Loss
-
Negative Log-Likelihood Loss Function.
- NN - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Noun, singular or mass.
- NNP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Proper noun, singular.
- NNPS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Proper noun, plural.
- NNS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Noun, plural.
- NO_TRANSPOSE - Enum constant in enum class smile.math.blas.Transpose
-
Normal operation on the matrix.
- NO_VECTORS - Enum constant in enum class smile.math.blas.EVDJob
-
Eigenvalues only are computed.
- NO_VECTORS - Enum constant in enum class smile.math.blas.SVDJob
-
No singular vectors are computed.
- Node - Interface in smile.base.cart
-
CART tree node.
- Node(E) - Constructor for class smile.util.PairingHeap.Node
-
Constructor.
- Node(K) - Constructor for class smile.nlp.Trie.Node
-
Constructor.
- nodeSize - Variable in class smile.base.cart.CART
-
The number of instances in a node below which the tree will not split, setting nodeSize = 5 generally gives good results.
- noGradGuard() - Static method in class smile.deep.tensor.Tensor
-
Disables gradient calculation.
- noise - Variable in class smile.regression.GaussianProcessRegression
-
The variance of noise.
- nominal() - Method in interface smile.data.vector.StringVector
-
Returns a nominal scale of measure based on distinct values in the vector.
- NominalNode - Class in smile.base.cart
-
A node with a nominal split variable.
- NominalNode(int, int, double, double, Node, Node) - Constructor for class smile.base.cart.NominalNode
-
Constructor.
- NominalScale - Class in smile.data.measure
-
Nominal variables take on a limited number of unordered values.
- NominalScale(int[], String[]) - Constructor for class smile.data.measure.NominalScale
-
Constructor.
- NominalScale(Class<? extends Enum<?>>) - Constructor for class smile.data.measure.NominalScale
-
Constructor.
- NominalScale(String...) - Constructor for class smile.data.measure.NominalScale
-
Constructor.
- NominalScale(List<String>) - Constructor for class smile.data.measure.NominalScale
-
Constructor.
- NominalSplit - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- NominalSplit(LeafNode, int, int, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.NominalSplit
-
Constructor.
- NON_UNIT - Enum constant in enum class smile.math.blas.Diag
-
Non-unit triangular.
- None - Static variable in class smile.deep.tensor.Index
-
The None is used to insert a singleton dimension ("unsqueeze" a dimension).
- nonoverlap(int[], int) - Static method in interface smile.validation.CrossValidation
-
Cross validation with non-overlapping groups.
- nonzeros() - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns the stream of the non-zero elements.
- nonzeros() - Method in class smile.math.matrix.SparseMatrix
-
Returns the stream of the non-zero elements.
- nonzeros(int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns the stream of the non-zero elements in given column range.
- nonzeros(int, int) - Method in class smile.math.matrix.SparseMatrix
-
Returns the stream of the non-zero elements in given column range.
- norm() - Method in class smile.math.matrix.BigMatrix
-
L2 matrix norm that is the maximum singular value.
- norm() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the L2 matrix norm that is the largest singular value.
- norm() - Method in class smile.math.matrix.fp32.Matrix
-
L2 matrix norm that is the maximum singular value.
- norm() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the L2 matrix norm that is the largest singular value.
- norm() - Method in class smile.math.matrix.Matrix
-
L2 matrix norm that is the maximum singular value.
- norm() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the L2 matrix norm that is the largest singular value.
- norm(double[]) - Static method in class smile.math.MathEx
-
L2 vector norm.
- norm(float[]) - Static method in class smile.math.MathEx
-
L2 vector norm.
- norm1() - Method in class smile.math.matrix.BigMatrix
-
L1 matrix norm that is the maximum of column sums.
- norm1() - Method in class smile.math.matrix.fp32.Matrix
-
L1 matrix norm that is the maximum of column sums.
- norm1() - Method in class smile.math.matrix.Matrix
-
L1 matrix norm that is the maximum of column sums.
- norm1(double[]) - Static method in class smile.math.MathEx
-
L1 vector norm.
- norm1(float[]) - Static method in class smile.math.MathEx
-
L1 vector norm.
- norm2() - Method in class smile.math.matrix.BigMatrix
-
L2 matrix norm that is the maximum singular value.
- norm2() - Method in class smile.math.matrix.fp32.Matrix
-
L2 matrix norm that is the maximum singular value.
- norm2() - Method in class smile.math.matrix.Matrix
-
L2 matrix norm that is the maximum singular value.
- norm2(double[]) - Static method in class smile.math.MathEx
-
L2 vector norm.
- norm2(float[]) - Static method in class smile.math.MathEx
-
L2 vector norm.
- normalize(double[]) - Static method in class smile.math.MathEx
-
Normalizes an array to norm 1.
- normalize(double[][]) - Static method in class smile.math.MathEx
-
Unitizes each column of a matrix to unit length (L_2 norm).
- normalize(double[][], boolean) - Static method in class smile.math.MathEx
-
Unitizes each column of a matrix to unit length (L_2 norm).
- normalize(String) - Method in interface smile.nlp.normalizer.Normalizer
-
Normalize the given string.
- normalize(String) - Method in class smile.nlp.normalizer.SimpleNormalizer
- NormalizedMutualInformation - Class in smile.validation.metric
-
Normalized Mutual Information (NMI) for comparing clustering.
- NormalizedMutualInformation(NormalizedMutualInformation.Method) - Constructor for class smile.validation.metric.NormalizedMutualInformation
-
Constructor.
- NormalizedMutualInformation.Method - Enum Class in smile.validation.metric
-
The normalization method.
- normalizedNumberFormat(String) - Method in class smile.plot.vega.FormatConfig
-
Sets custom normalized number format.
- normalizedNumberFormatType(String) - Method in class smile.plot.vega.FormatConfig
-
Sets custom normalized number format type.
- Normalizer - Class in smile.feature.transform
-
Normalize samples individually to unit norm.
- Normalizer - Interface in smile.nlp.normalizer
-
Normalization transforms text into a canonical form by removing unwanted variations.
- Normalizer(Normalizer.Norm, String...) - Constructor for class smile.feature.transform.Normalizer
-
Constructor.
- Normalizer.Norm - Enum Class in smile.feature.transform
-
Vector norm.
- normEps() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
normEps
record component. - normFro() - Method in class smile.math.matrix.BigMatrix
-
Frobenius matrix norm that is the square root of sum of squares of all elements.
- normFro() - Method in class smile.math.matrix.fp32.Matrix
-
Frobenius matrix norm that is the square root of sum of squares of all elements.
- normFro() - Method in class smile.math.matrix.Matrix
-
Frobenius matrix norm that is the square root of sum of squares of all elements.
- normInf() - Method in class smile.math.matrix.BigMatrix
-
L∞ matrix norm that is the maximum of row sums.
- normInf() - Method in class smile.math.matrix.fp32.Matrix
-
L∞ matrix norm that is the maximum of row sums.
- normInf() - Method in class smile.math.matrix.Matrix
-
L∞ matrix norm that is the maximum of row sums.
- normInf(double[]) - Static method in class smile.math.MathEx
-
L∞ vector norm.
- normInf(float[]) - Static method in class smile.math.MathEx
-
L∞ vector norm that is the maximum absolute value.
- normLayer() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
normLayer
record component. - not() - Method in class smile.deep.tensor.Tensor
-
Returns logical NOT of this tensor.
- not(Predicate) - Static method in class smile.plot.vega.Predicate
-
Logical NOT operation.
- not_() - Method in class smile.deep.tensor.Tensor
-
Returns logical NOT of this tensor.
- nrm2(double[]) - Method in interface smile.math.blas.BLAS
-
Computes the Euclidean (L2) norm of a vector.
- nrm2(float[]) - Method in interface smile.math.blas.BLAS
-
Computes the Euclidean (L2) norm of a vector.
- nrm2(int, double[], int) - Method in interface smile.math.blas.BLAS
-
Computes the Euclidean (L2) norm of a vector.
- nrm2(int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- nrm2(int, float[], int) - Method in interface smile.math.blas.BLAS
-
Computes the Euclidean (L2) norm of a vector.
- nrm2(int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- nrow() - Method in interface smile.data.DataFrame
-
Returns the number of rows.
- nrow() - Method in interface smile.data.SparseDataset
-
Returns the number of rows.
- nrow() - Method in class smile.math.matrix.BandMatrix
- nrow() - Method in class smile.math.matrix.BigMatrix
- nrow() - Method in class smile.math.matrix.fp32.BandMatrix
- nrow() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the number of rows.
- nrow() - Method in class smile.math.matrix.fp32.Matrix
- nrow() - Method in class smile.math.matrix.fp32.SparseMatrix
- nrow() - Method in class smile.math.matrix.fp32.SymmMatrix
- nrow() - Method in class smile.math.matrix.IMatrix
-
Returns the number of rows.
- nrow() - Method in class smile.math.matrix.Matrix
- nrow() - Method in class smile.math.matrix.SparseMatrix
- nrow() - Method in class smile.math.matrix.SymmMatrix
- nrow() - Method in class smile.util.Array2D
-
Returns the number of rows.
- nrow() - Method in class smile.util.IntArray2D
-
Returns the number of rows.
- nu - Variable in class smile.stat.distribution.ChiSquareDistribution
-
The degrees of freedom.
- nu - Variable in class smile.stat.distribution.TDistribution
-
The degree of freedom.
- nu1 - Variable in class smile.stat.distribution.FDistribution
-
The degrees of freedom of chi-square distribution in numerator.
- nu2 - Variable in class smile.stat.distribution.FDistribution
-
The degrees of freedom chi-square distribution in denominator.
- nullDeviance - Variable in class smile.glm.GLM
-
The null deviance = 2 * (LogLikelihood(Saturated Model) - LogLikelihood(Null Model)).
- nullDeviance(double[], double) - Method in interface smile.glm.model.Model
-
The NULL deviance function.
- nullity() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the dimension of null space.
- nullity() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the dimension of null space.
- nullity() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the dimension of null space.
- nullspace() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the matrix which columns are the orthonormal basis for the null space.
- nullspace() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the matrix which columns are the orthonormal basis for the null space.
- nullspace() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the matrix which columns are the orthonormal basis for the null space.
- NUMBER - Static variable in class smile.swing.table.NumberCellRenderer
- NumberCellRenderer - Class in smile.swing.table
-
Number renderer in JTable.
- NumberCellRenderer() - Constructor for class smile.swing.table.NumberCellRenderer
-
Constructor.
- NumberCellRenderer(int) - Constructor for class smile.swing.table.NumberCellRenderer
-
Constructor.
- NumberCellRenderer(NumberFormat) - Constructor for class smile.swing.table.NumberCellRenderer
-
Constructor.
- numberFormat(String) - Method in class smile.plot.vega.FormatConfig
-
Sets custom number format.
- numberFormatType(String) - Method in class smile.plot.vega.FormatConfig
-
Sets custom number format type.
- NumberVector - Interface in smile.data.vector
-
An immutable number object vector.
- numClasses() - Method in class smile.classification.AbstractClassifier
- numClasses() - Method in interface smile.classification.Classifier
-
Returns the number of classes.
- numClasses() - Method in class smile.classification.DecisionTree
- numClasses() - Method in class smile.classification.MLP
- numClasses() - Method in class smile.classification.SVM
- NumericalMeasure - Class in smile.data.measure
-
Numerical data, also called quantitative data.
- NumericalMeasure(NumberFormat) - Constructor for class smile.data.measure.NumericalMeasure
-
Constructor.
- numHeads() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
numHeads
record component. - numKvHeads() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
numKvHeads
record component. - numLayers() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
numLayers
record component. - numLayers() - Method in record class smile.vision.layer.MBConvConfig
-
Returns the value of the
numLayers
record component. - numLeaves() - Method in class smile.neighbor.RandomProjectionTree
-
Returns the number of leaf nodes in the tree.
- numNodes() - Method in class smile.neighbor.RandomProjectionTree
-
Returns the number of nodes in the tree.
- nystrom(T[], double[], T[], MercerKernel<T>, double) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
- nystrom(T[], double[], T[], MercerKernel<T>, double, boolean) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
- nystrom(T[], double[], T[], MercerKernel<T>, Properties) - Static method in class smile.regression.GaussianProcessRegression
-
Fits an approximate Gaussian process model with Nystrom approximation of kernel matrix.
- nz() - Method in interface smile.data.SparseDataset
-
Returns the number of nonzero entries.
- nz(int) - Method in interface smile.data.SparseDataset
-
Returns the number of nonzero entries in column j.
O
- object(Serializable) - Static method in interface smile.io.Write
-
Writes an object to a temporary file and returns the path of file.
- object(Serializable, Path) - Static method in interface smile.io.Write
-
Writes a serializable object to a file.
- object(Class<?>) - Static method in class smile.data.type.DataTypes
-
Creates an object data type of given class.
- object(Path) - Static method in interface smile.io.Read
-
Reads a serialized object from a file.
- Object - Enum constant in enum class smile.data.type.DataType.ID
-
Object type ID.
- ObjectType - Class in smile.data.type
-
Object data type.
- ObjectType - Static variable in class smile.data.type.DataTypes
-
Plain Object data type.
- OCSVM<T> - Class in smile.base.svm
-
One-class support vector machine.
- OCSVM(MercerKernel<T>, double, double) - Constructor for class smile.base.svm.OCSVM
-
Constructor.
- of(boolean...) - Method in interface smile.data.DataFrame
-
Returns a new data frame with boolean indexing.
- of(boolean...) - Static method in class smile.deep.tensor.Index
-
Returns the index of multiple elements in a dimension.
- of(boolean[], long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with given data and shape.
- of(byte[][]) - Static method in interface smile.hash.SimHash
-
Returns the
SimHash
for a set of generic features (represented as byte[]). - of(byte[], long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with given data and shape.
- of(double) - Static method in class smile.math.Complex
-
Returns a Complex instance representing the specified value.
- of(double[]) - Static method in interface smile.math.Histogram
-
Generate the histogram of given data.
- of(double[]) - Method in class smile.math.kernel.BinarySparseGaussianKernel
- of(double[]) - Method in class smile.math.kernel.BinarySparseHyperbolicTangentKernel
- of(double[]) - Method in class smile.math.kernel.BinarySparseLaplacianKernel
- of(double[]) - Method in class smile.math.kernel.BinarySparseLinearKernel
- of(double[]) - Method in class smile.math.kernel.BinarySparseMaternKernel
- of(double[]) - Method in class smile.math.kernel.BinarySparsePolynomialKernel
- of(double[]) - Method in class smile.math.kernel.BinarySparseThinPlateSplineKernel
- of(double[]) - Method in class smile.math.kernel.GaussianKernel
- of(double[]) - Method in class smile.math.kernel.HellingerKernel
- of(double[]) - Method in class smile.math.kernel.HyperbolicTangentKernel
- of(double[]) - Method in class smile.math.kernel.LaplacianKernel
- of(double[]) - Method in class smile.math.kernel.LinearKernel
- of(double[]) - Method in class smile.math.kernel.MaternKernel
- of(double[]) - Method in interface smile.math.kernel.MercerKernel
-
Returns the same kind kernel with the new hyperparameters.
- of(double[]) - Method in class smile.math.kernel.PearsonKernel
- of(double[]) - Method in class smile.math.kernel.PolynomialKernel
- of(double[]) - Method in class smile.math.kernel.ProductKernel
- of(double[]) - Method in class smile.math.kernel.SparseGaussianKernel
- of(double[]) - Method in class smile.math.kernel.SparseHyperbolicTangentKernel
- of(double[]) - Method in class smile.math.kernel.SparseLaplacianKernel
- of(double[]) - Method in class smile.math.kernel.SparseLinearKernel
- of(double[]) - Method in class smile.math.kernel.SparseMaternKernel
- of(double[]) - Method in class smile.math.kernel.SparsePolynomialKernel
- of(double[]) - Method in class smile.math.kernel.SparseThinPlateSplineKernel
- of(double[]) - Method in class smile.math.kernel.SumKernel
- of(double[]) - Method in class smile.math.kernel.ThinPlateSplineKernel
- of(double[]) - Static method in class smile.plot.swing.Bar
-
Creates a bar plot.
- of(double[]) - Static method in class smile.plot.swing.BarPlot
-
Creates a bar plot.
- of(double[]) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(double...) - Static method in class smile.plot.swing.Label
-
Creates a black label with coordinates as text.
- of(double[]) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot with the index as the x coordinate.
- of(double[]) - Static method in class smile.plot.swing.QQPlot
-
One sample Q-Q plot to standard normal distribution.
- of(double[][]) - Static method in class smile.clustering.linkage.CompleteLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.SingleLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.UPGMALinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.UPGMCLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WardLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WPGMALinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in class smile.clustering.linkage.WPGMCLinkage
-
Computes the proximity and the linkage.
- of(double[][]) - Static method in record class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS with default k = 2, tolerance = 1E-4 and maxIter = 200.
- of(double[][]) - Static method in record class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][]) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping with default k = 2, lambda = 0.2, tolerance = 1E-4 and maxIter = 100.
- of(double[][]) - Static method in class smile.math.matrix.BigMatrix
-
Returns a matrix from a two-dimensional array.
- of(double[][]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a matrix from a two-dimensional array.
- of(double[][]) - Static method in class smile.math.matrix.Matrix
-
Returns a matrix from a two-dimensional array.
- of(double[][]) - Static method in class smile.neighbor.KDTree
-
Return a KD-tree of the data.
- of(double[]...) - Static method in class smile.plot.swing.BoxPlot
-
Create a plot canvas with multiple box plots of given data.
- of(double[][]) - Static method in class smile.plot.swing.Contour
-
Creates a contour plot with 10 isolines.
- of(double[][]) - Static method in class smile.plot.swing.Heatmap
-
Constructor.
- of(double[][]) - Static method in class smile.plot.swing.Hexmap
-
Creates a hexmap with 16-color jet color palette.
- of(double[][]) - Static method in class smile.plot.swing.Histogram3D
-
Creates a 3D histogram plot.
- of(double[][]) - Static method in class smile.plot.swing.Line
-
Creates a Line with solid stroke and black color.
- of(double[][]) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot.
- of(double[][]) - Static method in class smile.plot.swing.Point
-
Creates a Point with circle mark and black color.
- of(double[][]) - Static method in class smile.plot.swing.ScatterPlot
-
Create a scatter plot.
- of(double[][]) - Static method in class smile.plot.swing.Staircase
-
Creates a Staircase with solid stroke and black color.
- of(double[][]) - Static method in class smile.plot.swing.StaircasePlot
-
Creates a line plot.
- of(double[][][]) - Static method in class smile.plot.swing.Grid
-
Creates a grid with black lines.
- of(double[][], char) - Static method in class smile.plot.swing.Line
-
Creates a Line.
- of(double[][], char) - Static method in class smile.plot.swing.Point
-
Creates a Point with black color.
- of(double[][], char) - Static method in class smile.plot.swing.ScatterPlot
-
Create a scatter plot.
- of(double[][], char, Color) - Static method in class smile.plot.swing.ScatterPlot
-
Create a scatter plot.
- of(double[][], double[][], double, double, double, int) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], double[][], double, int) - Static method in record class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], double[], int) - Static method in interface smile.deep.Dataset
-
Creates a dataset of numeric arrays.
- of(double[][], int) - Static method in record class smile.graph.NearestNeighborGraph
-
Creates a nearest neighbor graph with Euclidean distance.
- of(double[][], int) - Static method in class smile.manifold.IsoMap
-
Runs the C-Isomap algorithm with Euclidean distance.
- of(double[][], int) - Static method in record class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], int) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with discrete weights.
- of(double[][], int) - Static method in class smile.manifold.LLE
-
Runs the LLE algorithm.
- of(double[][], int) - Static method in record class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], int) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], int) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm with Euclidean distance.
- of(double[][], int) - Static method in class smile.plot.swing.Contour
-
Creates a contour plot.
- of(double[][], int) - Static method in class smile.plot.swing.Heatmap
-
Creates a heatmap with jet color palette.
- of(double[][], int) - Static method in class smile.plot.swing.Hexmap
-
Creates a hexmap with the jet color palette.
- of(double[][], int) - Static method in class smile.plot.swing.Surface
-
Creates a regular mesh surface with the jet color palette.
- of(double[][], int[][]) - Static method in class smile.plot.swing.Wireframe
-
Constructor.
- of(double[][], int[], char) - Static method in class smile.plot.swing.ScatterPlot
-
Creates a scatter plot of multiple groups of data.
- of(double[][], int[], int) - Static method in interface smile.deep.Dataset
-
Creates a dataset of numeric arrays.
- of(double[][], int, boolean) - Static method in record class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], int, boolean) - Static method in class smile.neighbor.RandomProjectionTree
-
Builds a random projection tree.
- of(double[][], int, boolean) - Static method in class smile.plot.swing.Histogram3D
-
Creates a 3D histogram plot.
- of(double[][], int, boolean, Color[]) - Static method in class smile.plot.swing.Histogram3D
-
Creates a 3D histogram plot.
- of(double[][], int, double, double, double, int) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], int, double, int) - Static method in record class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], int, int, boolean) - Static method in class smile.manifold.IsoMap
-
Runs the Isomap algorithm.
- of(double[][], int, int, boolean) - Static method in class smile.neighbor.RandomProjectionForest
-
Builds a random projection forest.
- of(double[][], int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with Gaussian kernel.
- of(double[][], int, int, int, double, double, double, int, double, double) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm with Euclidean distance.
- of(double[][], int, Color[]) - Static method in class smile.plot.swing.Histogram3D
-
Creates a 3D histogram plot.
- of(double[][], Color) - Static method in class smile.plot.swing.Line
-
Creates a Line.
- of(double[][], Color) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot.
- of(double[][], Color) - Static method in class smile.plot.swing.Point
-
Creates a Point with circle mark.
- of(double[][], Color) - Static method in class smile.plot.swing.ScatterPlot
-
Create a scatter plot.
- of(double[][], Color[]) - Static method in class smile.plot.swing.Heatmap
-
Constructor.
- of(double[][], Color[]) - Static method in class smile.plot.swing.Hexmap
-
Constructor.
- of(double[][], Color[]) - Static method in class smile.plot.swing.Surface
-
Creates a regular mesh surface.
- of(double[][], Color, String) - Static method in class smile.plot.swing.StaircasePlot
-
Creates a line plot.
- of(double[][], String...) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a 2-dimensional array.
- of(double[][], String[]) - Static method in class smile.plot.swing.BarPlot
-
Creates a bar plot of multiple groups/colors.
- of(double[][], String[], char) - Static method in class smile.plot.swing.ScatterPlot
-
Creates a scatter plot of multiple groups of data.
- of(double[][], Properties) - Static method in record class smile.manifold.IsotonicMDS
-
Fits Kruskal's non-metric MDS.
- of(double[][], Properties) - Static method in record class smile.manifold.MDS
-
Fits the classical multidimensional scaling.
- of(double[][], Properties) - Static method in class smile.manifold.SammonMapping
-
Fits Sammon's mapping.
- of(double[][], NearestNeighborGraph, int) - Static method in class smile.manifold.LLE
-
Runs the LLE algorithm.
- of(double[][], Line.Style) - Static method in class smile.plot.swing.Line
-
Creates a Line.
- of(double[][], Line.Style) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot.
- of(double[][], Line.Style, Color) - Static method in class smile.plot.swing.Line
-
Creates a Line.
- of(double[][], Line.Style, Color) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot.
- of(double[][], Line.Style, Color, String) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot.
- of(double[], double[]) - Static method in interface smile.math.Histogram
-
Generate the histogram of n bins.
- of(double[], double[]) - Static method in class smile.plot.swing.QQPlot
-
Two sample Q-Q plot.
- of(double[], double[]) - Static method in class smile.validation.metric.MAD
-
Calculates the mean absolute deviation error.
- of(double[], double[]) - Static method in class smile.validation.metric.MSE
-
Calculates the mean squared error.
- of(double[], double[]) - Static method in class smile.validation.metric.R2
-
Calculates the R squared coefficient.
- of(double[], double[]) - Static method in class smile.validation.metric.RMSE
-
Calculates the root mean squared error.
- of(double[], double[]) - Static method in class smile.validation.metric.RSS
-
Calculates the residual sum of squares.
- of(double[], double[], boolean) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(double[], double[], boolean, Color) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(double[], double[], double[][]) - Static method in class smile.plot.swing.Contour
-
Creates a contour plot with 10 isolines.
- of(double[], double[], double[][]) - Static method in class smile.plot.swing.Heatmap
-
Constructor.
- of(double[], double[], double[][]) - Static method in class smile.plot.swing.Surface
-
Creates an irregular mesh grid.
- of(double[], double[], double[][], int) - Static method in class smile.plot.swing.Contour
-
Creates a contour plot.
- of(double[], double[], double[][], int) - Static method in class smile.plot.swing.Heatmap
-
Constructor.
- of(double[], double[], double[][], int) - Static method in class smile.plot.swing.Surface
-
Creates an irregular mesh surface with the jet color palette.
- of(double[], double[], double[][], Color[]) - Static method in class smile.plot.swing.Surface
-
Creates an irregular mesh surface.
- of(double[], int) - Static method in interface smile.math.Histogram
-
Generate the histogram of n bins.
- of(double[], int, boolean) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(double[], int, boolean, Color) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(double[], long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with given data and shape.
- of(double[], Color) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot with the index as the x coordinate.
- of(double[], StructType) - Static method in interface smile.data.Tuple
-
Returns a double array based tuple.
- of(double[], Line.Style) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot with the index as the x coordinate.
- of(double[], Line.Style, Color) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot with the index as the x coordinate.
- of(double[], Line.Style, Color, String) - Static method in class smile.plot.swing.LinePlot
-
Creates a line plot with the index as the x coordinate.
- of(double[], Distribution) - Static method in class smile.plot.swing.QQPlot
-
One sample Q-Q plot to given distribution.
- of(double, double) - Static method in class smile.math.Complex
-
Returns a Complex instance representing the specified value.
- of(double, double, double[], double[]) - Static method in record class smile.validation.RegressionMetrics
-
Computes the regression metrics.
- of(double, double, int[], int[]) - Static method in record class smile.validation.ClassificationMetrics
-
Computes the classification metrics.
- of(double, double, int[], int[], double[][]) - Static method in record class smile.validation.ClassificationMetrics
-
Computes the soft classification metrics.
- of(double, int[][]) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available in main memory.
- of(double, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available as stream.
- of(double, M, Formula, DataFrame) - Static method in record class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(double, M, Formula, DataFrame) - Static method in record class smile.validation.RegressionMetrics
-
Trains and validates a model on a train/validation split.
- of(double, M, T[], double[]) - Static method in record class smile.validation.RegressionMetrics
-
Validates a model on a test data.
- of(double, M, T[], int[]) - Static method in record class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(float[]) - Static method in interface smile.math.Histogram
-
Generate the histogram of given data.
- of(float[][]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a matrix from a two-dimensional array.
- of(float[][], float[], int) - Static method in interface smile.deep.Dataset
-
Creates a dataset of numeric arrays.
- of(float[][], int[], int) - Static method in interface smile.deep.Dataset
-
Creates a dataset of numeric arrays.
- of(float[][], String...) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a 2-dimensional array.
- of(float[], float[]) - Static method in interface smile.math.Histogram
-
Generate the histogram of n bins.
- of(float[], int) - Static method in interface smile.math.Histogram
-
Generate the histogram of n bins.
- of(float[], long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with given data and shape.
- of(int) - Static method in class smile.deep.tensor.Index
-
Returns the index of a single element in a dimension.
- of(int) - Static method in class smile.util.IntSet
-
Returns the IntSet of [0, k).
- of(int) - Static method in interface smile.validation.LOOCV
-
Returns the training sample index for each round.
- of(int...) - Method in interface smile.data.DataFrame
-
Returns a new data frame with row indexing.
- of(int...) - Static method in class smile.deep.tensor.Index
-
Returns the index of multiple elements in a dimension.
- of(int[]) - Static method in interface smile.math.Histogram
-
Generate the histogram of given data.
- of(int[]) - Static method in class smile.plot.swing.Bar
-
Creates a bar plot.
- of(int[]) - Static method in class smile.plot.swing.BarPlot
-
Creates a bar plot.
- of(int[]) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(int[]) - Static method in class smile.util.IntSet
-
Finds the unique values from samples.
- of(int[][]) - Static method in interface smile.data.BinarySparseDataset
-
Returns a default implementation of BinarySparseDataset without targets.
- of(int[][], String...) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a 2-dimensional array.
- of(int[], double[]) - Static method in interface smile.math.Histogram
-
Generate the histogram of n bins.
- of(int[], double[]) - Static method in class smile.validation.metric.AUC
-
Calculates AUC for binary classifier.
- of(int[], double[]) - Static method in class smile.validation.metric.LogLoss
-
Calculates the Log Loss for binary classifier.
- of(int[], double[][]) - Static method in interface smile.validation.metric.CrossEntropy
-
Calculates the cross entropy for multiclass classifier.
- of(int[], double[], boolean) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(int[], double[], boolean, Color) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(int[], int) - Static method in interface smile.math.Histogram
-
Generate the histogram of k bins.
- of(int[], int) - Static method in interface smile.validation.Bootstrap
-
Stratified bootstrap sampling.
- of(int[], int[]) - Static method in class smile.plot.swing.QQPlot
-
Two sample Q-Q plot.
- of(int[], int[]) - Static method in class smile.stat.GoodTuring
-
Good–Turing frequency estimation.
- of(int[], int[]) - Static method in class smile.validation.metric.Accuracy
-
Calculates the classification accuracy.
- of(int[], int[]) - Static method in class smile.validation.metric.AdjustedRandIndex
-
Calculates the adjusted rand index.
- of(int[], int[]) - Static method in record class smile.validation.metric.ConfusionMatrix
-
Creates the confusion matrix.
- of(int[], int[]) - Static method in class smile.validation.metric.Error
-
Calculates the number of errors.
- of(int[], int[]) - Static method in class smile.validation.metric.Fallout
-
Calculates the false alarm rate.
- of(int[], int[]) - Static method in class smile.validation.metric.FDR
-
Calculates the false discovery rate.
- of(int[], int[]) - Static method in class smile.validation.metric.MatthewsCorrelation
-
Calculates Matthews correlation coefficient.
- of(int[], int[]) - Static method in class smile.validation.metric.MutualInformation
-
Calculates the mutual information.
- of(int[], int[]) - Static method in class smile.validation.metric.Precision
-
Calculates the precision of binary classification.
- of(int[], int[]) - Static method in class smile.validation.metric.RandIndex
-
Calculates the rand index.
- of(int[], int[]) - Static method in class smile.validation.metric.Recall
-
Calculates the recall/sensitivity of binary classification.
- of(int[], int[]) - Static method in class smile.validation.metric.Sensitivity
-
Calculates the sensitivity.
- of(int[], int[]) - Static method in class smile.validation.metric.Specificity
-
Calculates the specificity.
- of(int[], int[], double, Averaging) - Static method in class smile.validation.metric.FScore
-
Calculates the F1 score.
- of(int[], int[], Averaging) - Static method in class smile.validation.metric.Precision
-
Calculates the precision.
- of(int[], int[], Averaging) - Static method in class smile.validation.metric.Recall
-
Calculates the recall/sensitivity.
- of(int[], int, boolean) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(int[], int, boolean, Color) - Static method in class smile.plot.swing.Histogram
-
Creates a histogram plot.
- of(int[], long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with given data and shape.
- of(int[], StructType) - Static method in interface smile.data.Tuple
-
Returns an integer array based tuple.
- of(int[], DiscreteDistribution) - Static method in class smile.plot.swing.QQPlot
-
One sample Q-Q plot to given discrete distribution.
- of(int, int) - Static method in interface smile.validation.Bootstrap
-
Bootstrap sampling.
- of(int, int) - Static method in interface smile.validation.CrossValidation
-
Creates a k-fold cross validation.
- of(int, int[][]) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available in main memory.
- of(int, int, int) - Method in interface smile.vq.Neighborhood
-
Returns the changing rate of neighborhood at a given iteration.
- of(int, int, String) - Static method in class smile.base.mlp.Layer
-
Returns the layer builders given a string representation such as "Input(10, 0.2)|ReLU(50, 0.5)|Sigmoid(30, 0.5)|...".
- of(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
-
Generates a non-sparse random projection.
- of(int, Supplier<Stream<int[]>>) - Static method in class smile.association.FPTree
-
One-step construction of FP-tree if the database is available as stream.
- of(long) - Static method in class smile.deep.tensor.Index
-
Returns the index of a single element in a dimension.
- of(long...) - Static method in class smile.deep.tensor.Index
-
Returns the index of multiple elements in a dimension.
- of(long[], long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with given data and shape.
- of(short[], long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor with given data and shape.
- of(D[], double[]) - Static method in interface smile.data.Dataset
-
Returns a default implementation of Dataset from a collection.
- of(D[], float[]) - Static method in interface smile.data.Dataset
-
Returns a default implementation of Dataset from a collection.
- of(D[], int[]) - Static method in interface smile.data.Dataset
-
Returns a default implementation of Dataset from a collection.
- of(D[], T[]) - Static method in interface smile.data.Dataset
-
Returns a default implementation of Dataset from a collection.
- of(Class<?>) - Static method in interface smile.data.type.DataType
-
Returns the DataType of a class.
- of(Object[], StructType) - Static method in interface smile.data.Tuple
-
Returns an object array based tuple.
- of(String) - Static method in class smile.data.formula.Formula
-
Parses a formula string.
- of(String) - Static method in interface smile.data.type.DataType
-
Returns a DataType from its string representation.
- of(String) - Static method in class smile.llm.llama.Tokenizer
-
Loads a llama3 tokenizer model.
- of(String) - Static method in interface smile.math.kernel.MercerKernel
-
Returns a kernel function.
- of(String) - Static method in interface smile.math.TimeFunction
-
Parses a time function.
- of(String) - Static method in interface smile.nlp.keyword.CooccurrenceKeywords
-
Returns the top 10 keywords.
- of(String[], double[][]) - Static method in class smile.plot.swing.TextPlot
-
Create a text plot.
- of(String[], String[], double[][]) - Static method in class smile.plot.swing.Heatmap
-
Constructor.
- of(String[], String[], double[][], int) - Static method in class smile.plot.swing.Heatmap
-
Constructor.
- of(String, boolean[]) - Static method in interface smile.data.vector.BooleanVector
-
Creates a named boolean vector.
- of(String, byte[]) - Static method in interface smile.data.vector.ByteVector
-
Creates a named byte vector.
- of(String, char[]) - Static method in interface smile.data.vector.CharVector
-
Creates a named char vector.
- of(String, double[]) - Static method in interface smile.data.vector.DoubleVector
-
Creates a named double vector.
- of(String, double[]) - Static method in class smile.math.Scaler
-
Returns the scaler.
- of(String, double[]) - Static method in class smile.plot.swing.Label
-
Creates a black label centered at the coordinates.
- of(String, double[], double, double, double) - Static method in class smile.plot.swing.Label
-
Creates a black label with system default font.
- of(String, float[]) - Static method in interface smile.data.vector.FloatVector
-
Creates a named float vector.
- of(String, int) - Static method in interface smile.nlp.keyword.CooccurrenceKeywords
-
Returns a given number of top keywords.
- of(String, int[]) - Static method in interface smile.data.vector.IntVector
-
Creates a named integer vector.
- of(String, long[]) - Static method in interface smile.data.vector.LongVector
-
Creates a named long vector.
- of(String, short[]) - Static method in interface smile.data.vector.ShortVector
-
Creates a named short integer vector.
- of(String, Class<?>, Number[]) - Static method in interface smile.data.vector.NumberVector
-
Creates a named number vector.
- of(String, Class<?>, T[]) - Static method in interface smile.data.vector.Vector
-
Creates a named vector.
- of(String, String...) - Static method in class smile.data.formula.Formula
-
Factory method.
- of(String, String...) - Static method in interface smile.data.vector.StringVector
-
Creates a named string vector.
- of(String, String, boolean) - Static method in class smile.plot.vega.Predicate
-
Test if a field in the data point satisfies certain conditions.
- of(String, String, double) - Static method in class smile.plot.vega.Predicate
-
Test if a field in the data point satisfies certain conditions.
- of(String, String, Class<R>, Function<T, R>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variable.
- of(String, String, String) - Static method in class smile.plot.vega.Predicate
-
Test if a field in the data point satisfies certain conditions.
- of(String, String, String, Class<R>, BiFunction<T, U, R>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variables.
- of(String, String, String, ToDoubleBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variables.
- of(String, String, String, ToIntBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variables.
- of(String, String, String, ToLongBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variables.
- of(String, String, ToDoubleFunction<T>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variable.
- of(String, String, ToIntFunction<T>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variable.
- of(String, String, ToLongFunction<T>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given variable.
- of(String, DoubleStream) - Static method in interface smile.data.vector.DoubleVector
-
Creates a named double vector.
- of(String, IntStream) - Static method in interface smile.data.vector.IntVector
-
Creates a named integer vector.
- of(String, LongStream) - Static method in interface smile.data.vector.LongVector
-
Creates a named long integer vector.
- of(String, Term...) - Static method in class smile.data.formula.Formula
-
Factory method.
- of(String, Term, Class<R>, Function<T, R>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given term.
- of(String, Term, ToDoubleFunction<T>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given term.
- of(String, Term, ToIntFunction<T>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given term.
- of(String, Term, ToLongFunction<T>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given term.
- of(String, Term, Term, Class<R>, BiFunction<T, U, R>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given terms.
- of(String, Term, Term, ToDoubleBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given terms.
- of(String, Term, Term, ToIntBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given terms.
- of(String, Term, Term, ToLongBiFunction<T, U>) - Static method in interface smile.data.formula.Terms
-
Returns a term that applies a lambda on given terms.
- of(String, DataType, Number[]) - Static method in interface smile.data.vector.NumberVector
-
Creates a named number vector.
- of(String, DataType, T[]) - Static method in interface smile.data.vector.Vector
-
Creates a named vector.
- of(Path) - Static method in class smile.nlp.embedding.GloVe
-
Loads a GloVe model.
- of(Path) - Static method in class smile.nlp.embedding.Word2Vec
-
Loads a pre-trained word2vec model from binary file of ByteOrder.LITTLE_ENDIAN.
- of(Path, ByteOrder) - Static method in class smile.nlp.embedding.Word2Vec
-
Loads a pre-trained word2vec model from binary file.
- of(JDBCType, boolean, String) - Static method in interface smile.data.type.DataType
-
Returns the DataType of a JDBC type.
- of(ResultSet) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a JDBC ResultSet.
- of(ResultSet, StructType) - Static method in interface smile.data.Tuple
-
Returns the current row of a JDBC ResultSet as a tuple.
- of(Collection<String[]>, int, int) - Static method in class smile.nlp.collocation.NGram
-
Extracts n-gram phrases by an Apiori-like algorithm.
- of(Collection<Map<String, T>>, StructType) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a set of Maps.
- of(Collection<SampleInstance<D, T>>) - Static method in interface smile.data.Dataset
-
Returns a default implementation of Dataset from a collection.
- of(Collection<SampleInstance<int[], T>>) - Static method in interface smile.data.BinarySparseDataset
-
Returns a default implementation of BinarySparseDataset.
- of(Collection<SampleInstance<SparseArray, T>>) - Static method in interface smile.data.SparseDataset
-
Returns a default implementation of SparseDataset without targets.
- of(Collection<SampleInstance<SparseArray, T>>, int) - Static method in interface smile.data.SparseDataset
-
Returns a default implementation of SparseDataset without targets.
- of(List<? extends Tuple>) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a set of tuples.
- of(List<? extends Tuple>, StructType) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a set of tuples.
- of(List<D>, List<T>) - Static method in interface smile.data.Dataset
-
Returns a default implementation of Dataset from a collection.
- of(List<T>, Class<T>) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a collection.
- of(List<T>, Distance<T>) - Static method in class smile.neighbor.LinearSearch
-
Return linear nearest neighbor search.
- of(List<T>, Metric<T>) - Static method in class smile.neighbor.BKTree
-
Return a BK-tree of the data.
- of(List<T>, Metric<T>) - Static method in class smile.neighbor.CoverTree
-
Return a cover tree of the data.
- of(List<T>, Metric<T>, double) - Static method in class smile.neighbor.CoverTree
-
Return a cover tree of the data.
- of(Stream<? extends Tuple>) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a stream of tuples.
- of(Stream<? extends Tuple>, StructType) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a stream of tuples.
- of(Stream<SparseArray>) - Static method in interface smile.data.SparseDataset
-
Returns a default implementation of SparseDataset.
- of(M, Formula, DataFrame) - Static method in record class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(M, Formula, DataFrame) - Static method in record class smile.validation.RegressionMetrics
-
Trains and validates a model on a train/validation split.
- of(M, T[], double[]) - Static method in record class smile.validation.RegressionMetrics
-
Validates a model on a test data.
- of(M, T[], int[]) - Static method in record class smile.validation.ClassificationMetrics
-
Validates a model on a test data.
- of(KernelMachine<double[]>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- of(DataFrame, String, String, char, Color) - Static method in class smile.plot.swing.ScatterPlot
-
Creates a scatter plot from a data frame.
- of(DataFrame, String, String, String, char) - Static method in class smile.plot.swing.ScatterPlot
-
Creates a scatter plot from a data frame.
- of(DataFrame, String, String, String, char, Color) - Static method in class smile.plot.swing.ScatterPlot
-
Creates a scatter plot from a data frame.
- of(DataFrame, String, String, String, String, char) - Static method in class smile.plot.swing.ScatterPlot
-
Creates a scatter plot from a data frame.
- of(Formula, DataFrame, int) - Static method in interface smile.deep.Dataset
-
Returns a dataset.
- of(Formula, DataFrame, Properties, Classifier.Trainer<double[], ?>) - Static method in interface smile.classification.DataFrameClassifier
-
Fits a vector classifier on data frame.
- of(Formula, DataFrame, Properties, Regression.Trainer<double[], ?>) - Static method in interface smile.regression.DataFrameRegression
-
Fits a vector regression model on data frame.
- of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on a train/validation split.
- of(Formula, DataFrame, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on a train/validation split.
- of(Term, Term...) - Static method in class smile.data.formula.Formula
-
Factory method.
- of(StructField, boolean[]) - Static method in interface smile.data.vector.BooleanVector
-
Creates a named boolean vector.
- of(StructField, byte[]) - Static method in interface smile.data.vector.ByteVector
-
Creates a named byte vector.
- of(StructField, char[]) - Static method in interface smile.data.vector.CharVector
-
Creates a named char vector.
- of(StructField, double[]) - Static method in interface smile.data.vector.DoubleVector
-
Creates a named double vector.
- of(StructField, float[]) - Static method in interface smile.data.vector.FloatVector
-
Creates a named float vector.
- of(StructField, int[]) - Static method in interface smile.data.vector.IntVector
-
Creates a named integer vector.
- of(StructField, long[]) - Static method in interface smile.data.vector.LongVector
-
Creates a named long integer vector.
- of(StructField, short[]) - Static method in interface smile.data.vector.ShortVector
-
Creates a named short integer vector.
- of(StructField, Number[]) - Static method in interface smile.data.vector.NumberVector
-
Creates a named number vector.
- of(StructField, String...) - Static method in interface smile.data.vector.StringVector
-
Creates a named string vector.
- of(StructField, DoubleStream) - Static method in interface smile.data.vector.DoubleVector
-
Creates a named double vector.
- of(StructField, IntStream) - Static method in interface smile.data.vector.IntVector
-
Creates a named integer vector.
- of(StructField, LongStream) - Static method in interface smile.data.vector.LongVector
-
Creates a named long integer vector.
- of(StructField, T[]) - Static method in interface smile.data.vector.Vector
-
Creates a named vector.
- of(BaseVector...) - Static method in interface smile.data.DataFrame
-
Creates a DataFrame from a set of vectors.
- of(Tensor) - Static method in class smile.deep.tensor.Index
-
Returns the tensor index along a dimension.
- of(NearestNeighborGraph, int, boolean) - Static method in class smile.manifold.IsoMap
-
Runs the Isomap algorithm.
- of(NearestNeighborGraph, int, double) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with Gaussian kernel.
- of(Complex...) - Static method in class smile.math.Complex.Array
-
Creates a packed array of complex values.
- of(IMatrix) - Static method in class smile.math.matrix.PageRank
-
Calculates the page rank vector.
- of(IMatrix, double[]) - Static method in class smile.math.matrix.PageRank
-
Calculates the page rank vector.
- of(IMatrix, double[], double, double, int) - Static method in class smile.math.matrix.PageRank
-
Calculates the page rank vector.
- of(SparseMatrix) - Static method in class smile.graph.AdjacencyList
-
Converts the sparse matrix to a graph.
- of(SparseMatrix) - Static method in class smile.plot.swing.SparseMatrixPlot
-
Creates a sparse matrix plot with blue color for nonzero entries.
- of(SparseMatrix, int) - Static method in class smile.plot.swing.SparseMatrixPlot
-
Creates a sparse matrix plot with the jet color palette.
- of(Corpus, double, int) - Static method in class smile.nlp.collocation.Bigram
-
Finds bigram collocations in the given corpus whose p-value is less than the given threshold.
- of(Corpus, int, int) - Static method in class smile.nlp.collocation.Bigram
-
Finds top k bigram collocations in the given corpus.
- of(SparseArray[]) - Static method in interface smile.data.SparseDataset
-
Returns a default implementation of SparseDataset without targets.
- of(SparseArray[], int) - Static method in interface smile.data.SparseDataset
-
Returns a default implementation of SparseDataset without targets.
- of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on multiple train/validation split.
- of(Bag[], Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on multiple train/validation split.
- of(Bag[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on multiple train/validation split.
- of(Bag[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on multiple train/validation split.
- of(T[], double[], T[], double[], BiFunction<T[], double[], M>) - Static method in class smile.validation.RegressionValidation
-
Trains and validates a model on a train/validation split.
- of(T[], int[], T[], int[], BiFunction<T[], int[], M>) - Static method in class smile.validation.ClassificationValidation
-
Trains and validates a model on a train/validation split.
- of(T[], NearestNeighborGraph, int, int, double, double, double, int, double, double) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.CompleteLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.SingleLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMALinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.UPGMCLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WardLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMALinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.clustering.linkage.WPGMCLinkage
-
Computes the proximity and the linkage.
- of(T[], Distance<T>) - Static method in class smile.neighbor.LinearSearch
-
Return linear nearest neighbor search.
- of(T[], Distance<T>, int) - Static method in record class smile.graph.NearestNeighborGraph
-
Creates a nearest neighbor graph.
- of(T[], Distance<T>, int) - Static method in class smile.manifold.IsoMap
-
Runs the C-Isomap algorithm.
- of(T[], Distance<T>, int) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with discrete weights.
- of(T[], Distance<T>, int, int, boolean) - Static method in class smile.manifold.IsoMap
-
Runs the Isomap algorithm.
- of(T[], Distance<T>, int, int, double) - Static method in class smile.manifold.LaplacianEigenmap
-
Laplacian Eigenmaps with discrete weights.
- of(T[], Metric<T>) - Static method in class smile.neighbor.BKTree
-
Return a BK-tree of the data.
- of(T[], Metric<T>) - Static method in class smile.neighbor.CoverTree
-
Return a cover tree of the data.
- of(T[], Metric<T>, double) - Static method in class smile.neighbor.CoverTree
-
Return a cover tree of the data.
- of(T[], Metric<T>, int) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(T[], Metric<T>, int, int, int, double, double, double, int, double, double) - Static method in class smile.manifold.UMAP
-
Runs the UMAP algorithm.
- of(T[], RadialBasisFunction[], Metric<T>) - Static method in class smile.base.rbf.RBF
-
Makes a set of RBF neurons.
- of(T[], RadialBasisFunction, Metric<T>) - Static method in class smile.base.rbf.RBF
-
Makes a set of RBF neurons.
- of(T, int, double) - Static method in record class smile.neighbor.Neighbor
-
Creates a neighbor object, of which key and object are the same.
- offer(E) - Method in class smile.util.PairingHeap
- offset() - Method in class smile.math.kernel.HyperbolicTangent
-
Returns the offset of kernel.
- offset() - Method in class smile.math.kernel.Polynomial
-
Returns the offset of kernel.
- offset(double) - Method in class smile.plot.vega.Axis
-
Sets the offset, in pixels, by which to displace the axis from the edge of the enclosing group or data rectangle.
- offset(double) - Method in class smile.plot.vega.Legend
-
Sets the offset, in pixels, by which to displace the legend from the edge of the enclosing group or data rectangle.
- offset(String) - Method in class smile.plot.vega.StackTransform
-
Sets the mode for stacking marks.
- OK_OPTION - Static variable in class smile.swing.FontChooser
-
Return value from
showDialog()
. - ols(double[], int) - Static method in class smile.timeseries.AR
-
Fits an autoregressive model with least squares method.
- ols(double[], int, boolean) - Static method in class smile.timeseries.AR
-
Fits an autoregressive model with least squares method.
- OLS - Class in smile.regression
-
Ordinary least squares.
- OLS - Enum constant in enum class smile.timeseries.AR.Method
-
Ordinary least squares.
- OLS() - Constructor for class smile.regression.OLS
- omega() - Method in class smile.math.kernel.PearsonKernel
-
Returns the tailing factor of the peak.
- omit(double[], double) - Static method in class smile.math.MathEx
-
Returns a new array without the specified value.
- omit(float[], float) - Static method in class smile.math.MathEx
-
Returns a new array without the specified value.
- omit(int[], int) - Static method in class smile.math.MathEx
-
Returns a new array without the specified value.
- omitNaN(double[]) - Static method in class smile.math.MathEx
-
Returns a new array without NaN values.
- omitNaN(float[]) - Static method in class smile.math.MathEx
-
Returns a new array without NaN values.
- omitNullRows() - Method in interface smile.data.DataFrame
-
Returns a new data frame without rows that have null/missing values.
- ONE_HOT - Enum constant in enum class smile.data.CategoricalEncoder
-
One hot encoding.
- oneOf(String, double...) - Static method in class smile.plot.vega.Predicate
-
Test if a field in the data point satisfies certain conditions.
- oneOf(String, String...) - Static method in class smile.plot.vega.Predicate
-
Test if a field in the data point satisfies certain conditions.
- ones(long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with all ones.
- ones(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with all ones.
- OneVersusOne<T> - Class in smile.classification
-
One-vs-one strategy for reducing the problem of multiclass classification to multiple binary classification problems.
- OneVersusOne(Classifier<T>[][], PlattScaling[][]) - Constructor for class smile.classification.OneVersusOne
-
Constructor.
- OneVersusOne(Classifier<T>[][], PlattScaling[][], IntSet) - Constructor for class smile.classification.OneVersusOne
-
Constructor.
- OneVersusRest<T> - Class in smile.classification
-
One-vs-rest (or one-vs-all) strategy for reducing the problem of multiclass classification to multiple binary classification problems.
- OneVersusRest(Classifier<T>[], PlattScaling[]) - Constructor for class smile.classification.OneVersusRest
-
Constructor.
- OneVersusRest(Classifier<T>[], PlattScaling[], IntSet) - Constructor for class smile.classification.OneVersusRest
-
Constructor.
- online() - Method in interface smile.classification.Classifier
-
Returns true if this is an online learner.
- online() - Method in class smile.classification.DiscreteNaiveBayes
- online() - Method in class smile.classification.LogisticRegression
- online() - Method in class smile.classification.Maxent
- online() - Method in class smile.classification.MLP
- online() - Method in class smile.classification.SparseLogisticRegression
- online() - Method in class smile.regression.LinearModel
- online() - Method in class smile.regression.MLP
- online() - Method in interface smile.regression.Regression
-
Returns true if this is an online learner.
- oob() - Method in record class smile.validation.Bag
-
Returns the value of the
oob
record component. - op() - Method in record class smile.plot.vega.WindowTransformField
-
Returns the value of the
op
record component. - op(String) - Method in class smile.plot.vega.PivotTransform
-
Sets the aggregation operation to apply to grouped value field values.
- opacity(double) - Method in class smile.plot.vega.Background
-
Sets the overall opacity.
- opacity(double) - Method in class smile.plot.vega.Mark
-
Sets the overall opacity.
- opacity(double) - Method in class smile.plot.vega.ViewConfig
-
Sets the overall opacity.
- open - Variable in enum class smile.nlp.pos.PennTreebankPOS
-
True if the POS is an open class.
- OpenBLAS - Class in smile.math.blas.openblas
-
OpenBLAS library wrapper.
- OpenBLAS() - Constructor for class smile.math.blas.openblas.OpenBLAS
- OPENING_PARENTHESIS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation ( [ {
- OPENING_QUOTATION - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation ` or ``
- Operator - Class in smile.data.formula
-
The infix bifunction term.
- Operator(String, Term, Term) - Constructor for class smile.data.formula.Operator
-
Constructor.
- opt2(int[], int) - Method in class smile.graph.Graph
-
Improves an existing TSP tour with the 2-opt heuristic.
- Optimizer - Class in smile.deep
-
Optimizer functions.
- Options() - Constructor for class smile.deep.tensor.Tensor.Options
-
Constructor with default values for every axis.
- Options(int, int, int) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
-
Constructor.
- Options(int, int, int, int, int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
-
Custom constructor.
- Options(int, int, int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
-
Constructor.
- Options(int, int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
-
Constructor.
- Options(int, int, int, IntFunction<Layer>, ActivationFunction) - Constructor for record class smile.vision.layer.Conv2dNormActivation.Options
-
Constructor.
- or(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns logical OR of two boolean tensors.
- or(Predicate...) - Static method in class smile.plot.vega.Predicate
-
Logical OR composition to combine predicates.
- or_(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns logical OR of two boolean tensors.
- ORANGE - Static variable in interface smile.plot.swing.Palette
- order - Variable in class smile.base.cart.CART
-
An index of training values.
- order() - Method in record class smile.plot.vega.SortField
-
Returns the value of the
order
record component. - order(boolean) - Method in class smile.plot.vega.Mark
-
For line and trail marks, sets this order property false to make the lines use the original order in the data sources.
- order(int) - Method in class smile.plot.vega.RegressionTransform
-
Sets the polynomial order (number of coefficients) for the "poly" method.
- order(DataFrame) - Static method in class smile.base.cart.CART
-
Returns the index of ordered samples for each ordinal column.
- ordinal - Variable in class smile.sequence.HMMLabeler
-
The lambda returns the ordinal numbers of symbols.
- ordinal(int) - Static method in interface smile.util.Strings
-
Returns the string representation of ordinal number with suffix.
- OrdinalNode - Class in smile.base.cart
-
A node with an ordinal split variable (real-valued or ordinal categorical value).
- OrdinalNode(int, double, double, double, Node, Node) - Constructor for class smile.base.cart.OrdinalNode
-
Constructor.
- OrdinalScale - Class in smile.data.measure
-
The ordinal type allows for rank order (1st, 2nd, 3rd, etc.) by which data can be sorted, but still does not allow for relative degree of difference between them.
- OrdinalScale(int[], String[]) - Constructor for class smile.data.measure.OrdinalScale
-
Constructor.
- OrdinalScale(Class<? extends Enum<?>>) - Constructor for class smile.data.measure.OrdinalScale
-
Constructor.
- OrdinalScale(String...) - Constructor for class smile.data.measure.OrdinalScale
-
Constructor.
- OrdinalScale(List<String>) - Constructor for class smile.data.measure.OrdinalScale
-
Constructor.
- OrdinalSplit - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- OrdinalSplit(LeafNode, int, double, double, int, int, int, int, IntPredicate) - Constructor for class smile.base.cart.OrdinalSplit
-
Constructor.
- orgqr(Layout, int, int, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
-
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
- orgqr(Layout, int, int, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- orgqr(Layout, int, int, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
-
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
- orgqr(Layout, int, int, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- orgqr(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
- orgqr(Layout, int, int, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- orgqr(Layout, int, int, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
- orgqr(Layout, int, int, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- orgqr(Layout, int, int, int, DoublePointer, int, DoublePointer) - Method in interface smile.math.blas.LAPACK
-
Generates the real orthogonal matrix Q of the QR factorization formed by geqrf.
- orgqr(Layout, int, int, int, DoublePointer, int, DoublePointer) - Method in class smile.math.blas.openblas.OpenBLAS
- orient(String) - Method in class smile.plot.vega.Axis
-
Sets the orientation of the axis.
- orient(String) - Method in class smile.plot.vega.Legend
-
Sets the orientation of the legend.
- orient(String) - Method in class smile.plot.vega.Mark
-
Sets the orientation of a non-stacked bar, tick, area, and line charts.
- ormqr(Layout, Side, Transpose, int, int, int, double[], int, double[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Overwrites the general real M-by-N matrix C with
- ormqr(Layout, Side, Transpose, int, int, int, double[], int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ormqr(Layout, Side, Transpose, int, int, int, float[], int, float[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Overwrites the general real M-by-N matrix C with
- ormqr(Layout, Side, Transpose, int, int, int, float[], int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ormqr(Layout, Side, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Overwrites the general real M-by-N matrix C with
- ormqr(Layout, Side, Transpose, int, int, int, DoubleBuffer, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- ormqr(Layout, Side, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Overwrites the general real M-by-N matrix C with
- ormqr(Layout, Side, Transpose, int, int, int, FloatBuffer, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- ormqr(Layout, Side, Transpose, int, int, int, DoublePointer, int, DoublePointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Overwrites the general real M-by-N matrix C with
- ormqr(Layout, Side, Transpose, int, int, int, DoublePointer, int, DoublePointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- out() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
out
record component. - outer(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns the outer product of two tensors.
- outerRadius(double) - Method in class smile.plot.vega.Mark
-
Sets the primary (inner) radius in pixels for arc mark.
- OUTLIER - Static variable in class smile.clustering.PartitionClustering
-
Cluster label for outliers or noises.
- OUTLIER - Static variable in interface smile.vq.VectorQuantizer
-
The label for outliers or noises.
- output - Variable in class smile.base.mlp.Layer
-
The output vector.
- output - Variable in class smile.base.mlp.MultilayerPerceptron
-
The output layer.
- output() - Method in class smile.base.cart.DecisionNode
-
Returns the predicted value.
- output() - Method in class smile.base.cart.RegressionNode
-
Returns the predicted value.
- output() - Method in class smile.base.mlp.Layer
-
Returns the output vector.
- output(int[], int[]) - Method in interface smile.base.cart.Loss
-
Calculate the node output.
- outputChannels() - Method in record class smile.vision.layer.MBConvConfig
-
Returns the value of the
outputChannels
record component. - OutputFunction - Enum Class in smile.base.mlp
-
The output function of neural networks.
- outputGradient - Variable in class smile.base.mlp.Layer
-
The output gradient.
- OutputLayer - Class in smile.base.mlp
-
The output layer in the neural network.
- OutputLayer(int, int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayer
-
Constructor.
- OutputLayerBuilder - Class in smile.base.mlp
-
The builder of output layers.
- OutputLayerBuilder(int, OutputFunction, Cost) - Constructor for class smile.base.mlp.OutputLayerBuilder
-
Constructor.
- OVERWRITE - Enum constant in enum class smile.math.blas.SVDJob
-
The first min(m, n) singular vectors are overwritten on the matrix A.
P
- p - Variable in class smile.base.mlp.Layer
-
The number of input variables.
- p - Variable in class smile.base.mlp.MultilayerPerceptron
-
The dimensionality of input data.
- p - Variable in class smile.stat.distribution.BernoulliDistribution
-
Probability of success.
- p - Variable in class smile.stat.distribution.BinomialDistribution
-
The probability of success.
- p - Variable in class smile.stat.distribution.EmpiricalDistribution
-
The probabilities for each x.
- p - Variable in class smile.stat.distribution.GeometricDistribution
-
Probability of success on each trial.
- p - Variable in class smile.stat.distribution.NegativeBinomialDistribution
-
The success probability in each experiment.
- p - Variable in class smile.stat.distribution.ShiftedGeometricDistribution
-
The probability of success.
- p - Variable in class smile.stat.GoodTuring
-
The probabilities corresponding to the observed frequencies.
- p() - Method in class smile.timeseries.AR
-
Returns the order of AR.
- p() - Method in class smile.timeseries.ARMA
-
Returns the order of AR.
- p(double) - Method in class smile.stat.distribution.BetaDistribution
- p(double) - Method in class smile.stat.distribution.ChiSquareDistribution
- p(double) - Method in class smile.stat.distribution.DiscreteDistribution
- p(double) - Method in interface smile.stat.distribution.Distribution
-
The probability density function for continuous distribution or probability mass function for discrete distribution at x.
- p(double) - Method in class smile.stat.distribution.ExponentialDistribution
- p(double) - Method in class smile.stat.distribution.FDistribution
- p(double) - Method in class smile.stat.distribution.GammaDistribution
- p(double) - Method in class smile.stat.distribution.GaussianDistribution
- p(double) - Method in class smile.stat.distribution.KernelDensity
- p(double) - Method in class smile.stat.distribution.LogisticDistribution
- p(double) - Method in class smile.stat.distribution.LogNormalDistribution
- p(double) - Method in class smile.stat.distribution.Mixture
- p(double) - Method in class smile.stat.distribution.TDistribution
- p(double) - Method in class smile.stat.distribution.WeibullDistribution
- p(double[]) - Method in interface smile.stat.distribution.MultivariateDistribution
-
The probability density function for continuous distribution or probability mass function for discrete distribution at x.
- p(double[]) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- p(double[]) - Method in class smile.stat.distribution.MultivariateMixture
- p(int) - Method in class smile.stat.distribution.BernoulliDistribution
- p(int) - Method in class smile.stat.distribution.BinomialDistribution
- p(int) - Method in class smile.stat.distribution.DiscreteDistribution
-
The probability mass function.
- p(int) - Method in class smile.stat.distribution.DiscreteMixture
- p(int) - Method in class smile.stat.distribution.EmpiricalDistribution
- p(int) - Method in class smile.stat.distribution.GeometricDistribution
- p(int) - Method in class smile.stat.distribution.HyperGeometricDistribution
- p(int) - Method in class smile.stat.distribution.NegativeBinomialDistribution
- p(int) - Method in class smile.stat.distribution.PoissonDistribution
- p(int) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- p(int[]) - Method in class smile.sequence.HMM
-
Returns the probability of an observation sequence given this HMM.
- p(int[], int[]) - Method in class smile.sequence.HMM
-
Returns the joint probability of an observation sequence along a state sequence given this HMM.
- p(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the probability of an observation sequence.
- p(T[], int[]) - Method in class smile.sequence.HMMLabeler
-
Returns the joint probability of an observation sequence along a state sequence.
- p0 - Variable in class smile.stat.GoodTuring
-
The joint probability of all unobserved species.
- pacf(double[], int) - Static method in interface smile.timeseries.TimeSeries
-
Partial autocorrelation function.
- pad() - Method in class smile.llm.llama.Tokenizer
-
Returns the padding token id.
- padAngle(double) - Method in class smile.plot.vega.Mark
-
Setsthe angular padding applied to sides of the arc in radians.
- padding() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
padding
record component. - padding(double) - Method in class smile.plot.vega.Legend
-
Sets the padding between the border and content of the legend group.
- padding(int) - Method in class smile.plot.vega.Concat
- padding(int) - Method in class smile.plot.vega.Config
-
Specifies padding for all sides.
- padding(int) - Method in class smile.plot.vega.Facet
- padding(int) - Method in class smile.plot.vega.Repeat
- padding(int) - Method in class smile.plot.vega.VegaLite
-
Specifies padding for all sides.
- padding(int) - Method in class smile.plot.vega.View
- padding(int, int, int, int) - Method in class smile.plot.vega.Concat
- padding(int, int, int, int) - Method in class smile.plot.vega.Config
-
Specifies padding for each side.
- padding(int, int, int, int) - Method in class smile.plot.vega.Facet
- padding(int, int, int, int) - Method in class smile.plot.vega.Repeat
- padding(int, int, int, int) - Method in class smile.plot.vega.VegaLite
-
Specifies padding for each side.
- padding(int, int, int, int) - Method in class smile.plot.vega.View
- pageDown() - Method in class smile.swing.table.PageTableModel
-
Moves to next page and fire a data changed (all rows).
- PageRank - Class in smile.math.matrix
-
PageRank is a link analysis algorithm, and it assigns a numerical weighting to each element of a hyperlinked set of documents, such as the World Wide Web, with the purpose of "measuring" its relative importance within the set.
- PageTableModel - Class in smile.swing.table
-
A table model that performs "paging" of its data.
- PageTableModel() - Constructor for class smile.swing.table.PageTableModel
-
Default constructor.
- PageTableModel(int) - Constructor for class smile.swing.table.PageTableModel
-
Constructor.
- pageUp() - Method in class smile.swing.table.PageTableModel
-
Moves to previous page and fire a data changed (all rows).
- paint(Graphics2D, int, int) - Method in class smile.plot.swing.Canvas
-
Paints the canvas.
- paint(Graphics) - Method in class smile.plot.swing.Axis
-
Draw the axis.
- paint(Graphics) - Method in class smile.plot.swing.Bar
- paint(Graphics) - Method in class smile.plot.swing.BarPlot
- paint(Graphics) - Method in class smile.plot.swing.BoxPlot
- paint(Graphics) - Method in class smile.plot.swing.Contour
- paint(Graphics) - Method in class smile.plot.swing.Dendrogram
- paint(Graphics) - Method in class smile.plot.swing.Grid
- paint(Graphics) - Method in class smile.plot.swing.Heatmap
- paint(Graphics) - Method in class smile.plot.swing.Hexmap
- paint(Graphics) - Method in class smile.plot.swing.Histogram3D
- paint(Graphics) - Method in class smile.plot.swing.Isoline
-
Paint the contour line.
- paint(Graphics) - Method in class smile.plot.swing.Label
- paint(Graphics) - Method in class smile.plot.swing.Line
- paint(Graphics) - Method in class smile.plot.swing.LinePlot
- paint(Graphics) - Method in class smile.plot.swing.Point
- paint(Graphics) - Method in class smile.plot.swing.QQPlot
- paint(Graphics) - Method in class smile.plot.swing.ScatterPlot
- paint(Graphics) - Method in class smile.plot.swing.ScreePlot
- paint(Graphics) - Method in class smile.plot.swing.Shape
-
Draws the shape.
- paint(Graphics) - Method in class smile.plot.swing.SparseMatrixPlot
- paint(Graphics) - Method in class smile.plot.swing.Staircase
- paint(Graphics) - Method in class smile.plot.swing.StaircasePlot
- paint(Graphics) - Method in class smile.plot.swing.Surface
- paint(Graphics) - Method in class smile.plot.swing.TextPlot
- paint(Graphics) - Method in class smile.plot.swing.Wireframe
- paintIcon(Component, Graphics, int, int) - Method in record class smile.swing.AlphaIcon
-
Paints the wrapped icon with this
AlphaIcon
's transparency. - PairingHeap<E> - Class in smile.util
-
A pairing heap is a type of heap data structure with relatively simple implementation and excellent practical amortized performance.
- PairingHeap() - Constructor for class smile.util.PairingHeap
- PairingHeap.Node - Class in smile.util
-
A multiway tree node in the pairing heap.
- Palette - Interface in smile.plot.swing
-
Color palette generator.
- panel() - Method in class smile.plot.swing.Canvas
-
Returns a Swing JPanel of the canvas.
- ParagraphSplitter - Interface in smile.nlp.tokenizer
-
A paragraph splitter segments text into paragraphs.
- parallels(double...) - Method in class smile.plot.vega.Projection
-
For conic projections, sets the two standard parallels that define the map layout.
- param() - Method in record class smile.plot.vega.WindowTransformField
-
Returns the value of the
param
record component. - parameters - Variable in class smile.math.LevenbergMarquardt
-
The fitted parameters.
- params(boolean) - Method in class smile.plot.vega.RegressionTransform
-
Sets if the transform should return the regression model parameters (one object per group), rather than trend line points.
- parquet(String) - Static method in interface smile.io.Read
-
Reads an Apache Parquet file.
- parquet(String, String...) - Method in class smile.data.SQL
-
Creates an in-memory table from parquet files.
- parquet(String, Map<String, String>, String...) - Method in class smile.data.SQL
-
Creates an in-memory table from parquet files.
- parquet(Path) - Static method in interface smile.io.Read
-
Reads an Apache Parquet file.
- Parquet - Class in smile.io
-
Apache Parquet is a columnar storage format that supports nested data structures.
- parseDoubleArray(String) - Static method in interface smile.util.Strings
-
Parses a double array in format '[1.0, 2.0, 3.0]'.
- parseIntArray(String) - Static method in interface smile.util.Strings
-
Parses an integer array in format '[1, 2, 3]'.
- parser() - Method in class smile.data.type.StructType
-
Returns the lambda functions that parse field values.
- partition(double) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the cut height.
- partition(int) - Method in class smile.clustering.HierarchicalClustering
-
Cuts a tree into several groups by specifying the desired number.
- PartitionClustering - Class in smile.clustering
-
Partition clustering.
- PartitionClustering(int, int[]) - Constructor for class smile.clustering.PartitionClustering
-
Constructor.
- PASTEL_GREEN - Static variable in interface smile.plot.swing.Palette
- path(double[]) - Method in class smile.anomaly.IsolationTree
-
Returns the path length from the root to the leaf node.
- Paths - Interface in smile.util
-
Static methods that return a Path by converting a path string or URI.
- pbtrf(Layout, UPLO, int, int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
- pbtrf(Layout, UPLO, int, int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- pbtrf(Layout, UPLO, int, int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
- pbtrf(Layout, UPLO, int, int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- pbtrf(Layout, UPLO, int, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
- pbtrf(Layout, UPLO, int, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- pbtrf(Layout, UPLO, int, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite band matrix A.
- pbtrf(Layout, UPLO, int, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- pbtrs(Layout, UPLO, int, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pbtrs(Layout, UPLO, int, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- pbtrs(Layout, UPLO, int, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pbtrs(Layout, UPLO, int, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- pbtrs(Layout, UPLO, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pbtrs(Layout, UPLO, int, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- pbtrs(Layout, UPLO, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pbtrs(Layout, UPLO, int, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- PCA - Class in smile.feature.extraction
-
Principal component analysis.
- PCA(double[], double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.PCA
-
Constructor.
- pdist(double[][]) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple vectors.
- pdist(double[][], boolean) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple vectors.
- pdist(float[][]) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple vectors.
- pdist(float[][], boolean) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple vectors.
- pdist(int[][]) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple binary sparse vectors.
- pdist(int[][], boolean) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple binary sparse vectors.
- pdist(SparseArray[]) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple vectors.
- pdist(SparseArray[], boolean) - Static method in class smile.math.MathEx
-
Returns the pairwise distance matrix of multiple vectors.
- pdist(T[], double[][], Distance<T>) - Static method in class smile.math.MathEx
-
Computes the pairwise distance matrix of multiple vectors.
- pdot(double[][]) - Static method in class smile.math.MathEx
-
Returns the pairwise dot product matrix of double vectors.
- pdot(float[][]) - Static method in class smile.math.MathEx
-
Returns the pairwise dot product matrix of float vectors.
- pdot(int[][]) - Static method in class smile.math.MathEx
-
Returns the pairwise dot product matrix of binary sparse vectors.
- pdot(SparseArray[]) - Static method in class smile.math.MathEx
-
Returns the pairwise dot product matrix of multiple vectors.
- PDT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Predeterminer.
- pearson(double[], double[]) - Static method in record class smile.stat.hypothesis.CorTest
-
Pearson correlation coefficient test.
- PearsonKernel - Class in smile.math.kernel
-
Pearson VII universal kernel.
- PearsonKernel(double, double) - Constructor for class smile.math.kernel.PearsonKernel
-
Constructor.
- PearsonKernel(double, double, double, double) - Constructor for class smile.math.kernel.PearsonKernel
-
Constructor.
- peek() - Method in class smile.sort.DoubleHeapSelect
-
Returns the k-th smallest value seen so far.
- peek() - Method in class smile.sort.FloatHeapSelect
-
Returns the k-th smallest value seen so far.
- peek() - Method in class smile.sort.HeapSelect
-
Returns the k-th smallest value seen so far.
- peek() - Method in class smile.sort.IntHeapSelect
-
Returns the k-th smallest value seen so far.
- peek() - Method in class smile.util.PairingHeap
- PennTreebankPOS - Enum Class in smile.nlp.pos
-
The Penn Treebank Tag set.
- PennTreebankTokenizer - Class in smile.nlp.tokenizer
-
A word tokenizer that tokenizes English sentences using the conventions used by the Penn Treebank.
- Percent - Static variable in interface smile.data.measure.Measure
-
Percent.
- PERCENT - Static variable in class smile.swing.table.NumberCellRenderer
- PerfectHash - Class in smile.hash
-
A perfect hash of an array of strings to their index in the array.
- PerfectHash(int[], String...) - Constructor for class smile.hash.PerfectHash
-
Constructor.
- PerfectHash(String...) - Constructor for class smile.hash.PerfectHash
-
Constructor.
- PerfectMap<T> - Class in smile.hash
-
Perfect hash based immutable map.
- PerfectMap.Builder<T> - Class in smile.hash
-
The builder of perfect map.
- permutate(double[]) - Static method in class smile.math.MathEx
-
Permutates an array.
- permutate(double[]) - Method in class smile.math.Random
-
Permutates an array.
- permutate(float[]) - Static method in class smile.math.MathEx
-
Permutates an array.
- permutate(float[]) - Method in class smile.math.Random
-
Permutates an array.
- permutate(int) - Static method in class smile.math.MathEx
-
Returns a permutation of
(0, 1, 2, ..., n-1)
. - permutate(int) - Method in class smile.math.Random
-
Returns a permutation of
(0, 1, 2, ..., n-1)
. - permutate(int[]) - Static method in class smile.math.MathEx
-
Permutates an array.
- permutate(int[]) - Method in class smile.math.Random
-
Permutates an array.
- permutate(Object[]) - Static method in class smile.math.MathEx
-
Permutates an array.
- permutate(Object[]) - Method in class smile.math.Random
-
Permutates an array.
- permute(long...) - Method in class smile.deep.tensor.Tensor
-
Returns a view of the original tensor input with its dimensions permuted.
- phase() - Method in class smile.math.Complex
-
Returns the angle/phase/argument between -pi and pi.
- PHONE_NUMBER - Static variable in interface smile.util.Regex
-
U.S.
- PHONE_NUMBER_EXTENSION - Static variable in interface smile.util.Regex
-
U.S.
- piecewise(int[], double[]) - Static method in interface smile.math.TimeFunction
-
Returns the piecewise constant learning rate.
- piecewise(int[], TimeFunction...) - Static method in interface smile.math.TimeFunction
-
Returns the piecewise constant learning rate.
- pierce(double[], int) - Static method in class smile.timeseries.BoxTest
-
Box-Pierce test.
- PINK - Static variable in interface smile.plot.swing.Palette
- pinv() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the pseudo inverse.
- pinv() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the pseudo inverse.
- pinv() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the pseudo inverse.
- pipeline(Transform...) - Static method in interface smile.data.transform.Transform
-
Returns a pipeline of data transforms.
- pivot(String, String) - Method in class smile.plot.vega.Transform
-
Adds a pivot transform.
- PivotTransform - Class in smile.plot.vega
-
The pivot transform maps unique values from a field to new aggregated fields (columns) in the output stream.
- PlattScaling - Class in smile.classification
-
Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.
- PlattScaling(double, double) - Constructor for class smile.classification.PlattScaling
-
Constructor.
- Plot - Class in smile.plot.swing
-
The abstract base class of plots.
- Plot() - Constructor for class smile.plot.swing.Plot
-
Constructor.
- Plot(Color) - Constructor for class smile.plot.swing.Plot
-
Constructor.
- Plot(String, Color) - Constructor for class smile.plot.swing.Plot
-
Constructor.
- PlotGrid - Class in smile.plot.swing
-
PlotGrid organizes multiple plots in a grid layout.
- PlotGrid(int, int) - Constructor for class smile.plot.swing.PlotGrid
-
Constructor.
- PlotGrid(PlotPanel...) - Constructor for class smile.plot.swing.PlotGrid
-
Constructor.
- PlotPanel - Class in smile.plot.swing
-
Canvas for mathematical plots.
- PlotPanel(Canvas) - Constructor for class smile.plot.swing.PlotPanel
-
Constructor
- PLUM - Static variable in interface smile.plot.swing.Palette
- point(boolean) - Method in class smile.plot.vega.Mark
-
Sets whether overlaying points on top of line or area marks.
- Point - Class in smile.plot.swing
-
One more points in the plot.
- Point(double[][], char, Color) - Constructor for class smile.plot.swing.Point
-
Constructor.
- pointRadius(double) - Method in class smile.plot.vega.Projection
-
Sets the default radius (in pixels) to use when drawing GeoJSON Point and MultiPoint geometries.
- points() - Method in class smile.neighbor.lsh.Bucket
-
Returns the points in the bucket.
- Poisson - Interface in smile.glm.model
-
The response variable is of Poisson distribution.
- PoissonDistribution - Class in smile.stat.distribution
-
Poisson distribution expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event.
- PoissonDistribution(double) - Constructor for class smile.stat.distribution.PoissonDistribution
-
Constructor.
- polar(Tensor, Tensor) - Static method in class smile.deep.tensor.Tensor
-
Returns a complex tensor whose elements are Cartesian coordinates corresponding to the polar coordinates with abs and angle.
- poll() - Method in class smile.util.PairingHeap
- poll() - Method in class smile.util.PriorityQueue
-
Removes and returns the index of item with minimum value (highest priority).
- POLYAURN - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
The document Polya Urn model is similar to MULTINOMIAL but different in the conditional probability update during learning.
- polynomial(double, double, double, double) - Static method in interface smile.math.TimeFunction
-
Returns the polynomial learning rate decay function that starts with an initial learning rate and reach an end learning rate in the given decay steps, without cycling.
- polynomial(double, double, double, double, boolean) - Static method in interface smile.math.TimeFunction
-
Returns the polynomial learning rate decay function that starts with an initial learning rate and reach an end learning rate in the given decay steps.
- Polynomial - Class in smile.math.kernel
-
The polynomial kernel.
- Polynomial(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.Polynomial
-
Constructor.
- PolynomialKernel - Class in smile.math.kernel
-
The polynomial kernel.
- PolynomialKernel(int) - Constructor for class smile.math.kernel.PolynomialKernel
-
Constructor with scale 1 and offset 0.
- PolynomialKernel(int, double, double) - Constructor for class smile.math.kernel.PolynomialKernel
-
Constructor.
- PolynomialKernel(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.PolynomialKernel
-
Constructor.
- pop() - Static method in class smile.deep.tensor.Tensor
-
Removes the scope at the top of the tensor stack.
- population() - Method in class smile.gap.GeneticAlgorithm
-
Returns the population of current generation.
- PorterStemmer - Class in smile.nlp.stemmer
-
Porter's stemming algorithm.
- PorterStemmer() - Constructor for class smile.nlp.stemmer.PorterStemmer
-
Constructor.
- POS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Possessive ending.
- position(double) - Method in class smile.plot.vega.Axis
-
Sets the anchor position of the axis in pixels.
- PositionalEncoding - Class in smile.llm
-
Positional encoding in original Transformer.
- PositionalEncoding(int, int) - Constructor for class smile.llm.PositionalEncoding
-
Constructor.
- PositionalEncoding(int, int, double) - Constructor for class smile.llm.PositionalEncoding
-
Constructor.
- POSTagger - Interface in smile.nlp.pos
-
Part-of-speech tagging (POS tagging) is the process of marking up the words in a sentence as corresponding to a particular part of speech.
- posteriori - Variable in class smile.validation.ClassificationValidation
-
The posteriori probability of prediction if the model is a soft classifier.
- posteriori(double) - Method in class smile.stat.distribution.Mixture
-
Returns the posteriori probabilities.
- posteriori(double[]) - Method in class smile.base.cart.DecisionNode
-
Returns the class probability.
- posteriori(double[]) - Method in class smile.stat.distribution.MultivariateMixture
-
Returns the posteriori probabilities.
- posteriori(int) - Method in class smile.stat.distribution.DiscreteMixture
-
Returns the posteriori probabilities.
- posteriori(int[], double[]) - Static method in class smile.base.cart.DecisionNode
-
Returns the class probability.
- PosterioriModel - Class in smile.neighbor.lsh
-
Pre-computed posteriori probabilities for generating multiple probes.
- PosterioriModel(MultiProbeHash, MultiProbeSample[], int, double) - Constructor for class smile.neighbor.lsh.PosterioriModel
-
Constructor.
- postprocess(double[]) - Method in class smile.feature.extraction.PCA
- postprocess(double[]) - Method in class smile.feature.extraction.ProbabilisticPCA
- postprocess(double[]) - Method in class smile.feature.extraction.Projection
-
Postprocess the output vector after projection.
- posv(Layout, UPLO, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- posv(Layout, UPLO, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- posv(Layout, UPLO, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- posv(Layout, UPLO, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- posv(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- posv(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- posv(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- posv(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf(Layout, UPLO, int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
- potrf(Layout, UPLO, int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf(Layout, UPLO, int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
- potrf(Layout, UPLO, int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf(Layout, UPLO, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
- potrf(Layout, UPLO, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf(Layout, UPLO, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
- potrf(Layout, UPLO, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf(Layout, UPLO, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A.
- potrf(Layout, UPLO, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf2(Layout, UPLO, int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
- potrf2(Layout, UPLO, int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf2(Layout, UPLO, int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
- potrf2(Layout, UPLO, int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf2(Layout, UPLO, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
- potrf2(Layout, UPLO, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrf2(Layout, UPLO, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite matrix A using the recursive algorithm.
- potrf2(Layout, UPLO, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrs(Layout, UPLO, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- potrs(Layout, UPLO, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrs(Layout, UPLO, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- potrs(Layout, UPLO, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrs(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- potrs(Layout, UPLO, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrs(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- potrs(Layout, UPLO, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- potrs(Layout, UPLO, int, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- potrs(Layout, UPLO, int, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- POUND - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Punctuation #
- pow(double) - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor with the power of the elements of input.
- pow(double[], double) - Static method in class smile.math.MathEx
-
Raise each element of an array to a scalar power.
- pow_(double) - Method in class smile.deep.tensor.Tensor
-
Computes the power of the elements of input in place.
- pow2(double) - Static method in class smile.math.MathEx
-
Returns x * x.
- PowerVariogram - Class in smile.interpolation.variogram
-
Power variogram.
- PowerVariogram(double[][], double[]) - Constructor for class smile.interpolation.variogram.PowerVariogram
-
Constructor.
- PowerVariogram(double[][], double[], double) - Constructor for class smile.interpolation.variogram.PowerVariogram
-
Constructor.
- PowerVariogram(double[][], double[], double, double) - Constructor for class smile.interpolation.variogram.PowerVariogram
-
Constructor.
- ppsv(Layout, UPLO, int, int, double[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- ppsv(Layout, UPLO, int, int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ppsv(Layout, UPLO, int, int, float[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- ppsv(Layout, UPLO, int, int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ppsv(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- ppsv(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- ppsv(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- ppsv(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrf(Layout, UPLO, int, double[]) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
- pptrf(Layout, UPLO, int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrf(Layout, UPLO, int, float[]) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
- pptrf(Layout, UPLO, int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrf(Layout, UPLO, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
- pptrf(Layout, UPLO, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrf(Layout, UPLO, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the Cholesky factorization of a real symmetric positive definite packed matrix A.
- pptrf(Layout, UPLO, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrs(Layout, UPLO, int, int, double[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pptrs(Layout, UPLO, int, int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrs(Layout, UPLO, int, int, float[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pptrs(Layout, UPLO, int, int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrs(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pptrs(Layout, UPLO, int, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- pptrs(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- pptrs(Layout, UPLO, int, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- pr() - Method in record class smile.neighbor.lsh.PrH
-
Returns the value of the
pr
record component. - precision() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
precision
record component. - precision(double) - Method in class smile.plot.vega.Projection
-
Sets the threshold for the projection's adaptive resampling to the specified value in pixels.
- Precision - Class in smile.deep.metric
-
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
- Precision - Class in smile.validation.metric
-
The precision or positive predictive value (PPV) is ratio of true positives to combined true and false positives, which is different from sensitivity.
- Precision() - Constructor for class smile.deep.metric.Precision
-
Constructor.
- Precision() - Constructor for class smile.validation.metric.Precision
-
Constructor.
- Precision(double) - Constructor for class smile.deep.metric.Precision
-
Constructor.
- Precision(Averaging) - Constructor for class smile.deep.metric.Precision
-
Constructor.
- Precision(Averaging) - Constructor for class smile.validation.metric.Precision
-
Constructor.
- predicate() - Method in class smile.base.cart.NominalSplit
- predicate() - Method in class smile.base.cart.OrdinalSplit
- predicate() - Method in class smile.base.cart.Split
-
Returns the lambda that tests on the split feature.
- Predicate - Class in smile.plot.vega
-
To test a data point in a filter transform or a test property in conditional encoding, a predicate definition of the following forms must be specified:
- Predicate(String) - Constructor for class smile.plot.vega.Predicate
-
Constructor.
- Predicate(String, boolean) - Constructor for class smile.plot.vega.Predicate
-
Constructor of parameter predicate.
- predict(double) - Method in class smile.classification.IsotonicRegressionScaling
-
Returns the posterior probability estimate P(y = 1 | x).
- predict(double[]) - Method in class smile.classification.FLD
- predict(double[]) - Method in class smile.classification.LDA
- predict(double[]) - Method in class smile.classification.LogisticRegression.Binomial
- predict(double[]) - Method in class smile.classification.LogisticRegression.Multinomial
- predict(double[]) - Method in class smile.classification.MLP
- predict(double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(double[]) - Method in class smile.classification.QDA
- predict(double[]) - Method in class smile.clustering.DENCLUE
-
Classifies a new observation.
- predict(double[]) - Method in class smile.regression.LinearModel
-
Predicts the dependent variable of an instance.
- predict(double[]) - Method in class smile.regression.MLP
- predict(double[], double[]) - Method in class smile.classification.LDA
- predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Binomial
- predict(double[], double[]) - Method in class smile.classification.LogisticRegression.Multinomial
- predict(double[], double[]) - Method in class smile.classification.MLP
- predict(double[], double[]) - Method in class smile.classification.NaiveBayes
-
Predict the class of an instance.
- predict(double[], double[]) - Method in class smile.classification.QDA
- predict(int[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(int[]) - Method in class smile.classification.Maxent.Binomial
- predict(int[]) - Method in class smile.classification.Maxent.Multinomial
- predict(int[]) - Method in class smile.sequence.HMM
-
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
. - predict(int[], double[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(int[], double[]) - Method in class smile.classification.Maxent.Binomial
- predict(int[], double[]) - Method in class smile.classification.Maxent.Multinomial
- predict(List<T>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a list of instances.
- predict(List<T>) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of a list of instances.
- predict(List<T>, List<double[]>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a list of instances.
- predict(DataFrame) - Method in interface smile.classification.DataFrameClassifier
-
Predicts the class labels of a data frame.
- predict(DataFrame) - Method in class smile.glm.GLM
-
Predicts the mean response.
- predict(DataFrame) - Method in interface smile.regression.DataFrameRegression
-
Predicts the dependent variables of a data frame.
- predict(DataFrame) - Method in class smile.regression.LinearModel
- predict(DataFrame, List<double[]>) - Method in interface smile.classification.DataFrameClassifier
-
Predicts the class labels of a dataset.
- predict(Dataset<T, ?>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a dataset.
- predict(Dataset<T, ?>) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of a dataset.
- predict(Dataset<T, ?>, List<double[]>) - Method in interface smile.classification.Classifier
-
Predicts the class labels of a dataset.
- predict(Tuple) - Method in class smile.base.cart.InternalNode
- predict(Tuple) - Method in class smile.base.cart.LeafNode
- predict(Tuple) - Method in interface smile.base.cart.Node
-
Evaluate the tree over an instance.
- predict(Tuple) - Method in class smile.base.cart.NominalNode
- predict(Tuple) - Method in class smile.base.cart.OrdinalNode
- predict(Tuple) - Method in class smile.classification.AdaBoost
- predict(Tuple) - Method in class smile.classification.DecisionTree
- predict(Tuple) - Method in class smile.classification.GradientTreeBoost
- predict(Tuple) - Method in class smile.classification.RandomForest
- predict(Tuple) - Method in class smile.glm.GLM
-
Predicts the mean response.
- predict(Tuple) - Method in class smile.regression.GradientTreeBoost
- predict(Tuple) - Method in class smile.regression.LinearModel
- predict(Tuple) - Method in class smile.regression.RandomForest
- predict(Tuple) - Method in class smile.regression.RegressionTree
- predict(Tuple[]) - Method in class smile.sequence.CRF
-
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
- predict(Tuple, double[]) - Method in class smile.classification.AdaBoost
-
Predicts the class label of an instance and also calculate a posteriori probabilities.
- predict(Tuple, double[]) - Method in class smile.classification.DecisionTree
-
Predicts the class label of an instance and also calculate a posteriori probabilities.
- predict(Tuple, double[]) - Method in class smile.classification.GradientTreeBoost
- predict(Tuple, double[]) - Method in class smile.classification.RandomForest
- predict(SparseArray) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
- predict(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Multinomial
- predict(SparseArray, double[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Predict the class of an instance.
- predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Binomial
- predict(SparseArray, double[]) - Method in class smile.classification.SparseLogisticRegression.Multinomial
- predict(T) - Method in interface smile.classification.Classifier
-
Predicts the class label of an instance.
- predict(T) - Method in class smile.classification.KNN
- predict(T) - Method in class smile.classification.OneVersusOne
-
Prediction is based on voting.
- predict(T) - Method in class smile.classification.OneVersusRest
- predict(T) - Method in class smile.classification.RBFNetwork
- predict(T) - Method in class smile.classification.SVM
- predict(T) - Method in class smile.clustering.DBSCAN
-
Classifies a new observation.
- predict(T) - Method in class smile.clustering.MEC
-
Cluster a new instance.
- predict(T) - Method in class smile.regression.GaussianProcessRegression
- predict(T) - Method in class smile.regression.KernelMachine
- predict(T) - Method in class smile.regression.RBFNetwork
- predict(T) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of an instance.
- predict(T[]) - Method in interface smile.classification.Classifier
-
Predicts the class labels of an array of instances.
- predict(T[]) - Method in interface smile.regression.Regression
-
Predicts the dependent variable of an array of instances.
- predict(T[]) - Method in class smile.sequence.CRFLabeler
-
Returns the most likely label sequence given the feature sequence by the forward-backward algorithm.
- predict(T[]) - Method in class smile.sequence.HMMLabeler
-
Returns the most likely state sequence given the observation sequence by the Viterbi algorithm, which maximizes the probability of
P(I | O, HMM)
. - predict(T[]) - Method in interface smile.sequence.SequenceLabeler
-
Predicts the sequence labels.
- predict(T[], double[][]) - Method in interface smile.classification.Classifier
-
Predicts the class labels of an array of instances.
- predict(T, double[]) - Method in interface smile.classification.Classifier
-
Predicts the class label of an instance and also calculate a posteriori probabilities.
- predict(T, double[]) - Method in class smile.classification.KNN
- predict(T, double[]) - Method in class smile.classification.OneVersusOne
-
Prediction is based posteriori probability estimation.
- predict(T, double[]) - Method in class smile.classification.OneVersusRest
- predict(T, double[]) - Method in class smile.regression.GaussianProcessRegression
-
Predicts the mean and standard deviation of an instance.
- predict(U) - Method in class smile.clustering.CentroidClustering
-
Classifies a new observation.
- prediction - Variable in class smile.validation.ClassificationValidation
-
The model prediction.
- prediction - Variable in class smile.validation.RegressionValidation
-
The model prediction.
- predictors() - Method in class smile.data.formula.Formula
-
Returns the predictors.
- predictors(Tuple) - Method in class smile.base.cart.CART
-
Returns the predictors by the model formula if it is not null.
- preferredDevice() - Static method in class smile.deep.tensor.Device
-
Returns the preferred (most powerful) device.
- preprocess(double[]) - Method in class smile.feature.extraction.Projection
-
Preprocess the input vector before projection.
- prh() - Method in record class smile.neighbor.lsh.PrZ
-
Returns the value of the
prh
record component. - PrH - Record Class in smile.neighbor.lsh
-
The probability for given query object and hash function.
- PrH(int, double) - Constructor for record class smile.neighbor.lsh.PrH
-
Creates an instance of a
PrH
record class. - prim(List<Graph.Edge>) - Method in class smile.graph.Graph
-
Returns the minimum spanning tree (MST) for a weighted undirected graph by Prim's algorithm.
- print() - Method in class smile.deep.tensor.Tensor
-
Prints the tensor on the standard output.
- print() - Method in class smile.plot.swing.PlotGrid
-
Prints the plot.
- print() - Method in class smile.plot.swing.PlotPanel
-
Prints the plot.
- print(Graphics, PageFormat, int) - Method in class smile.plot.swing.PlotGrid
- print(Printable) - Method in class smile.swing.Printer
-
Prints a document that implements Printable interface.
- Printer - Class in smile.swing
-
A printer controller object.
- priori - Variable in class smile.classification.ClassLabels
-
The estimated priori probabilities.
- priori() - Method in class smile.classification.DiscreteNaiveBayes
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.LDA
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.NaiveBayes
-
Returns a priori probabilities.
- priori() - Method in class smile.classification.QDA
-
Returns a priori probabilities.
- priori() - Method in record class smile.stat.distribution.DiscreteMixture.Component
-
Returns the value of the
priori
record component. - priori() - Method in record class smile.stat.distribution.Mixture.Component
-
Returns the value of the
priori
record component. - priori() - Method in record class smile.stat.distribution.MultivariateMixture.Component
-
Returns the value of the
priori
record component. - PriorityQueue - Class in smile.util
-
Priority Queue for index items.
- PriorityQueue(double[]) - Constructor for class smile.util.PriorityQueue
-
Constructor.
- PriorityQueue(int, double[]) - Constructor for class smile.util.PriorityQueue
-
Constructor.
- ProbabilisticClassificationMetric - Interface in smile.validation.metric
-
An abstract interface to measure the probabilistic classification performance.
- ProbabilisticPCA - Class in smile.feature.extraction
-
Probabilistic principal component analysis.
- ProbabilisticPCA(double, double[], Matrix, Matrix, String...) - Constructor for class smile.feature.extraction.ProbabilisticPCA
-
Constructor.
- probablePrime(long, int) - Static method in class smile.math.MathEx
-
Returns a probably prime number greater than n.
- Probe - Class in smile.neighbor.lsh
-
Probe to check for nearest neighbors.
- Probe(int[]) - Constructor for class smile.neighbor.lsh.Probe
-
Constructor.
- probs(double[]) - Method in class smile.plot.vega.QuantileTransform
-
Sets an array of probabilities in the range (0, 1) for which to compute quantile values.
- ProductKernel<T> - Class in smile.math.kernel
-
The product kernel takes two kernels and combines them via k1(x, y) * k2(x, y).
- ProductKernel(MercerKernel<T>, MercerKernel<T>) - Constructor for class smile.math.kernel.ProductKernel
-
Constructor.
- project(double[]) - Method in class smile.classification.FLD
-
Projects a sample to the feature space.
- project(double[][]) - Method in class smile.classification.FLD
-
Projects samples to the feature space.
- projection - Variable in class smile.feature.extraction.Projection
-
The projection matrix.
- projection() - Method in class smile.manifold.KPCA
-
Returns the projection matrix.
- projection(String) - Method in class smile.plot.vega.View
-
Returns the defining properties of geographic projection, which will be applied to shape path for "geoshape" marks and to latitude and "longitude" channels for other marks.
- Projection - Class in smile.feature.extraction
-
A projection is a kind of feature extraction technique that transforms data from the input space to a feature space, linearly or non-linearly.
- Projection - Class in smile.plot.swing
-
Projection provides methods to map logical coordinates to Java2D coordinates.
- Projection - Class in smile.plot.vega
-
The geographic projection, which will be applied to shape path for "geoshape" marks and to latitude and "longitude" channels for other marks.
- Projection(Matrix, String, String...) - Constructor for class smile.feature.extraction.Projection
-
Constructor.
- Projection(Canvas) - Constructor for class smile.plot.swing.Projection
-
Constructor.
- prompt(DataType, DataType) - Static method in interface smile.data.type.DataType
-
Type promotion when apply to expressions.
- promptTokens() - Method in record class smile.llm.CompletionPrediction
-
Returns the value of the
promptTokens
record component. - propagate(double[]) - Method in class smile.base.mlp.InputLayer
- propagate(double[]) - Method in class smile.base.mlp.Layer
-
Propagates the signals from a lower layer to this layer.
- propagate(double[], boolean) - Method in class smile.base.mlp.MultilayerPerceptron
-
Propagates the signals through the neural network.
- propagateDropout() - Method in class smile.base.mlp.Layer
-
Propagates the output signals through the implicit dropout layer.
- propertyChange(PropertyChangeEvent) - Method in class smile.swing.Table.RowHeader
- proportion() - Method in record class smile.manifold.MDS
-
Returns the value of the
proportion
record component. - proximity(double[][]) - Static method in class smile.clustering.linkage.Linkage
-
Computes the proximity matrix (linearized in column major) based on Euclidean distance.
- proximity(T[], Distance<T>) - Static method in class smile.clustering.linkage.Linkage
-
Computes the proximity matrix (linearized in column major).
- PRP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Personal pronoun.
- PRP$ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Possessive pronoun.
- prune(DataFrame) - Method in class smile.classification.DecisionTree
-
Returns a new decision tree by reduced error pruning.
- prune(DataFrame) - Method in class smile.classification.RandomForest
-
Returns a new random forest by reduced error pruning.
- PrZ - Record Class in smile.neighbor.lsh
-
The probability list of all buckets for given query object.
- PrZ(int, PrH[]) - Constructor for record class smile.neighbor.lsh.PrZ
-
Creates an instance of a
PrZ
record class. - Punctuations - Interface in smile.nlp.dictionary
-
Punctuation marks are symbols that indicate the structure and organization of written language, as well as intonation and pauses to be observed when reading aloud.
- PURPLE - Static variable in interface smile.plot.swing.Palette
- push(AutoScope) - Static method in class smile.deep.tensor.Tensor
-
Pushes a scope onto the top of the tensor scope stack.
- pushRelabel(double[][], int, int) - Method in class smile.graph.AdjacencyMatrix
-
Push-relabel algorithm for maximum flow.
- put(double[], E) - Method in class smile.neighbor.LSH
-
Insert an item into the hash table.
- put(double[], E) - Method in class smile.neighbor.MutableLSH
- put(int, double) - Method in class smile.util.IntDoubleHashMap
-
Associates the specified value with the specified key in this map.
- put(K[], V) - Method in class smile.nlp.Trie
-
Add a key with associated value to the trie.
- put(K, V) - Method in class smile.neighbor.SNLSH
-
Adds a new item.
- put(Tensor, Index...) - Method in class smile.deep.tensor.Tensor
-
Updates a portion of tensor.
- put(Tensor, Tensor) - Method in class smile.deep.tensor.Tensor
-
Updates a portion of tensor.
- put_(byte, int...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(byte, long...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(double, int...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(double, long...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(float, int...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(float, long...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(int, int...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(int, long...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(long, int...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(long, long...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(short, int...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(short, long...) - Method in class smile.deep.tensor.Tensor
-
Updates an element in place.
- put_(Tensor, Index...) - Method in class smile.deep.tensor.Tensor
-
Updates a portion of tensor in place.
- put_(Tensor, Tensor) - Method in class smile.deep.tensor.Tensor
-
Updates a portion of tensor in place.
- pvalue - Variable in class smile.timeseries.BoxTest
-
p-value
- pvalue() - Method in class smile.regression.LinearModel
-
Returns the p-value of goodness-of-fit test.
- pvalue() - Method in record class smile.stat.hypothesis.ChiSqTest
-
Returns the value of the
pvalue
record component. - pvalue() - Method in record class smile.stat.hypothesis.CorTest
-
Returns the value of the
pvalue
record component. - pvalue() - Method in record class smile.stat.hypothesis.FTest
-
Returns the value of the
pvalue
record component. - pvalue() - Method in record class smile.stat.hypothesis.KSTest
-
Returns the value of the
pvalue
record component. - pvalue() - Method in record class smile.stat.hypothesis.TTest
-
Returns the value of the
pvalue
record component.
Q
- q - Variable in class smile.stat.distribution.BernoulliDistribution
-
Probability of failure.
- q - Variable in class smile.timeseries.BoxTest
-
Box-Pierce or Ljung-Box statistic.
- q() - Method in class smile.timeseries.ARMA
-
Returns the order of MA.
- Q() - Method in class smile.math.matrix.BigMatrix.QR
-
Returns the orthogonal factor.
- Q() - Method in class smile.math.matrix.fp32.Matrix.QR
-
Returns the orthogonal factor.
- Q() - Method in class smile.math.matrix.Matrix.QR
-
Returns the orthogonal factor.
- q1(double[]) - Static method in class smile.math.MathEx
-
Find the first quantile (p = 1/4) of an array of type double.
- q1(double[]) - Static method in interface smile.sort.QuickSelect
-
Find the first quantile (p = 1/4) of an array of type double.
- q1(float[]) - Static method in class smile.math.MathEx
-
Find the first quantile (p = 1/4) of an array of type float.
- q1(float[]) - Static method in interface smile.sort.QuickSelect
-
Find the first quantile (p = 1/4) of an array of type float.
- q1(int[]) - Static method in class smile.math.MathEx
-
Find the first quantile (p = 1/4) of an array of type int.
- q1(int[]) - Static method in interface smile.sort.QuickSelect
-
Find the first quantile (p = 1/4) of an array of type integer.
- q1(T[]) - Static method in class smile.math.MathEx
-
Find the first quantile (p = 1/4) of an array of type double.
- q1(T[]) - Static method in interface smile.sort.QuickSelect
-
Find the first quantile (p = 1/4) of an array of type double.
- q3(double[]) - Static method in class smile.math.MathEx
-
Find the third quantile (p = 3/4) of an array of type double.
- q3(double[]) - Static method in interface smile.sort.QuickSelect
-
Find the third quantile (p = 3/4) of an array of type double.
- q3(float[]) - Static method in class smile.math.MathEx
-
Find the third quantile (p = 3/4) of an array of type float.
- q3(float[]) - Static method in interface smile.sort.QuickSelect
-
Find the third quantile (p = 3/4) of an array of type float.
- q3(int[]) - Static method in class smile.math.MathEx
-
Find the third quantile (p = 3/4) of an array of type int.
- q3(int[]) - Static method in interface smile.sort.QuickSelect
-
Find the third quantile (p = 3/4) of an array of type integer.
- q3(T[]) - Static method in class smile.math.MathEx
-
Find the third quantile (p = 3/4) of an array of type double.
- q3(T[]) - Static method in interface smile.sort.QuickSelect
-
Find the third quantile (p = 3/4) of an array of type double.
- QDA - Class in smile.classification
-
Quadratic discriminant analysis.
- QDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.QDA
-
Constructor.
- QDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.QDA
-
Constructor.
- QInt8 - Enum constant in enum class smile.deep.tensor.ScalarType
-
8-bit quantized signed tensor type which represents a compressed floating point tensor.
- QQPlot - Class in smile.plot.swing
-
A Q-Q plot ("Q" stands for quantile) is a probability plot, a kind of graphical method for comparing two probability distributions, by plotting their quantiles against each other.
- QQPlot(double[][]) - Constructor for class smile.plot.swing.QQPlot
-
Constructor.
- qr - Variable in class smile.math.matrix.BigMatrix.QR
-
The QR decomposition.
- qr - Variable in class smile.math.matrix.fp32.Matrix.QR
-
The QR decomposition.
- qr - Variable in class smile.math.matrix.Matrix.QR
-
The QR decomposition.
- qr() - Method in class smile.math.matrix.BigMatrix
-
QR Decomposition.
- qr() - Method in class smile.math.matrix.fp32.Matrix
-
QR Decomposition.
- qr() - Method in class smile.math.matrix.Matrix
-
QR Decomposition.
- qr(boolean) - Method in class smile.math.matrix.BigMatrix
-
QR Decomposition.
- qr(boolean) - Method in class smile.math.matrix.fp32.Matrix
-
QR Decomposition.
- qr(boolean) - Method in class smile.math.matrix.Matrix
-
QR Decomposition.
- QR(BigMatrix, DoublePointer) - Constructor for class smile.math.matrix.BigMatrix.QR
-
Constructor.
- QR(Matrix, float[]) - Constructor for class smile.math.matrix.fp32.Matrix.QR
-
Constructor.
- QR(Matrix, double[]) - Constructor for class smile.math.matrix.Matrix.QR
-
Constructor.
- quantile(double) - Static method in interface smile.base.cart.Loss
-
Quantile regression loss.
- quantile(double) - Method in class smile.sort.IQAgent
-
Returns the estimated p-quantile for the data seen so far.
- quantile(double) - Method in class smile.stat.distribution.BernoulliDistribution
- quantile(double) - Method in class smile.stat.distribution.BetaDistribution
- quantile(double) - Method in class smile.stat.distribution.BinomialDistribution
- quantile(double) - Method in class smile.stat.distribution.ChiSquareDistribution
- quantile(double) - Method in class smile.stat.distribution.DiscreteMixture
- quantile(double) - Method in interface smile.stat.distribution.Distribution
-
The quantile, the probability to the left of quantile is p.
- quantile(double) - Method in class smile.stat.distribution.EmpiricalDistribution
- quantile(double) - Method in class smile.stat.distribution.ExponentialDistribution
- quantile(double) - Method in class smile.stat.distribution.FDistribution
- quantile(double) - Method in class smile.stat.distribution.GammaDistribution
- quantile(double) - Method in class smile.stat.distribution.GaussianDistribution
-
The quantile, the probability to the left of quantile(p) is p.
- quantile(double) - Method in class smile.stat.distribution.GeometricDistribution
- quantile(double) - Method in class smile.stat.distribution.HyperGeometricDistribution
- quantile(double) - Method in class smile.stat.distribution.KernelDensity
-
Inverse of CDF.
- quantile(double) - Method in class smile.stat.distribution.LogisticDistribution
- quantile(double) - Method in class smile.stat.distribution.LogNormalDistribution
- quantile(double) - Method in class smile.stat.distribution.Mixture
- quantile(double) - Method in class smile.stat.distribution.NegativeBinomialDistribution
- quantile(double) - Method in class smile.stat.distribution.PoissonDistribution
- quantile(double) - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- quantile(double) - Method in class smile.stat.distribution.TDistribution
- quantile(double) - Method in class smile.stat.distribution.WeibullDistribution
- quantile(double, double, double) - Method in interface smile.stat.distribution.Distribution
-
Inversion of CDF by bisection numeric root finding of "cdf(x) = p" for continuous distribution.
- quantile(double, double, double, double) - Method in interface smile.stat.distribution.Distribution
-
Inversion of CDF by bisection numeric root finding of "cdf(x) = p" for continuous distribution.
- quantile(double, int, int) - Method in class smile.stat.distribution.DiscreteDistribution
-
Inversion of cdf by bisection numeric root finding of
cdf(x) = p
for discrete distribution. - quantile(String) - Method in class smile.plot.vega.Transform
-
Adds a quantile transform.
- Quantile - Enum constant in enum class smile.base.cart.Loss.Type
-
Quantile regression.
- quantile2tailed(double) - Method in class smile.stat.distribution.TDistribution
-
Two-tailed quantile.
- QuantileTransform - Class in smile.plot.vega
-
The quantile transform calculates empirical quantile values for an input data stream.
- quantize(double[]) - Method in class smile.vq.BIRCH
- quantize(double[]) - Method in class smile.vq.GrowingNeuralGas
- quantize(double[]) - Method in class smile.vq.NeuralGas
- quantize(double[]) - Method in class smile.vq.NeuralMap
- quantize(double[]) - Method in class smile.vq.SOM
- quantize(double[]) - Method in interface smile.vq.VectorQuantizer
-
Quantize a new observation.
- QUARTER - Enum constant in enum class smile.data.formula.DateFeature
-
The quarter-of-year has values from 1 to 4.
- query - Variable in class smile.neighbor.lsh.MultiProbeSample
-
The query object.
- query(String) - Method in class smile.data.SQL
-
Executes a SELECT statement.
- query(T[]) - Method in class smile.regression.GaussianProcessRegression
-
Evaluates the Gaussian Process at some query points.
- QuickSelect - Interface in smile.sort
-
Selection is asking for the k-th smallest element out of n elements.
- QuickSort - Class in smile.sort
-
Quicksort is a well-known sorting algorithm that, on average, makes O(n log n) comparisons to sort n items.
- QUInt8 - Enum constant in enum class smile.deep.tensor.ScalarType
-
8-bit quantized unsigned tensor type which represents a compressed floating point tensor.
R
- r - Variable in class smile.stat.distribution.NegativeBinomialDistribution
-
The number of failures until the experiment is stopped.
- R() - Method in class smile.math.matrix.BigMatrix.QR
-
Returns the upper triangular factor.
- R() - Method in class smile.math.matrix.fp32.Matrix.QR
-
Returns the upper triangular factor.
- R() - Method in class smile.math.matrix.Matrix.QR
-
Returns the upper triangular factor.
- r2() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
r2
record component. - R2 - Class in smile.validation.metric
-
R2.
- R2() - Constructor for class smile.validation.metric.R2
- R2() - Method in class smile.timeseries.AR
-
Returns R2 statistic.
- R2() - Method in class smile.timeseries.ARMA
-
Returns R2 statistic.
- RadialBasisFunction - Interface in smile.math.rbf
-
A radial basis function (RBF) is a real-valued function whose value depends only on the distance from the origin, so that φ(x)=φ(||x||); or alternatively on the distance from some other point c, called a center, so that φ(x,c)=φ(||x-c||).
- radius - Variable in class smile.clustering.DBSCAN
-
The neighborhood radius.
- radius - Variable in class smile.clustering.MEC
-
The range of neighborhood.
- radius(double) - Method in class smile.plot.vega.Mark
-
Sets the primary (outer) radius in pixels for arc mark, or polar coordinate radial offset of the text from the origin determined by the x and y properties for text marks.
- radius2(double) - Method in class smile.plot.vega.Mark
-
Sets the secondary (inner) radius in pixels for arc mark.
- radius2Offset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for radius2.
- radiusOffset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for radius.
- RADIX - Static variable in class smile.math.MathEx
-
The base of the exponent of the double type.
- rainbow(int) - Static method in interface smile.plot.swing.Palette
-
Generate rainbow color palette.
- rainbow(int, float) - Static method in interface smile.plot.swing.Palette
-
Generate rainbow color palette.
- rainbow(int, float, float, float) - Static method in interface smile.plot.swing.Palette
-
Generate rainbow color palette.
- rainbow(int, float, float, float, float, float) - Static method in interface smile.plot.swing.Palette
-
Generate rainbow color palette.
- rand() - Method in class smile.stat.distribution.BernoulliDistribution
- rand() - Method in class smile.stat.distribution.BetaDistribution
- rand() - Method in class smile.stat.distribution.BinomialDistribution
-
This function generates a random variate with the binomial distribution.
- rand() - Method in class smile.stat.distribution.ChiSquareDistribution
- rand() - Method in class smile.stat.distribution.DiscreteMixture
- rand() - Method in interface smile.stat.distribution.Distribution
-
Generates a random number following this distribution.
- rand() - Method in class smile.stat.distribution.EmpiricalDistribution
- rand() - Method in class smile.stat.distribution.ExponentialDistribution
- rand() - Method in class smile.stat.distribution.FDistribution
- rand() - Method in class smile.stat.distribution.GammaDistribution
-
Only support shape parameter k of integer.
- rand() - Method in class smile.stat.distribution.GaussianDistribution
-
Generates a Gaussian random number with the Box-Muller algorithm.
- rand() - Method in class smile.stat.distribution.GeometricDistribution
- rand() - Method in class smile.stat.distribution.HyperGeometricDistribution
-
Uses inversion by chop-down search from the mode when the
mean < 20
and the patchwork-rejection method when themean >= 20
. - rand() - Method in class smile.stat.distribution.KernelDensity
-
Random number generator.
- rand() - Method in class smile.stat.distribution.LogisticDistribution
- rand() - Method in class smile.stat.distribution.LogNormalDistribution
- rand() - Method in class smile.stat.distribution.Mixture
- rand() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
-
Generate a random multivariate Gaussian sample.
- rand() - Method in class smile.stat.distribution.NegativeBinomialDistribution
- rand() - Method in class smile.stat.distribution.PoissonDistribution
-
This function generates a random variate with the poisson distribution.
- rand() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- rand() - Method in class smile.stat.distribution.TDistribution
- rand() - Method in class smile.stat.distribution.WeibullDistribution
- rand(int) - Method in interface smile.stat.distribution.Distribution
-
Generates a set of random numbers following this distribution.
- rand(int) - Method in class smile.stat.distribution.MultivariateGaussianDistribution
-
Generates a set of random numbers following this distribution.
- rand(int, int) - Static method in class smile.math.matrix.BigMatrix
-
Returns a uniformly distributed random matrix in [0, 1).
- rand(int, int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a uniformly distributed random matrix in [0, 1).
- rand(int, int) - Static method in class smile.math.matrix.Matrix
-
Returns a uniformly distributed random matrix in [0, 1).
- rand(int, int, double, double) - Static method in class smile.math.matrix.BigMatrix
-
Returns a random matrix of uniform distribution.
- rand(int, int, double, double) - Static method in class smile.math.matrix.Matrix
-
Returns a uniformly distributed random matrix in given range.
- rand(int, int, float, float) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a uniformly distributed random matrix in given range.
- rand(int, int, Distribution) - Static method in class smile.math.matrix.BigMatrix
-
Returns a random matrix.
- rand(int, int, Distribution) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a random matrix.
- rand(int, int, Distribution) - Static method in class smile.math.matrix.Matrix
-
Returns a random matrix.
- rand(long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with values drawn from a uniform distribution on [0, 1).
- rand(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with values drawn from a uniform distribution on [0, 1).
- randi() - Method in class smile.stat.distribution.DiscreteDistribution
-
Generates an integer random number following this discrete distribution.
- randi(int) - Method in class smile.stat.distribution.DiscreteDistribution
-
Generates a set of integer random numbers following this discrete distribution.
- randi(int) - Method in class smile.stat.distribution.EmpiricalDistribution
- RandIndex - Class in smile.validation.metric
-
Rand Index.
- RandIndex() - Constructor for class smile.validation.metric.RandIndex
- randn(int, int) - Static method in class smile.math.matrix.BigMatrix
-
Returns a random matrix of standard normal distribution.
- randn(int, int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a random matrix of standard normal distribution.
- randn(int, int) - Static method in class smile.math.matrix.Matrix
-
Returns a random matrix of standard normal distribution.
- randn(long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with values drawn from a unit normal distribution.
- randn(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with values drawn from a unit normal distribution.
- random() - Method in class smile.hpo.Hyperparameters
-
Generates a stream of hyperparameters for random search.
- random() - Static method in class smile.math.MathEx
-
Generate a random number in [0, 1).
- random(double[]) - Static method in class smile.math.MathEx
-
Given a set of n probabilities, generate a random number in [0, n).
- random(double[], int) - Static method in class smile.math.MathEx
-
Given a set of m probabilities, draw with replacement a set of n random number in [0, m).
- random(double, double) - Static method in class smile.math.MathEx
-
Generate a uniform random number in the range [lo, hi).
- random(double, double, int) - Static method in class smile.math.MathEx
-
Generate uniform random numbers in the range [lo, hi).
- random(int) - Static method in class smile.math.MathEx
-
Generate n random numbers in [0, 1).
- random(int, double) - Static method in interface smile.stat.Sampling
-
Simple random sampling.
- random(T[], Distance<T>, int) - Static method in record class smile.graph.NearestNeighborGraph
-
Creates a random neighbor graph.
- Random - Class in smile.math
-
This is a high quality random number generator as a replacement of the standard Random class of Java system.
- Random() - Constructor for class smile.math.Random
-
Initialize with default random number generator engine.
- Random(long) - Constructor for class smile.math.Random
-
Initialize with given seed for default random number generator engine.
- RandomForest - Class in smile.classification
-
Random forest for classification.
- RandomForest - Class in smile.regression
-
Random forest for regression.
- RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[]) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(Formula, int, RandomForest.Model[], ClassificationMetrics, double[], IntSet) - Constructor for class smile.classification.RandomForest
-
Constructor.
- RandomForest(Formula, RandomForest.Model[], RegressionMetrics, double[]) - Constructor for class smile.regression.RandomForest
-
Constructor.
- RandomForest.Model - Class in smile.classification
-
The base model.
- RandomForest.Model - Class in smile.regression
-
The base model.
- randomInt(int) - Static method in class smile.math.MathEx
-
Returns a random integer in [0, n).
- randomInt(int, int) - Static method in class smile.math.MathEx
-
Returns a random integer in [lo, hi).
- randomLong() - Static method in class smile.math.MathEx
-
Returns a random long integer.
- RandomNumberGenerator - Interface in smile.math.random
-
Random number generator interface.
- RandomProjection - Class in smile.feature.extraction
-
Random projection is a promising dimensionality reduction technique for learning mixtures of Gaussians.
- RandomProjection(Matrix, String...) - Constructor for class smile.feature.extraction.RandomProjection
-
Constructor.
- RandomProjectionForest - Class in smile.neighbor
-
A set of random projection trees.
- RandomProjectionTree - Class in smile.neighbor
-
Random projection trees.
- range() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the matrix which columns are the orthonormal basis for the range space.
- range() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the matrix which columns are the orthonormal basis for the range space.
- range() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the matrix which columns are the orthonormal basis for the range space.
- range(double...) - Method in class smile.plot.vega.Field
-
Sets the customize range values.
- range(String...) - Method in class smile.plot.vega.Field
-
Sets the customize range values.
- range(String, double, double) - Static method in class smile.plot.vega.Predicate
-
Test if a field in the data point satisfies certain conditions.
- rangeMax(double) - Method in class smile.plot.vega.Field
-
Sets the maximum value in the scale range, overriding the range property or the default range.
- rangeMax(String) - Method in class smile.plot.vega.Field
-
Sets the maximum value in the scale range, overriding the range property or the default range.
- rangeMin(double) - Method in class smile.plot.vega.Field
-
Sets the minimum value in the scale range, overriding the range property or the default range.
- rangeMin(String) - Method in class smile.plot.vega.Field
-
Sets the minimum value in the scale range, overriding the range property or the default range.
- rank() - Method in class smile.math.matrix.BigMatrix.SVD
-
Returns the effective numerical matrix rank.
- rank() - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Returns the effective numerical matrix rank.
- rank() - Method in class smile.math.matrix.Matrix.SVD
-
Returns the effective numerical matrix rank.
- rank(int, int, long, long) - Method in class smile.nlp.relevance.TFIDF
-
Returns the relevance score between a term and a document based on a corpus.
- rank(Corpus, TextTerms, String[], int[], int) - Method in class smile.nlp.relevance.BM25
- rank(Corpus, TextTerms, String[], int[], int) - Method in interface smile.nlp.relevance.RelevanceRanker
-
Returns the relevance score between a set of terms and a document based on a corpus.
- rank(Corpus, TextTerms, String[], int[], int) - Method in class smile.nlp.relevance.TFIDF
- rank(Corpus, TextTerms, String, int, int) - Method in class smile.nlp.relevance.BM25
- rank(Corpus, TextTerms, String, int, int) - Method in interface smile.nlp.relevance.RelevanceRanker
-
Returns the relevance score between a term and a document based on a corpus.
- rank(Corpus, TextTerms, String, int, int) - Method in class smile.nlp.relevance.TFIDF
- Rank() - Static method in interface smile.gap.Selection
-
Rank Selection.
- ranks - Variable in class smile.llm.tokenizer.Tiktoken
-
Token -> Rank
- ratio() - Method in record class smile.feature.selection.SignalNoiseRatio
-
Returns the value of the
ratio
record component. - ratio() - Method in record class smile.feature.selection.SumSquaresRatio
-
Returns the value of the
ratio
record component. - RatioScale - Class in smile.data.measure
-
The ratio scale allows for both difference and ratio of two values.
- RatioScale(NumberFormat) - Constructor for class smile.data.measure.RatioScale
-
Constructor.
- rawinterp(int, double) - Method in class smile.interpolation.AbstractInterpolation
-
Subclasses provide this as the actual interpolation method.
- rawinterp(int, double) - Method in class smile.interpolation.CubicSplineInterpolation1D
- rawinterp(int, double) - Method in class smile.interpolation.LinearInterpolation
- RB - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Adverb.
- RBF<T> - Class in smile.base.rbf
-
A neuron in radial basis function network.
- RBF(T, RadialBasisFunction, Metric<T>) - Constructor for class smile.base.rbf.RBF
-
Constructor.
- RBFInterpolation - Class in smile.interpolation
-
Radial basis function interpolation is a popular method for the data points are irregularly distributed in space.
- RBFInterpolation(double[][], double[], RadialBasisFunction) - Constructor for class smile.interpolation.RBFInterpolation
-
Constructor.
- RBFInterpolation(double[][], double[], RadialBasisFunction, boolean) - Constructor for class smile.interpolation.RBFInterpolation
-
Constructor.
- RBFInterpolation1D - Class in smile.interpolation
-
Radial basis function interpolation is a popular method for the data points are irregularly distributed in space.
- RBFInterpolation1D(double[], double[], RadialBasisFunction) - Constructor for class smile.interpolation.RBFInterpolation1D
-
Constructor.
- RBFInterpolation1D(double[], double[], RadialBasisFunction, boolean) - Constructor for class smile.interpolation.RBFInterpolation1D
-
Constructor.
- RBFInterpolation2D - Class in smile.interpolation
-
Radial basis function interpolation is a popular method for the data points are irregularly distributed in space.
- RBFInterpolation2D(double[], double[], double[], RadialBasisFunction) - Constructor for class smile.interpolation.RBFInterpolation2D
-
Constructor.
- RBFInterpolation2D(double[], double[], double[], RadialBasisFunction, boolean) - Constructor for class smile.interpolation.RBFInterpolation2D
-
Constructor.
- RBFNetwork<T> - Class in smile.classification
-
Radial basis function networks.
- RBFNetwork<T> - Class in smile.regression
-
Radial basis function network.
- RBFNetwork(int, RBF<T>[], Matrix, boolean) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(int, RBF<T>[], Matrix, boolean, IntSet) - Constructor for class smile.classification.RBFNetwork
-
Constructor.
- RBFNetwork(RBF<T>[], double[], boolean) - Constructor for class smile.regression.RBFNetwork
-
Constructor.
- rbind(double[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by rows.
- rbind(float[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by rows.
- rbind(int[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by rows.
- rbind(String[]...) - Static method in class smile.math.MathEx
-
Concatenates vectors by rows.
- RBR - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Adverb, comparative.
- RBS - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Adverb, superlative.
- RDA - Class in smile.classification
-
Regularized discriminant analysis.
- RDA(double[], double[][], double[][], Matrix[]) - Constructor for class smile.classification.RDA
-
Constructor.
- RDA(double[], double[][], double[][], Matrix[], IntSet) - Constructor for class smile.classification.RDA
-
Constructor.
- re - Variable in class smile.math.Complex
-
The real part.
- read() - Method in class smile.io.Arff
-
Reads all the records.
- read(int) - Method in class smile.io.Arff
-
Reads a limited number of records.
- read(BufferedReader, int) - Method in class smile.io.JSON
-
Reads a limited number of records from a JSON file.
- read(InputStream, int) - Method in class smile.io.Arrow
-
Reads a limited number of records from an arrow file.
- read(InputStream, int) - Method in class smile.io.Avro
-
Reads a limited number of records from an avro file.
- read(InputStream, int) - Static method in interface smile.io.SAS
-
Reads a limited number of records from a SAS7BDAT file.
- read(String) - Method in class smile.io.Arrow
-
Reads a limited number of records from an arrow file.
- read(String) - Method in class smile.io.Avro
-
Reads an avro file.
- read(String) - Method in class smile.io.CSV
-
Reads a CSV file.
- read(String) - Method in class smile.io.JSON
-
Reads a JSON file.
- read(String) - Static method in class smile.io.Parquet
-
Reads a HDFS parquet file.
- read(String) - Static method in interface smile.io.SAS
-
Reads a SAS7BDAT file.
- read(String, int) - Method in class smile.io.Arrow
-
Reads a limited number of records from an arrow file.
- read(String, int) - Method in class smile.io.CSV
-
Reads a limited number of records from a CSV file.
- read(String, int) - Method in class smile.io.JSON
-
Reads a JSON file.
- read(String, int) - Static method in class smile.io.Parquet
-
Reads a HDFS parquet file.
- read(Path) - Method in class smile.io.Arrow
-
Reads an arrow file.
- read(Path) - Method in class smile.io.Avro
-
Reads an avro file.
- read(Path) - Method in class smile.io.CSV
-
Reads a CSV file.
- read(Path) - Method in class smile.io.JSON
-
Reads a JSON file.
- read(Path) - Static method in class smile.io.Parquet
-
Reads a local parquet file.
- read(Path) - Static method in interface smile.io.SAS
-
Reads a SAS7BDAT file.
- read(Path, int) - Method in class smile.io.Arrow
-
Reads an arrow file.
- read(Path, int) - Method in class smile.io.CSV
-
Reads a limited number of records from a CSV file.
- read(Path, int) - Method in class smile.io.JSON
-
Reads a JSON file.
- read(Path, int) - Static method in class smile.io.Parquet
-
Reads a local parquet file.
- read(Path, List<String[]>, List<PennTreebankPOS[]>) - Static method in class smile.nlp.pos.HMMPOSTagger
-
Load training data from a corpora.
- read(InputFile) - Static method in class smile.io.Parquet
-
Reads a parquet file.
- read(InputFile, int) - Static method in class smile.io.Parquet
-
Reads a limited number of records from a parquet file.
- Read - Interface in smile.io
-
Reads data from external storage systems.
- reader(String) - Static method in interface smile.io.HadoopInput
-
Returns the reader of a file path or URI.
- reader(String) - Static method in interface smile.io.Input
-
Returns the reader of a file path or URI.
- reader(String, Charset) - Static method in interface smile.io.HadoopInput
-
Returns the reader of a file path or URI.
- reader(String, Charset) - Static method in interface smile.io.Input
-
Returns the reader of a file path or URI.
- reason() - Method in record class smile.llm.CompletionPrediction
-
Returns the value of the
reason
record component. - rebuild() - Method in class smile.util.PairingHeap
-
Rebuilds the pairing heap.
- Recall - Class in smile.deep.metric
-
Recall or true positive rate (TPR) (also called hit rate, sensitivity) is a statistical measures of the performance of a binary classification test.
- Recall - Class in smile.validation.metric
-
In information retrieval area, sensitivity is called recall.
- Recall() - Constructor for class smile.deep.metric.Recall
-
Constructor.
- Recall() - Constructor for class smile.validation.metric.Recall
-
Constructor.
- Recall(double) - Constructor for class smile.deep.metric.Recall
-
Constructor.
- Recall(Averaging) - Constructor for class smile.deep.metric.Recall
-
Constructor.
- Recall(Averaging) - Constructor for class smile.validation.metric.Recall
-
Constructor.
- reciprocal() - Method in class smile.math.Complex
-
Returns the reciprocal.
- rectifier() - Static method in interface smile.base.mlp.ActivationFunction
-
The rectifier activation function
max(0, x)
. - rectifier(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with rectified linear activation function.
- rectifier(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with rectified linear activation function.
- RED - Static variable in interface smile.plot.swing.Palette
- redblue(int) - Static method in interface smile.plot.swing.Palette
-
Generate red-blue color palette.
- redblue(int, float) - Static method in interface smile.plot.swing.Palette
-
Generate red-blue color palette.
- redgreen(int) - Static method in interface smile.plot.swing.Palette
-
Generate red-green color palette.
- redgreen(int, float) - Static method in interface smile.plot.swing.Palette
-
Generate red-green color palette.
- References - Search tag in class smile.anomaly.IsolationForest
- Section
- References - Search tag in class smile.anomaly.SVM
- Section
- References - Search tag in class smile.association.FPGrowth
- Section
- References - Search tag in class smile.base.svm.SVR
- Section
- References - Search tag in class smile.classification.AdaBoost
- Section
- References - Search tag in class smile.classification.DiscreteNaiveBayes
- Section
- References - Search tag in class smile.classification.FLD
- Section
- References - Search tag in class smile.classification.GradientTreeBoost
- Section
- References - Search tag in class smile.classification.IsotonicRegressionScaling
- Section
- References - Search tag in class smile.classification.Maxent
- Section
- References - Search tag in class smile.classification.NaiveBayes
- Section
- References - Search tag in class smile.classification.PlattScaling
- Section
- References - Search tag in class smile.classification.RBFNetwork
- Section
- References - Search tag in class smile.classification.SVM
- Section
- References - Search tag in class smile.clustering.BBDTree
- Section
- References - Search tag in class smile.clustering.CLARANS
- Section
- References - Search tag in class smile.clustering.DBSCAN
- Section
- References - Search tag in class smile.clustering.DENCLUE
- Section
- References - Search tag in class smile.clustering.DeterministicAnnealing
- Section
- References - Search tag in class smile.clustering.GMeans
- Section
- References - Search tag in class smile.clustering.HierarchicalClustering
- Section
- References - Search tag in class smile.clustering.KMeans
- Section
- References - Search tag in class smile.clustering.KModes
- Section
- References - Search tag in class smile.clustering.MEC
- Section
- References - Search tag in class smile.clustering.SIB
- Section
- References - Search tag in class smile.clustering.SpectralClustering
- Section
- References - Search tag in class smile.clustering.XMeans
- Section
- References - Search tag in class smile.clustering.linkage.Linkage
- Section
- References - Search tag in class smile.feature.extraction.GHA
- Section
- References - Search tag in class smile.feature.extraction.KernelPCA
- Section
- References - Search tag in class smile.feature.extraction.ProbabilisticPCA
- Section
- References - Search tag in class smile.feature.extraction.RandomProjection
- Section
- References - Search tag in class smile.feature.selection.GAFE
- Section
- References - Search tag in class smile.ica.ICA
- Section
- References - Search tag in class smile.manifold.IsoMap
- Section
- References - Search tag in class smile.manifold.KPCA
- Section
- References - Search tag in class smile.manifold.LLE
- Section
- References - Search tag in class smile.manifold.LaplacianEigenmap
- Section
- References - Search tag in class smile.manifold.TSNE
- Section
- References - Search tag in class smile.manifold.UMAP
- Section
- References - Search tag in class smile.math.BFGS
- Section
- References - Search tag in class smile.math.kernel.PearsonKernel
- Section
- References - Search tag in class smile.math.random.MersenneTwister
- Section
- References - Search tag in class smile.math.random.MersenneTwister64
- Section
- References - Search tag in class smile.math.rbf.GaussianRadialBasis
- Section
- References - Search tag in class smile.neighbor.BKTree
- Section
- References - Search tag in class smile.neighbor.CoverTree
- Section
- References - Search tag in class smile.neighbor.LSH
- Section
- References - Search tag in class smile.neighbor.MPLSH
- Section
- References - Search tag in class smile.neighbor.SNLSH
- Section
- References - Search tag in class smile.nlp.stemmer.LancasterStemmer
- Section
- References - Search tag in class smile.nlp.stemmer.PorterStemmer
- Section
- References - Search tag in class smile.nlp.tokenizer.SimpleSentenceSplitter
- Section
- References - Search tag in class smile.regression.ElasticNet
- Section
- References - Search tag in class smile.regression.GaussianProcessRegression
- Section
- References - Search tag in class smile.regression.GradientTreeBoost
- Section
- References - Search tag in class smile.regression.LASSO
- Section
- References - Search tag in class smile.regression.RBFNetwork
- Section
- References - Search tag in class smile.regression.SVM
- Section
- References - Search tag in class smile.sequence.CRF
- Section
- References - Search tag in class smile.sort.IQAgent
- Section
- References - Search tag in class smile.validation.metric.AdjustedMutualInformation
- Section
- References - Search tag in class smile.validation.metric.MutualInformation
- Section
- References - Search tag in class smile.validation.metric.NormalizedMutualInformation
- Section
- References - Search tag in class smile.vq.BIRCH
- Section
- References - Search tag in class smile.vq.GrowingNeuralGas
- Section
- References - Search tag in class smile.vq.NeuralGas
- Section
- References - Search tag in class smile.vq.SOM
- Section
- References - Search tag in interface smile.feature.importance.SHAP
- Section
- References - Search tag in package smile.association
- Section
- References - Search tag in record class smile.feature.selection.SignalNoiseRatio
- Section
- References - Search tag in record class smile.feature.selection.SumSquaresRatio
- Section
- Regex - Interface in smile.util
-
Regular expression patterns.
- regression(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of regression.
- regression(int, int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
-
Repeated cross validation of regression.
- regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.Bootstrap
-
Runs regression bootstrap validation.
- regression(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of regression.
- regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.Bootstrap
-
Runs regression bootstrap validation.
- regression(int, T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.CrossValidation
-
Cross validation of regression.
- regression(String, String) - Method in class smile.plot.vega.Transform
-
Adds a regression transform.
- regression(Formula, DataFrame, BiFunction<Formula, DataFrame, DataFrameRegression>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- regression(T[], double[], BiFunction<T[], double[], M>) - Static method in interface smile.validation.LOOCV
-
Runs leave-one-out cross validation tests.
- Regression<T> - Interface in smile.regression
-
Regression analysis includes any techniques for modeling and analyzing the relationship between a dependent variable and one or more independent variables.
- Regression.Trainer<T,
M> - Interface in smile.regression -
The regression trainer.
- RegressionMetric - Interface in smile.validation.metric
-
An abstract interface to measure the regression performance.
- RegressionMetrics - Record Class in smile.validation
-
The regression validation metrics.
- RegressionMetrics(double, double, int, double, double, double, double, double) - Constructor for record class smile.validation.RegressionMetrics
-
Creates an instance of a
RegressionMetrics
record class. - RegressionNode - Class in smile.base.cart
-
A leaf node in regression tree.
- RegressionNode(int, double, double, double) - Constructor for class smile.base.cart.RegressionNode
-
Constructor.
- RegressionTransform - Class in smile.plot.vega
-
The regression transform fits two-dimensional regression models to smooth and predict data.
- RegressionTree - Class in smile.regression
-
Regression tree.
- RegressionTree(DataFrame, Loss, StructField, int, int, int, int, int[], int[][]) - Constructor for class smile.regression.RegressionTree
-
Constructor.
- RegressionValidation<M> - Class in smile.validation
-
Regression model validation results.
- RegressionValidation(M, double[], double[], RegressionMetrics) - Constructor for class smile.validation.RegressionValidation
-
Constructor.
- RegressionValidations<M> - Class in smile.validation
-
Regression model validation results.
- RegressionValidations(List<RegressionValidation<M>>) - Constructor for class smile.validation.RegressionValidations
-
Constructor.
- regressors - Variable in class smile.regression.GaussianProcessRegression
-
The regressors.
- regularizedIncompleteBetaFunction(double, double, double) - Static method in class smile.math.special.Beta
-
Regularized Incomplete Beta function.
- regularizedIncompleteGamma(double, double) - Static method in class smile.math.special.Gamma
-
Regularized Incomplete Gamma Function P(s,x) = ∫0x e-t t(s-1) dt
- regularizedUpperIncompleteGamma(double, double) - Static method in class smile.math.special.Gamma
-
Regularized Upper/Complementary Incomplete Gamma Function Q(s,x) = 1 - P(s,x) = 1 - ∫0x e-t t(s-1) dt
- rejectionSampling(double, double, double) - Method in interface smile.stat.distribution.Distribution
-
Use the rejection technique to draw a sample from the given distribution.
- Relevance - Class in smile.nlp.relevance
-
In the context of information retrieval, relevance denotes how well a retrieved set of documents meets the information need of the user.
- Relevance(Text, double) - Constructor for class smile.nlp.relevance.Relevance
-
Constructor.
- RelevanceRanker - Interface in smile.nlp.relevance
-
An interface to provide relevance ranking algorithm.
- relu(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with ReLU activation function.
- relu(int, int, double) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with ReLU activation function.
- ReLU - Class in smile.deep.activation
-
Rectified Linear Unit activation function.
- ReLU(boolean) - Constructor for class smile.deep.activation.ReLU
-
Constructor.
- remove() - Method in class smile.util.PairingHeap
- remove(double[], E) - Method in class smile.neighbor.MutableLSH
-
Remove an entry from the hash table.
- remove(int) - Method in class smile.neighbor.lsh.Bucket
-
Removes a point from bucket.
- remove(int) - Method in class smile.util.DoubleArrayList
-
Removes the value at specified index from the list.
- remove(int) - Method in class smile.util.IntArrayList
-
Removes the value at specified index from the list.
- remove(int) - Method in class smile.util.IntDoubleHashMap
-
Removes the mapping for the specified key from this map if present.
- remove(int) - Method in class smile.util.IntHashSet
-
Removes the specified element from this set if it is present.
- remove(int) - Method in class smile.util.SparseArray
-
Removes an entry.
- remove(AutoCloseable) - Method in class smile.util.AutoScope
-
Detaches resources from this scope.
- remove(Object) - Method in class smile.util.PairingHeap
- remove(Plot) - Method in class smile.plot.swing.Canvas
-
Remove a graphical shape from the canvas.
- remove(PlotPanel) - Method in class smile.plot.swing.PlotGrid
-
Remove a plot from the frame.
- remove(Shape) - Method in class smile.plot.swing.Canvas
-
Remove a graphical shape from the canvas.
- removeAll(Collection<?>) - Method in class smile.util.PairingHeap
- removeChild(Concept) - Method in class smile.taxonomy.Concept
-
Removes a child to this node.
- removeEdge(int, int) - Method in class smile.graph.Graph
-
In a simple graph, removes and returns the edge going from the specified source vertex to the specified target vertex.
- removeEdge(Neuron) - Method in class smile.vq.hebb.Neuron
-
Removes an edge.
- removeEdges(Collection<Graph.Edge>) - Method in class smile.graph.Graph
-
Removes a set of edges from the graph.
- removeKeyword(String) - Method in class smile.taxonomy.Concept
-
Removes a keyword from the concept synset.
- removeLegend() - Method in class smile.plot.vega.Field
-
Removes the legend for the encoding channel will be removed.
- removePropertyChangeListener(PropertyChangeListener) - Method in class smile.plot.swing.Canvas
-
Remove a PropertyChangeListener from the listener list.
- Repeat - Class in smile.plot.vega
-
Repeat a View.
- Repeat(VegaLite, String...) - Constructor for class smile.plot.vega.Repeat
-
Creates a view for each entry in an array of fields.
- Repeat(VegaLite, String[], String[]) - Constructor for class smile.plot.vega.Repeat
-
Creates a view for each entry in an array of fields.
- replace(Node, Node) - Method in class smile.base.cart.InternalNode
-
Returns a new internal node with children replaced.
- replace(Node, Node) - Method in class smile.base.cart.NominalNode
- replace(Node, Node) - Method in class smile.base.cart.OrdinalNode
- replaceNaN(double) - Method in class smile.math.matrix.BigMatrix
-
Replaces NaN's with given value.
- replaceNaN(double) - Method in class smile.math.matrix.Matrix
-
Replaces NaN's with given value.
- replaceNaN(double) - Method in class smile.util.Array2D
-
Replaces NaN values with x.
- replaceNaN(float) - Method in class smile.math.matrix.fp32.Matrix
-
Replaces NaN's with given value.
- requireGradients(boolean) - Method in class smile.deep.tensor.Tensor.Options
-
Set true if gradients need to be computed for this tensor.
- reset() - Method in class smile.deep.metric.Accuracy
- reset() - Method in interface smile.deep.metric.Metric
-
Resets the metric state variables to their default value.
- reset() - Method in class smile.deep.metric.Precision
- reset() - Method in class smile.deep.metric.Recall
- reset() - Method in class smile.deep.Optimizer
-
Resets gradients.
- reset() - Method in class smile.plot.swing.Axis
-
Set the base coordinate space.
- reset() - Method in class smile.plot.swing.Base
-
Reset base coordinates.
- reset() - Method in class smile.plot.swing.PlotPanel
-
Resets the plot.
- reset() - Method in class smile.plot.swing.Projection
-
Reset the base coordinates on Java2D screen.
- resetProjection() - Method in class smile.plot.swing.Graphics
-
Reset projection object when the PlotCanvas size changed.
- reshape(long...) - Method in class smile.deep.tensor.Tensor
-
Returns a tensor with the same data and number of elements but with the specified shape.
- reshapeForBroadcast(Tensor, Tensor) - Static method in interface smile.llm.RotaryPositionalEncoding
-
Reshapes the cis tensor to match the shape of the target tensor x for broadcasting purposes, allowing for element-wise operations between tensors of compatible shapes.
- residual() - Method in interface smile.base.cart.Loss
-
Returns the residual vector.
- residuals - Variable in class smile.math.LevenbergMarquardt
-
The residuals.
- residuals() - Method in class smile.regression.LinearModel
-
Returns the residuals, which is response minus fitted values.
- residuals() - Method in class smile.timeseries.AR
-
Returns the residuals, that is response minus fitted values.
- residuals() - Method in class smile.timeseries.ARMA
-
Returns the residuals, that is response minus fitted values.
- resize(BufferedImage, int, int) - Method in interface smile.vision.transform.Transform
-
Resizes an image and keeps the aspect ratio.
- resolveAxis(String, String) - Method in class smile.plot.vega.Concat
- resolveAxis(String, String) - Method in class smile.plot.vega.Facet
- resolveAxis(String, String) - Method in class smile.plot.vega.Layer
- resolveAxis(String, String) - Method in class smile.plot.vega.Repeat
- resolveAxis(String, String) - Method in interface smile.plot.vega.ViewComposition
-
Sets an axis resolution.
- resolveLegend(String, String) - Method in class smile.plot.vega.Concat
- resolveLegend(String, String) - Method in class smile.plot.vega.Facet
- resolveLegend(String, String) - Method in class smile.plot.vega.Layer
- resolveLegend(String, String) - Method in class smile.plot.vega.Repeat
- resolveLegend(String, String) - Method in interface smile.plot.vega.ViewComposition
-
Sets a legend resolution.
- resolveScale(String, String) - Method in class smile.plot.vega.Concat
- resolveScale(String, String) - Method in class smile.plot.vega.Facet
- resolveScale(String, String) - Method in class smile.plot.vega.Layer
- resolveScale(String, String) - Method in class smile.plot.vega.Repeat
- resolveScale(String, String) - Method in interface smile.plot.vega.ViewComposition
-
Sets a scale resolution.
- response - Variable in class smile.base.cart.CART
-
The schema of response variable.
- response() - Method in interface smile.base.cart.Loss
-
Returns the response variable for next iteration.
- response() - Method in class smile.data.formula.Formula
-
Returns the response term.
- retainAll(Collection<?>) - Method in class smile.util.PairingHeap
- reverse(double[]) - Static method in class smile.math.MathEx
-
Reverses the order of the elements in the specified array.
- reverse(float[]) - Static method in class smile.math.MathEx
-
Reverses the order of the elements in the specified array.
- reverse(int[]) - Static method in class smile.math.MathEx
-
Reverses the order of the elements in the specified array.
- reverse(T[]) - Static method in class smile.math.MathEx
-
Reverses the order of the elements in the specified array.
- rho - Variable in class smile.base.mlp.MultilayerPerceptron
-
The discounting factor for the history/coming gradient in RMSProp.
- rhs(String...) - Static method in class smile.data.formula.Formula
-
Factory method.
- rhs(Term...) - Static method in class smile.data.formula.Formula
-
Factory method.
- RidgeRegression - Class in smile.regression
-
Ridge Regression.
- RidgeRegression() - Constructor for class smile.regression.RidgeRegression
- RIGHT - Enum constant in enum class smile.math.blas.Side
-
B * A
- rightPad(String, int, char) - Static method in interface smile.util.Strings
-
Right pad a string with a specified character.
- rint(String) - Static method in interface smile.data.formula.Terms
-
The
rint(x)
term. - rint(Term) - Static method in interface smile.data.formula.Terms
-
The
rint(x)
term. - rmse() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
rmse
record component. - RMSE - Class in smile.validation.metric
-
Root mean squared error.
- RMSE() - Constructor for class smile.validation.metric.RMSE
- RMSNormLayer - Class in smile.deep.layer
-
Root Mean Square Layer Normalization.
- RMSNormLayer(int) - Constructor for class smile.deep.layer.RMSNormLayer
-
Constructor.
- RMSNormLayer(int, double) - Constructor for class smile.deep.layer.RMSNormLayer
-
Constructor.
- RMSprop(Model, double) - Static method in class smile.deep.Optimizer
-
Returns an RMSprop optimizer.
- RMSprop(Model, double, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
-
Returns an RMSprop optimizer.
- RNNSearch<K,
V> - Interface in smile.neighbor -
Retrieves the nearest neighbors to a query in a radius.
- RobustStandardizer - Class in smile.feature.transform
-
Robustly standardizes numeric feature by subtracting the median and dividing by the IQR.
- RobustStandardizer() - Constructor for class smile.feature.transform.RobustStandardizer
- role() - Method in record class smile.llm.Message
-
Returns the value of the
role
record component. - Role - Enum Class in smile.llm
-
The role of message speaker in a dialog.
- root - Variable in class smile.base.cart.CART
-
The root of decision tree.
- root() - Method in class smile.base.cart.CART
-
Returs the root node.
- Root - Class in smile.math
-
Root finding algorithms.
- ropeTheta() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
ropeTheta
record component. - RotaryPositionalEncoding - Interface in smile.llm
-
Rotary positional encoding (RoPE).
- rotate(double, double) - Method in class smile.plot.swing.Graphics
-
Rotate the 3D view based on the changes on mouse position.
- rotate(double, double, double) - Method in class smile.plot.vega.Projection
-
Sets the projection's three-axis rotation to the specified angles by specifying the rotation angles in degrees about each spherical axis.
- RouletteWheel() - Static method in interface smile.gap.Selection
-
Roulette Wheel Selection, also called fitness proportionate selection.
- round(double, int) - Static method in class smile.math.MathEx
-
Round a double vale to given digits such as 10^n, where n is a positive or negative integer.
- round(String) - Static method in interface smile.data.formula.Terms
-
The
round(x)
term. - round(Term) - Static method in interface smile.data.formula.Terms
-
The
round(x)
term. - Round - Class in smile.data.formula
-
The term of round function.
- Round(Term) - Constructor for class smile.data.formula.Round
-
Constructor.
- ROUND_STYLE - Static variable in class smile.math.MathEx
-
Rounding style.
- rounds - Variable in class smile.validation.ClassificationValidations
-
The multiple round validations.
- rounds - Variable in class smile.validation.RegressionValidations
-
The multiple round validations.
- row(double[]) - Static method in class smile.math.matrix.BigMatrix
-
Returns a row vector/matrix.
- row(double[]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a row vector/matrix.
- row(double[]) - Static method in class smile.math.matrix.Matrix
-
Returns a row vector/matrix.
- row(double[], int, int) - Static method in class smile.math.matrix.BigMatrix
-
Returns a row vector/matrix.
- row(double[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a row vector/matrix.
- row(double[], int, int) - Static method in class smile.math.matrix.Matrix
-
Returns a row vector/matrix.
- row(float[]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a row vector/matrix.
- row(float[], int, int) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a row vector/matrix.
- row(int) - Method in class smile.math.matrix.BigMatrix
-
Returns the i-th row.
- row(int) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the i-th row.
- row(int) - Method in class smile.math.matrix.Matrix
-
Returns the i-th row.
- row(int...) - Method in class smile.math.matrix.BigMatrix
-
Returns the matrix of selected rows.
- row(String) - Method in class smile.plot.vega.Facet
-
Returns the field definition for the horizontal facet of trellis plots.
- ROW_MAJOR - Enum constant in enum class smile.math.blas.Layout
-
Row major layout.
- RowHeader() - Constructor for class smile.swing.Table.RowHeader
-
Constructor.
- rowMax(double[][]) - Static method in class smile.math.MathEx
-
Returns the row maximum of a matrix.
- rowMax(int[][]) - Static method in class smile.math.MathEx
-
Returns the row maximum of a matrix.
- rowMeans() - Method in class smile.math.matrix.BigMatrix
-
Returns the mean of each row.
- rowMeans() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the mean of each row.
- rowMeans() - Method in class smile.math.matrix.Matrix
-
Returns the mean of each row.
- rowMeans(double[][]) - Static method in class smile.math.MathEx
-
Returns the row means of a matrix.
- rowMin(double[][]) - Static method in class smile.math.MathEx
-
Returns the row minimum of a matrix.
- rowMin(int[][]) - Static method in class smile.math.MathEx
-
Returns the row minimum of a matrix.
- rowName(int) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the name of i-th row.
- rowName(int) - Method in class smile.math.matrix.IMatrix
-
Returns the name of i-th row.
- rowNames() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the row names.
- rowNames() - Method in class smile.math.matrix.IMatrix
-
Returns the row names.
- rowNames(String[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Sets the row names.
- rowNames(String[]) - Method in class smile.math.matrix.IMatrix
-
Sets the row names.
- rowPadding(double) - Method in class smile.plot.vega.Legend
-
Sets the vertical padding in pixels between symbol legend entries.
- rows(int...) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the matrix of selected rows.
- rows(int...) - Method in class smile.math.matrix.Matrix
-
Returns the matrix of selected rows.
- rowSds() - Method in class smile.math.matrix.BigMatrix
-
Returns the standard deviations of each row.
- rowSds() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the standard deviations of each row.
- rowSds() - Method in class smile.math.matrix.Matrix
-
Returns the standard deviations of each row.
- rowSds(double[][]) - Static method in class smile.math.MathEx
-
Returns the row standard deviations of a matrix.
- rowSums() - Method in class smile.math.matrix.BigMatrix
-
Returns the sum of each row.
- rowSums() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the sum of each row.
- rowSums() - Method in class smile.math.matrix.Matrix
-
Returns the sum of each row.
- rowSums(double[][]) - Static method in class smile.math.MathEx
-
Returns the row sums of a matrix.
- rowSums(int[][]) - Static method in class smile.math.MathEx
-
Returns the row sums of a matrix.
- ROYAL_BLUE - Static variable in interface smile.plot.swing.Palette
- RP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Particle.
- rsqrt() - Method in class smile.deep.tensor.Tensor
-
Returns the reciprocal of the square-root of each of the elements in the tensor.
- rsqrt_() - Method in class smile.deep.tensor.Tensor
-
Returns the reciprocal of the square-root of each of the elements in the tensor.
- RSquared() - Method in class smile.regression.LinearModel
-
Returns R2 statistic.
- rss() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
rss
record component. - RSS - Class in smile.validation.metric
-
Residual sum of squares.
- RSS() - Constructor for class smile.validation.metric.RSS
- RSS() - Method in class smile.regression.LinearModel
-
Returns the residual sum of squares.
- RSS() - Method in class smile.timeseries.AR
-
Returns the residual sum of squares.
- RSS() - Method in class smile.timeseries.ARMA
-
Returns the residual sum of squares.
- run(int, Supplier<T>) - Static method in class smile.clustering.PartitionClustering
-
Runs a clustering algorithm multiple times and return the best one (e.g.
- rutherford(Path) - Static method in class smile.math.matrix.fp32.SparseMatrix
-
Reads a sparse matrix from a Rutherford-Boeing Exchange Format file.
- rutherford(Path) - Static method in class smile.math.matrix.SparseMatrix
-
Reads a sparse matrix from a Rutherford-Boeing Exchange Format file.
S
- s - Variable in class smile.math.matrix.BigMatrix.SVD
-
The singular values in descending order.
- s - Variable in class smile.math.matrix.fp32.Matrix.SVD
-
The singular values in descending order.
- s - Variable in class smile.math.matrix.Matrix.SVD
-
The singular values in descending order.
- SA - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
-
The smallest algebraic eigenvalues.
- SA - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
-
The smallest algebraic eigenvalues.
- SALMON - Static variable in interface smile.plot.swing.Palette
- SammonMapping - Class in smile.manifold
-
The Sammon's mapping is an iterative technique for making interpoint distances in the low-dimensional projection as close as possible to the interpoint distances in the high-dimensional object.
- SammonMapping(double, double[][]) - Constructor for class smile.manifold.SammonMapping
-
Constructor.
- sample(int) - Method in class smile.plot.vega.Transform
-
Adds a sample transform.
- sample(int) - Method in class smile.regression.GaussianProcessRegression.JointPrediction
-
Draw samples from Gaussian process.
- SampleBatch - Record Class in smile.deep
-
A min-batch dataset consists of data and an associated target (label).
- SampleBatch(Tensor, Tensor) - Constructor for record class smile.deep.SampleBatch
-
Creates an instance of a
SampleBatch
record class. - SampleInstance<D,
T> - Record Class in smile.data -
An immutable sample instance.
- SampleInstance(D) - Constructor for record class smile.data.SampleInstance
-
Constructor without target.
- SampleInstance(D, T) - Constructor for record class smile.data.SampleInstance
-
Creates an instance of a
SampleInstance
record class. - samples - Variable in class smile.base.cart.CART
-
The samples for training this node.
- samples() - Method in record class smile.validation.Bag
-
Returns the value of the
samples
record component. - Sampling - Interface in smile.stat
-
Random sampling is the selection of a subset of individuals from within a statistical population to estimate characteristics of the whole population.
- sas(String) - Static method in interface smile.io.Read
-
Reads a SAS7BDAT file.
- sas(Path) - Static method in interface smile.io.Read
-
Reads a SAS7BDAT file.
- SAS - Interface in smile.io
-
Reads SAS7BDAT datasets.
- save() - Method in class smile.plot.swing.PlotGrid
-
Shows a file chooser and exports the plot to the selected image file.
- save() - Method in class smile.plot.swing.PlotPanel
-
Shows a file chooser and exports the plot to the selected image file.
- save(File) - Method in class smile.plot.swing.PlotGrid
-
Exports the plot to an image file.
- save(File) - Method in class smile.plot.swing.PlotPanel
-
Exports the plot to an image file.
- save(String) - Method in class smile.deep.layer.LayerBlock
-
Serialize the layer block as a checkpoint.
- save(String) - Method in class smile.deep.Model
-
Serialize the model as a checkpoint.
- sbmv(Layout, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric band matrix.
- sbmv(Layout, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- sbmv(Layout, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric band matrix.
- sbmv(Layout, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- sbmv(Layout, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric band matrix.
- sbmv(Layout, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- sbmv(Layout, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric band matrix.
- sbmv(Layout, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- scal(double, double[]) - Method in interface smile.math.blas.BLAS
-
Scales a vector with a scalar.
- scal(float, float[]) - Method in interface smile.math.blas.BLAS
-
Scales a vector with a scalar.
- scal(int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Scales a vector with a scalar.
- scal(int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- scal(int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Scales a vector with a scalar.
- scal(int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- ScalarType - Enum Class in smile.deep.tensor
-
The data type of the elements stored in the tensor.
- scale - Variable in class smile.stat.distribution.LogisticDistribution
-
The scale parameter.
- scale() - Method in class smile.classification.ClassLabels
-
Returns the nominal scale of the class labels.
- scale() - Method in class smile.math.kernel.Gaussian
-
Returns the length scale of kernel.
- scale() - Method in class smile.math.kernel.HyperbolicTangent
-
Returns the scale of kernel.
- scale() - Method in class smile.math.kernel.Laplacian
-
Returns the length scale of kernel.
- scale() - Method in class smile.math.kernel.Matern
-
Returns the length scale of kernel.
- scale() - Method in class smile.math.kernel.Polynomial
-
Returns the scale of kernel.
- scale() - Method in class smile.math.kernel.ThinPlateSpline
-
Returns the length scale of kernel.
- scale(double) - Method in class smile.classification.PlattScaling
-
Returns the posterior probability estimate P(y = 1 | x).
- scale(double) - Method in class smile.math.Complex
-
Scalar multiplication.
- scale(double) - Method in class smile.plot.vega.Projection
-
Sets the projection's scale (zoom) factor, overriding automatic fitting.
- scale(double[][]) - Static method in class smile.math.MathEx
-
Scales each column of a matrix to range [0, 1].
- scale(double[], double[]) - Method in class smile.math.matrix.BigMatrix
-
Centers and scales the columns of matrix.
- scale(double[], double[]) - Method in class smile.math.matrix.Matrix
-
Centers and scales the columns of matrix.
- scale(double, double[]) - Static method in class smile.math.MathEx
-
Scale each element of an array by a constant x = a * x.
- scale(double, double[], double[]) - Static method in class smile.math.MathEx
-
Scale each element of an array by a constant y = a * x.
- scale(float[], float[]) - Method in class smile.math.matrix.fp32.Matrix
-
Centers and scales the columns of matrix.
- scale(String) - Method in class smile.plot.vega.Field
-
Sets the function that transforms values in the data domain (numbers, dates, strings, etc.) to visual values (pixels, colors, sizes) for position and mark property channels.
- scale(Tensor) - Static method in interface smile.llm.RotaryPositionalEncoding
-
Adapts RoPE to longer input lengths.
- scaledRope() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
scaledRope
record component. - ScaledRouletteWheel() - Static method in interface smile.gap.Selection
-
Scaled Roulette Wheel Selection.
- Scaler - Class in smile.feature.transform
-
Scales the numeric variables into the range [0, 1].
- Scaler - Class in smile.math
-
Affine transformation
y = (x - offset) / scale
. - Scaler() - Constructor for class smile.feature.transform.Scaler
- Scaler(double, double, boolean) - Constructor for class smile.math.Scaler
-
Constructor.
- scatter() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
-
Returns the scatter of distribution, which is defined as |Σ|.
- ScatterPlot - Class in smile.plot.swing
-
The data is displayed as a collection of points.
- ScatterPlot(Point...) - Constructor for class smile.plot.swing.ScatterPlot
-
Constructor.
- ScatterPlot(Point[], Legend[]) - Constructor for class smile.plot.swing.ScatterPlot
-
Constructor.
- scatterReduce(int, Tensor, Tensor, String) - Method in class smile.deep.tensor.Tensor
-
Writes all values from the tensor src into this tensor at the indices specified in the index tensor.
- scatterReduce_(int, Tensor, Tensor, String) - Method in class smile.deep.tensor.Tensor
-
Writes all values from the tensor src into this tensor at the indices specified in the index tensor.
- schema - Variable in class smile.base.cart.CART
-
The schema of predictors.
- schema - Variable in class smile.feature.extraction.Projection
-
The schema of output space.
- schema() - Method in class smile.classification.AdaBoost
- schema() - Method in interface smile.classification.DataFrameClassifier
-
Returns the predictor schema.
- schema() - Method in class smile.classification.DecisionTree
- schema() - Method in class smile.classification.GradientTreeBoost
- schema() - Method in class smile.classification.RandomForest
- schema() - Method in interface smile.data.DataFrame
-
Returns the schema of DataFrame.
- schema() - Method in class smile.data.IndexDataFrame
- schema() - Method in interface smile.data.Tuple
-
Returns the schema of tuple.
- schema() - Method in class smile.io.Arff
-
Returns the data schema.
- schema() - Method in interface smile.regression.DataFrameRegression
-
Returns the schema of predictors.
- schema() - Method in class smile.regression.GradientTreeBoost
- schema() - Method in class smile.regression.LinearModel
- schema() - Method in class smile.regression.RandomForest
- schema() - Method in class smile.regression.RegressionTree
- schema(StructType) - Method in class smile.io.CSV
-
Sets the schema.
- schema(StructType) - Method in class smile.io.JSON
-
Sets the schema.
- score - Variable in class smile.nlp.collocation.Bigram
-
The chi-square statistical score of the collocation.
- score - Variable in class smile.nlp.relevance.Relevance
-
The relevance score.
- score() - Method in class smile.base.cart.InternalNode
-
Returns the split score (reduction of impurity).
- score(double[]) - Method in class smile.anomaly.IsolationForest
-
Returns the anomaly score.
- score(double[]) - Method in class smile.classification.LogisticRegression.Binomial
- score(double[][]) - Method in class smile.anomaly.IsolationForest
-
Returns the anomaly scores.
- score(double[], double[]) - Method in class smile.validation.metric.MAD
- score(double[], double[]) - Method in class smile.validation.metric.MSE
- score(double[], double[]) - Method in class smile.validation.metric.R2
- score(double[], double[]) - Method in interface smile.validation.metric.RegressionMetric
-
Returns a score to measure the quality of regression.
- score(double[], double[]) - Method in class smile.validation.metric.RMSE
- score(double[], double[]) - Method in class smile.validation.metric.RSS
- score(double, int, double, long, long) - Method in class smile.nlp.relevance.BM25
-
Returns the relevance score between a term and a document based on a corpus.
- score(double, long, long) - Method in class smile.nlp.relevance.BM25
-
Returns the relevance score between a term and a document based on a corpus.
- score(int[]) - Method in class smile.classification.Maxent.Binomial
- score(int[], double[]) - Method in class smile.validation.metric.AUC
- score(int[], double[]) - Method in class smile.validation.metric.LogLoss
- score(int[], double[]) - Method in interface smile.validation.metric.ProbabilisticClassificationMetric
-
Returns a score to measure the quality of classification.
- score(int[], int[]) - Method in class smile.validation.metric.Accuracy
- score(int[], int[]) - Method in class smile.validation.metric.AdjustedMutualInformation
- score(int[], int[]) - Method in class smile.validation.metric.AdjustedRandIndex
- score(int[], int[]) - Method in interface smile.validation.metric.ClassificationMetric
-
Returns a score to measure the quality of classification.
- score(int[], int[]) - Method in interface smile.validation.metric.ClusteringMetric
-
Returns a score to measure the quality of clustering.
- score(int[], int[]) - Method in class smile.validation.metric.Error
- score(int[], int[]) - Method in class smile.validation.metric.Fallout
- score(int[], int[]) - Method in class smile.validation.metric.FDR
- score(int[], int[]) - Method in class smile.validation.metric.FScore
- score(int[], int[]) - Method in class smile.validation.metric.MatthewsCorrelation
- score(int[], int[]) - Method in class smile.validation.metric.MutualInformation
- score(int[], int[]) - Method in class smile.validation.metric.NormalizedMutualInformation
- score(int[], int[]) - Method in class smile.validation.metric.Precision
- score(int[], int[]) - Method in class smile.validation.metric.RandIndex
- score(int[], int[]) - Method in class smile.validation.metric.Recall
- score(int[], int[]) - Method in class smile.validation.metric.Sensitivity
- score(int[], int[]) - Method in class smile.validation.metric.Specificity
- score(int, int, double, int, int, double, int, int, double, long, long) - Method in class smile.nlp.relevance.BM25
-
Returns the relevance score between a term and a document based on a corpus.
- score(SparseArray) - Method in class smile.classification.SparseLogisticRegression.Binomial
- score(T) - Method in class smile.base.svm.KernelMachine
-
Returns the decision function value.
- score(T) - Method in interface smile.classification.Classifier
-
The raw prediction score.
- score(T) - Method in interface smile.gap.Fitness
-
Returns the non-negative fitness value of a chromosome.
- scores() - Method in record class smile.manifold.MDS
-
Returns the value of the
scores
record component. - scoreTime() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
scoreTime
record component. - scoreTime() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
scoreTime
record component. - scott(double[]) - Static method in interface smile.math.Histogram
-
Returns the number of bins by Scott's rule h = 3.5 * σ / (n1/3).
- screenProjection(double...) - Method in class smile.plot.swing.Projection
-
Project logical coordinates to Java2D coordinates.
- screenProjectionBaseRatio(double...) - Method in class smile.plot.swing.Projection
-
Project logical coordinates in base ratio to Java2D coordinates.
- ScreePlot - Class in smile.plot.swing
-
In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis.
- ScreePlot(double[]) - Constructor for class smile.plot.swing.ScreePlot
-
Constructor.
- sd - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The standard deviation of predictive distribution at query points.
- sd - Variable in class smile.regression.GaussianProcessRegression
-
The standard deviation of responsible variable.
- sd - Variable in class smile.validation.ClassificationValidations
-
The standard deviation of metrics.
- sd - Variable in class smile.validation.RegressionValidations
-
The standard deviation of metrics.
- sd() - Method in class smile.neighbor.lsh.HashValueParzenModel
-
Returns the standard deviation.
- sd() - Method in class smile.stat.distribution.BinomialDistribution
- sd() - Method in class smile.stat.distribution.ChiSquareDistribution
- sd() - Method in interface smile.stat.distribution.Distribution
-
Returns the standard deviation of distribution.
- sd() - Method in class smile.stat.distribution.EmpiricalDistribution
- sd() - Method in class smile.stat.distribution.ExponentialDistribution
- sd() - Method in class smile.stat.distribution.GammaDistribution
- sd() - Method in class smile.stat.distribution.GaussianDistribution
- sd() - Method in class smile.stat.distribution.GeometricDistribution
- sd() - Method in class smile.stat.distribution.KernelDensity
- sd() - Method in class smile.stat.distribution.LogisticDistribution
- sd() - Method in class smile.stat.distribution.NegativeBinomialDistribution
- sd() - Method in class smile.stat.distribution.PoissonDistribution
- sd() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- sd() - Method in class smile.stat.distribution.TDistribution
- sd(double[]) - Static method in class smile.math.MathEx
-
Returns the standard deviation of an array.
- sd(float[]) - Static method in class smile.math.MathEx
-
Returns the standard deviation of an array.
- sd(int[]) - Static method in class smile.math.MathEx
-
Returns the standard deviation of an array.
- search(double) - Method in class smile.interpolation.AbstractInterpolation
-
Given a value x, return a value j such that x is (insofar as possible) centered in the subrange xx[j..j+m-1], where xx is the stored data.
- search(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.KDTree
- search(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.LSH
- search(double[], double, List<Neighbor<double[], E>>) - Method in class smile.neighbor.MPLSH
- search(double[], double, List<Neighbor<double[], E>>, double, int) - Method in class smile.neighbor.MPLSH
-
Search the neighbors in the given radius of query object, i.e.
- search(double[], int) - Method in class smile.neighbor.KDTree
- search(double[], int) - Method in class smile.neighbor.LSH
- search(double[], int) - Method in class smile.neighbor.MPLSH
- search(double[], int) - Method in class smile.neighbor.RandomProjectionForest
- search(double[], int) - Method in class smile.neighbor.RandomProjectionTree
- search(double[], int, double, int) - Method in class smile.neighbor.MPLSH
-
Returns the approximate k-nearest neighbors.
- search(String) - Method in interface smile.nlp.Corpus
-
Returns the iterator over the set of documents containing the given term.
- search(String) - Method in class smile.nlp.SimpleCorpus
- search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.BKTree
- search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.CoverTree
- search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.LinearSearch
- search(K, double, List<Neighbor<K, V>>) - Method in interface smile.neighbor.RNNSearch
-
Retrieves the neighbors in a fixed radius of query object, i.e.
- search(K, double, List<Neighbor<K, V>>) - Method in class smile.neighbor.SNLSH
- search(K, int) - Method in class smile.neighbor.CoverTree
- search(K, int) - Method in interface smile.neighbor.KNNSearch
-
Retrieves the k nearest neighbors to the query key.
- search(K, int) - Method in class smile.neighbor.LinearSearch
- search(K, int, List<Neighbor<K, V>>) - Method in class smile.neighbor.BKTree
-
Search the neighbors in the given radius of query object, i.e.
- search(RelevanceRanker, String) - Method in interface smile.nlp.Corpus
-
Returns the iterator over the set of documents containing the given term in descending order of relevance.
- search(RelevanceRanker, String) - Method in class smile.nlp.SimpleCorpus
- search(RelevanceRanker, String[]) - Method in interface smile.nlp.Corpus
-
Returns the iterator over the set of documents containing (at least one of) the given terms in descending order of relevance.
- search(RelevanceRanker, String[]) - Method in class smile.nlp.SimpleCorpus
- SECOND - Enum constant in enum class smile.data.formula.DateFeature
-
The seconds represented by an integer from 0 to 59 in the usual manner.
- seed(int, double[][]) - Static method in class smile.vq.NeuralGas
-
Selects random samples as initial neurons of Neural Gas.
- seed(T[], T[], int[], ToDoubleBiFunction<T, T>) - Static method in class smile.clustering.PartitionClustering
-
Initialize cluster membership of input objects with K-Means++ algorithm.
- seeds() - Static method in class smile.math.MathEx
-
Returns a stream of random numbers to be used as RNG seeds.
- select(double[], int) - Static method in interface smile.sort.QuickSelect
-
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
- select(float[], int) - Static method in interface smile.sort.QuickSelect
-
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
- select(int...) - Method in interface smile.data.DataFrame
-
Returns a new DataFrame with selected columns.
- select(int...) - Method in class smile.data.IndexDataFrame
- select(int[], int) - Static method in interface smile.sort.QuickSelect
-
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
- select(String...) - Method in interface smile.data.DataFrame
-
Returns a new DataFrame with selected columns.
- select(T[], int) - Static method in interface smile.sort.QuickSelect
-
Given k in [0, n-1], returns an array value from arr such that k array values are less than or equal to the one returned.
- Selection - Interface in smile.gap
-
The way to select chromosomes from the population as parents to crossover.
- sensitivity() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
sensitivity
record component. - Sensitivity - Class in smile.validation.metric
-
Sensitivity or true positive rate (TPR) (also called hit rate, recall) is a statistical measures of the performance of a binary classification test.
- Sensitivity() - Constructor for class smile.validation.metric.Sensitivity
- SENT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Sentence-break punctuation .
- sentencePiece(String) - Static method in interface smile.llm.tokenizer.Tokenizer
-
Loads a SentencePiece model.
- SentencePiece - Class in smile.llm.tokenizer
-
SentencePiece is an unsupervised text tokenizer by Google.
- SentencePiece(String) - Constructor for class smile.llm.tokenizer.SentencePiece
-
Constructor.
- SentenceSplitter - Interface in smile.nlp.tokenizer
-
A sentence splitter segments text into sentences (a string of words satisfying the grammatical rules of a language).
- SequenceLabeler<T> - Interface in smile.sequence
-
A sequence labeler assigns a class label to each position of the sequence.
- SequentialBlock - Class in smile.deep.layer
-
A block of sequential layers.
- SequentialBlock() - Constructor for class smile.deep.layer.SequentialBlock
-
Constructor.
- SequentialBlock(String) - Constructor for class smile.deep.layer.SequentialBlock
-
Constructor.
- SequentialBlock(Layer...) - Constructor for class smile.deep.layer.SequentialBlock
-
Constructor.
- set(int, double) - Method in class smile.math.Complex.Array
-
Sets the i-th element with a real value.
- set(int, double) - Method in class smile.math.matrix.SparseMatrix
-
Sets the element at the storage index.
- set(int, double) - Method in class smile.util.DoubleArrayList
-
Replaces the value at the specified position in this list with the specified value.
- set(int, double) - Method in class smile.util.SparseArray
-
Sets or adds an entry.
- set(int, float) - Method in class smile.math.matrix.fp32.SparseMatrix
-
Sets the element at the storage index.
- set(int, int) - Method in class smile.util.IntArrayList
-
Replaces the value at the specified position in this list with the specified value.
- set(int, int, double) - Method in class smile.math.matrix.BandMatrix
- set(int, int, double) - Method in class smile.math.matrix.BigMatrix
- set(int, int, double) - Method in class smile.math.matrix.IMatrix
-
Sets
A[i,j] = x
. - set(int, int, double) - Method in class smile.math.matrix.Matrix
- set(int, int, double) - Method in class smile.math.matrix.SymmMatrix
- set(int, int, double) - Method in class smile.util.Array2D
-
Sets A[i, j].
- set(int, int, float) - Method in class smile.math.matrix.fp32.BandMatrix
- set(int, int, float) - Method in class smile.math.matrix.fp32.IMatrix
-
Sets
A[i,j] = x
. - set(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
- set(int, int, float) - Method in class smile.math.matrix.fp32.SymmMatrix
- set(int, int, int) - Method in class smile.util.IntArray2D
-
Sets A[i, j].
- set(int, Complex) - Method in class smile.math.Complex.Array
-
Sets the i-th element.
- set(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Sets the matrix value.
- set(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Sets the matrix value.
- set(Matrix) - Method in class smile.math.matrix.Matrix
-
Sets the matrix value.
- setAnchor(String) - Method in interface smile.nlp.AnchorText
-
Sets the anchor text.
- setAnchor(String) - Method in class smile.nlp.SimpleText
-
Sets the anchor text.
- setAxisLabel(int, String) - Method in class smile.plot.swing.Canvas
-
Sets the label/legend of an axis.
- setAxisLabels(String...) - Method in class smile.plot.swing.Canvas
-
Sets the labels/legends of axes.
- setBound(double[], double[]) - Method in class smile.plot.swing.Base
-
Sets the axis bounds without applying the extending heuristic.
- setBound(double[], double[]) - Method in class smile.plot.swing.Canvas
-
Extend lower and upper bounds.
- setClipNorm(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the gradient clipping norm.
- setClipValue(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the gradient clipping value.
- setColor(Color) - Method in class smile.plot.swing.Graphics
-
Set the color.
- setDefaultDevice() - Method in class smile.deep.tensor.Device
-
Sets Tensor to be allocated on this device.
- setDefaultOptions(Tensor.Options) - Static method in class smile.deep.tensor.Tensor
-
Sets the default options to create tensors.
- setDescription(String) - Method in class smile.swing.FileChooser.SimpleFileFilter
-
Sets the human-readable description of this filter.
- setEdgeAge(Neuron, int) - Method in class smile.vq.hebb.Neuron
-
Sets the age of edge.
- setFocusBorder(Border) - Method in class smile.swing.table.ButtonCellRenderer
-
The foreground color of the button when the cell has focus
- setFont(Font) - Method in class smile.plot.swing.Graphics
-
Set the font.
- setFrameVisible(boolean) - Method in class smile.plot.swing.Axis
-
Set the visibility of the frame grid lines and their labels.
- setGraphics(Graphics2D, int, int) - Method in class smile.plot.swing.Graphics
-
Set the Java2D graphics object.
- setGridVisible(boolean) - Method in class smile.plot.swing.Axis
-
Set the visibility of the grid lines and their labels.
- setLabel(String) - Method in class smile.plot.swing.Axis
-
Sets the label.
- setLearningRate(double) - Method in class smile.classification.LogisticRegression
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(double) - Method in class smile.classification.Maxent
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(double) - Method in class smile.classification.SparseLogisticRegression
-
Sets the learning rate of stochastic gradient descent.
- setLearningRate(double) - Method in class smile.deep.Optimizer
-
Sets the learning rate.
- setLearningRate(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the learning rate.
- setLearningRateSchedule(TimeFunction) - Method in class smile.deep.Model
-
Sets the learning rate schedule.
- setLegendVisible(boolean) - Method in class smile.plot.swing.Canvas
-
Sets if legends are visible.
- setLocalSearchSteps(int) - Method in class smile.gap.GeneticAlgorithm
-
Sets the number of iterations of local search for Lamarckian algorithm.
- setMargin(double) - Method in class smile.plot.swing.Canvas
-
Sets the size of margin in [0.0, 0.3] on each side.
- setMnemonic(int) - Method in class smile.swing.table.ButtonCellRenderer
-
The mnemonic to activate the button when the cell has focus
- setMomentum(TimeFunction) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the momentum factor.
- setNumThreads(int) - Static method in class smile.deep.tensor.Device
-
Sets the number of threads used for intraop parallelism on CPU.
- setPage(int) - Method in class smile.swing.table.PageTableModel
-
Moves to specific page and fire a data changed (all rows).
- setPageSize(int) - Method in class smile.swing.table.PageTableModel
-
Sets the page size.
- setPaint(Paint) - Method in class smile.plot.swing.Graphics
-
Set the paint object.
- setParameters(Properties) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets MLP hyperparameters such as learning rate, weight decay, momentum, RMSProp, etc.
- setProb(PrZ[]) - Method in class smile.neighbor.lsh.Probe
-
Calculate the probability of the probe.
- setRequireGrad(boolean) - Method in class smile.deep.tensor.Tensor
-
Sets if autograd should record operations on this tensor.
- setRMSProp(double, double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets RMSProp parameters.
- setRotation(double) - Method in class smile.plot.swing.Axis
-
Sets the rotation degree of tick strings.
- setSeed(int) - Method in class smile.math.random.MersenneTwister
-
Sets the seed of random numbers.
- setSeed(int[]) - Method in class smile.math.random.MersenneTwister
-
Sets the seed of random numbers.
- setSeed(long) - Static method in class smile.math.MathEx
-
Initialize the random number generator with a seed.
- setSeed(long) - Method in class smile.math.random.MersenneTwister
- setSeed(long) - Method in class smile.math.random.MersenneTwister64
- setSeed(long) - Method in interface smile.math.random.RandomNumberGenerator
-
Initialize the random generator with a seed.
- setSeed(long) - Method in class smile.math.Random
-
Initialize the random generator with a seed.
- setSeed(long) - Method in class smile.math.random.UniversalGenerator
- setSeed(long[]) - Method in class smile.math.random.MersenneTwister64
-
Sets the seed of random numbers.
- setSelectedFont(Font) - Method in class smile.swing.FontChooser
-
Set the selected font.
- setSelectedFontFamily(String) - Method in class smile.swing.FontChooser
-
Set the family name of the selected font.
- setSelectedFontSize(int) - Method in class smile.swing.FontChooser
-
Set the size of the selected font.
- setSelectedFontStyle(int) - Method in class smile.swing.FontChooser
-
Set the style of the selected font.
- setSize(int, int) - Method in class smile.plot.swing.Projection
-
Sets the size of physical plot area.
- setStroke(Stroke) - Method in class smile.plot.swing.Graphics
-
Set the stroke.
- setTicks(String[], double[]) - Method in class smile.plot.swing.Axis
-
Add a label to the axis at given location.
- setTickVisible(boolean) - Method in class smile.plot.swing.Axis
-
Set the visibility of the axis label.
- setTitle(String) - Method in class smile.plot.swing.Canvas
-
Set the main title of canvas.
- setTitleColor(Color) - Method in class smile.plot.swing.Canvas
-
Set the color for title.
- setTitleFont(Font) - Method in class smile.plot.swing.Canvas
-
Set the font for title.
- setValue(Object) - Method in class smile.swing.table.ByteArrayCellRenderer
- setValue(Object) - Method in class smile.swing.table.DateCellRenderer
- setValue(Object) - Method in class smile.swing.table.DoubleArrayCellRenderer
- setValue(Object) - Method in class smile.swing.table.FloatArrayCellRenderer
- setValue(Object) - Method in class smile.swing.table.FontCellRenderer
- setValue(Object) - Method in class smile.swing.table.IntegerArrayCellRenderer
- setValue(Object) - Method in class smile.swing.table.LongArrayCellRenderer
- setValue(Object) - Method in class smile.swing.table.NumberCellRenderer
- setValue(Object) - Method in class smile.swing.table.ShortArrayCellRenderer
- setWeight(int, int, double) - Method in class smile.graph.AdjacencyList
- setWeight(int, int, double) - Method in class smile.graph.AdjacencyMatrix
- setWeight(int, int, double) - Method in class smile.graph.Graph
-
Sets the weight assigned to a given edge.
- setWeightDecay(double) - Method in class smile.base.mlp.MultilayerPerceptron
-
Sets the weight decay factor.
- SGD(Model, double) - Static method in class smile.deep.Optimizer
-
Returns a stochastic gradient descent optimizer without momentum.
- SGD(Model, double, double, double, double, boolean) - Static method in class smile.deep.Optimizer
-
Returns a stochastic gradient descent optimizer with momentum.
- shap(Stream<T>) - Method in interface smile.feature.importance.SHAP
-
Returns the average of absolute SHAP values over a data set.
- shap(DataFrame) - Method in class smile.base.cart.CART
-
Returns the average of absolute SHAP values over a data frame.
- shap(DataFrame) - Method in class smile.classification.GradientTreeBoost
-
Returns the average of absolute SHAP values over a data frame.
- shap(DataFrame) - Method in interface smile.feature.importance.TreeSHAP
-
Returns the average of absolute SHAP values over a data frame.
- shap(Tuple) - Method in class smile.base.cart.CART
- shap(Tuple) - Method in class smile.classification.GradientTreeBoost
- shap(Tuple) - Method in interface smile.feature.importance.TreeSHAP
- shap(T) - Method in interface smile.feature.importance.SHAP
-
Returns the SHAP values.
- SHAP<T> - Interface in smile.feature.importance
-
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model.
- shape() - Method in class smile.deep.tensor.Tensor
-
Returns the shape of the tensor.
- shape(String) - Method in class smile.plot.vega.Mark
-
Sets the shape of the point marks.
- Shape - Class in smile.plot.swing
-
Abstract rendering object in a PlotCanvas.
- Shape() - Constructor for class smile.plot.swing.Shape
-
Constructor.
- Shape(Color) - Constructor for class smile.plot.swing.Shape
-
Constructor.
- ShellSort - Interface in smile.sort
-
Shell sort is a generalization of insertion sort.
- ShepardInterpolation - Class in smile.interpolation
-
Shepard interpolation is a special case of normalized radial basis function interpolation if the function φ(r) goes to infinity as r → 0, and is finite for
r > 0
. - ShepardInterpolation(double[][], double[]) - Constructor for class smile.interpolation.ShepardInterpolation
-
Constructor.
- ShepardInterpolation(double[][], double[], double) - Constructor for class smile.interpolation.ShepardInterpolation
-
Constructor.
- ShepardInterpolation1D - Class in smile.interpolation
-
Shepard interpolation is a special case of normalized radial basis function interpolation if the function φ(r) goes to infinity as r → 0, and is finite for
r > 0
. - ShepardInterpolation1D(double[], double[]) - Constructor for class smile.interpolation.ShepardInterpolation1D
-
Constructor.
- ShepardInterpolation1D(double[], double[], double) - Constructor for class smile.interpolation.ShepardInterpolation1D
-
Constructor.
- ShepardInterpolation2D - Class in smile.interpolation
-
Shepard interpolation is a special case of normalized radial basis function interpolation if the function φ(r) goes to infinity as r → 0, and is finite for
r > 0
. - ShepardInterpolation2D(double[], double[], double[]) - Constructor for class smile.interpolation.ShepardInterpolation2D
-
Constructor.
- ShepardInterpolation2D(double[], double[], double[], double) - Constructor for class smile.interpolation.ShepardInterpolation2D
-
Constructor.
- shift() - Method in class smile.neighbor.lsh.Probe
-
This operation shifts to the right the last nonzero component if it is equal to one and if it is not the last one.
- ShiftedGeometricDistribution - Class in smile.stat.distribution
-
The "shifted" geometric distribution is a discrete probability distribution of the number of failures before the first success, supported on the set
{0, 1, 2, 3, …}
. - ShiftedGeometricDistribution(double) - Constructor for class smile.stat.distribution.ShiftedGeometricDistribution
-
Constructor.
- Short - Enum constant in enum class smile.data.type.DataType.ID
-
Short type ID.
- shortArray() - Method in class smile.deep.tensor.Tensor
-
Returns the short integer array of tensor elements
- ShortArrayCellRenderer - Class in smile.swing.table
-
Short array renderer in JTable.
- ShortArrayCellRenderer() - Constructor for class smile.swing.table.ShortArrayCellRenderer
-
Constructor.
- ShortArrayType - Static variable in class smile.data.type.DataTypes
-
Short Array data type.
- ShortObjectType - Static variable in class smile.data.type.DataTypes
-
Short Object data type.
- ShortType - Class in smile.data.type
-
Short data type.
- ShortType - Static variable in class smile.data.type.DataTypes
-
Short data type.
- shortValue() - Method in class smile.deep.tensor.Tensor
-
Returns the short value when the tensor holds a single value.
- shortVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- shortVector(int) - Method in class smile.data.IndexDataFrame
- shortVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- shortVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- ShortVector - Interface in smile.data.vector
-
An immutable short vector.
- show() - Method in class smile.plot.swing.Headless
- show() - Method in class smile.plot.vega.VegaLite
-
Displays the plot with the default browser.
- show(boolean) - Method in class smile.plot.vega.VegaLite
-
Displays the plot with the default browser.
- showDialog(Component) - Method in class smile.swing.FontChooser
-
Show font selection dialog.
- SI - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
-
The eigenvalues of smallest imaginary part.
- SI - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
The eigenvalues of smallest imaginary part.
- SIB - Class in smile.clustering
-
The Sequential Information Bottleneck algorithm.
- SIB(double, double[][], int[]) - Constructor for class smile.clustering.SIB
-
Constructor.
- Side - Enum Class in smile.math.blas
-
The flag if the symmetric matrix A appears on the left or right in the matrix-matrix operation.
- siftDown(double[], int, int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is decreased.
- siftDown(float[], int, int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is decreased.
- siftDown(int[], int, int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is decreased.
- siftDown(T[], int, int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is decreased.
- siftUp(double[], int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is increased.
- siftUp(float[], int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is increased.
- siftUp(int[], int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is increased.
- siftUp(T[], int) - Static method in interface smile.sort.Sort
-
To restore the max-heap condition when a node's priority is increased.
- sigma - Variable in class smile.stat.distribution.GaussianDistribution
-
The standard deviation.
- sigma - Variable in class smile.stat.distribution.LogNormalDistribution
-
The standard deviation of normal distribution.
- sigma - Variable in class smile.stat.distribution.MultivariateGaussianDistribution
-
The covariance matrix.
- sigma() - Method in class smile.math.kernel.PearsonKernel
-
Returns Pearson width.
- sigmoid() - Static method in interface smile.base.mlp.ActivationFunction
-
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
- sigmoid(double) - Static method in class smile.math.MathEx
-
Logistic sigmoid function
1 / (1 + exp(-x))
. - sigmoid(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with sigmoid activation function.
- sigmoid(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with sigmoid activation function.
- sigmoid(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with sigmoid activation function.
- Sigmoid - Class in smile.deep.activation
-
Sigmoid activation function.
- Sigmoid(boolean) - Constructor for class smile.deep.activation.Sigmoid
-
Constructor.
- SIGMOID - Enum constant in enum class smile.base.mlp.OutputFunction
-
Logistic sigmoid function: sigmoid(v)=1/(1+exp(-v)).
- sign(String) - Static method in interface smile.data.formula.Terms
-
The
sign(x)
term. - sign(Term) - Static method in interface smile.data.formula.Terms
-
The
sign(x)
term. - SignalNoiseRatio - Record Class in smile.feature.selection
-
The signal-to-noise (S2N) metric ratio is a univariate feature ranking metric, which can be used as a feature selection criterion for binary classification problems.
- SignalNoiseRatio(String, double) - Constructor for record class smile.feature.selection.SignalNoiseRatio
-
Creates an instance of a
SignalNoiseRatio
record class. - significance(double) - Static method in interface smile.stat.Hypothesis
-
Returns the significance code of p-value.
- signum(String) - Static method in interface smile.data.formula.Terms
-
The
signum(x)
term. - signum(Term) - Static method in interface smile.data.formula.Terms
-
The
signum(x)
term. - silu(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with SiLU activation function.
- silu(int, int, double) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with SiLU activation function.
- SiLU - Class in smile.deep.activation
-
Sigmoid Linear Unit activation function.
- SiLU(boolean) - Constructor for class smile.deep.activation.SiLU
-
Constructor.
- SimHash<T> - Interface in smile.hash
-
SimHash is a technique for quickly estimating how similar two sets are.
- SimpleCorpus - Class in smile.nlp
-
An in-memory text corpus.
- SimpleCorpus() - Constructor for class smile.nlp.SimpleCorpus
-
Constructor.
- SimpleCorpus(SentenceSplitter, Tokenizer, StopWords, Punctuations) - Constructor for class smile.nlp.SimpleCorpus
-
Constructor.
- SimpleDictionary - Class in smile.nlp.dictionary
-
A simple implementation of dictionary interface.
- SimpleDictionary(String) - Constructor for class smile.nlp.dictionary.SimpleDictionary
-
Constructor.
- SimpleFileFilter(String, String) - Constructor for class smile.swing.FileChooser.SimpleFileFilter
-
Creates a file filter that accepts the given file type.
- SimpleFileFilter(String, String...) - Constructor for class smile.swing.FileChooser.SimpleFileFilter
-
Creates a file filter from the given string array and description.
- SimpleFileFilter(String, Collection<String>) - Constructor for class smile.swing.FileChooser.SimpleFileFilter
-
Creates a file filter from the given string array and description.
- SimpleImputer - Class in smile.feature.imputation
-
Simple algorithm replaces missing values with the constant value along each column.
- SimpleImputer(Map<String, Object>) - Constructor for class smile.feature.imputation.SimpleImputer
-
Constructor.
- SimpleNormalizer - Class in smile.nlp.normalizer
-
A baseline normalizer for processing Unicode text.
- SimpleParagraphSplitter - Class in smile.nlp.tokenizer
-
This is a simple paragraph splitter.
- SimpleSentenceSplitter - Class in smile.nlp.tokenizer
-
This is a simple sentence splitter for English.
- SimpleText - Class in smile.nlp
-
A list-of-words representation of documents.
- SimpleText(String, String, String, String[]) - Constructor for class smile.nlp.SimpleText
-
Constructor.
- SimpleTokenizer - Class in smile.nlp.tokenizer
-
A word tokenizer that tokenizes English sentences with some differences from TreebankWordTokenizer, notably on handling not-contractions.
- SimpleTokenizer() - Constructor for class smile.nlp.tokenizer.SimpleTokenizer
-
Constructor.
- SimpleTokenizer(boolean) - Constructor for class smile.nlp.tokenizer.SimpleTokenizer
-
Constructor.
- sin() - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor with the sine of the elements of input.
- sin() - Method in class smile.math.Complex
-
Returns the complex sine.
- sin(String) - Static method in interface smile.data.formula.Terms
-
The
sin(x)
term. - sin(Term) - Static method in interface smile.data.formula.Terms
-
The
sin(x)
term. - sin_() - Method in class smile.deep.tensor.Tensor
-
Computes the sine of the elements of input in place.
- SINGLE_LINE - Enum constant in enum class smile.io.JSON.Mode
-
One JSON object per line.
- SINGLE_POINT - Enum constant in enum class smile.gap.Crossover
-
Single point crossover - one crossover point is selected, binary string from beginning of chromosome to the crossover point is copied from one parent, the rest is copied from the second parent.
- SingleLinkage - Class in smile.clustering.linkage
-
Single linkage.
- SingleLinkage(double[][]) - Constructor for class smile.clustering.linkage.SingleLinkage
-
Constructor.
- SingleLinkage(int, float[]) - Constructor for class smile.clustering.linkage.SingleLinkage
-
Constructor.
- sinh(String) - Static method in interface smile.data.formula.Terms
-
The
sinh(x)
term. - sinh(Term) - Static method in interface smile.data.formula.Terms
-
The
sinh(x)
term. - size - Variable in class smile.base.cart.LeafNode
-
The number of samples in the node.
- size - Variable in class smile.clustering.PartitionClustering
-
The number of observations in each cluster.
- size() - Method in class smile.anomaly.IsolationForest
-
Returns the number of trees in the model.
- size() - Method in class smile.association.FPGrowth
-
Returns the number transactions in the database.
- size() - Method in class smile.association.FPTree
-
Returns the number transactions in the database.
- size() - Method in class smile.base.cart.CART
-
Returns the number of nodes in the tree.
- size() - Method in class smile.base.cart.InternalNode
- size() - Method in class smile.base.cart.LeafNode
- size() - Method in interface smile.base.cart.Node
-
Returns the number of samples in the node.
- size() - Method in class smile.classification.AdaBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.classification.RandomForest
-
Returns the number of trees in the model.
- size() - Method in class smile.clustering.linkage.Linkage
-
Returns the proximity matrix size.
- size() - Method in interface smile.data.DataFrame
-
Returns the number of rows.
- size() - Method in interface smile.data.Dataset
-
Returns the number of elements in this collection.
- size() - Method in class smile.data.formula.FactorInteraction
-
Returns the number of factors in the interaction.
- size() - Method in class smile.data.IndexDataFrame
- size() - Method in class smile.data.measure.CategoricalMeasure
-
Returns the number of levels.
- size() - Method in interface smile.data.vector.BaseVector
-
Returns the number of elements in the vector.
- size() - Method in interface smile.deep.Dataset
-
Returns the size of dataset.
- size() - Method in record class smile.graph.NearestNeighborGraph
-
Returns the number of vertices.
- size() - Method in class smile.llm.tokenizer.Tiktoken
-
Returns the vocabulary size.
- size() - Method in class smile.math.matrix.BandMatrix
- size() - Method in class smile.math.matrix.BigMatrix
- size() - Method in class smile.math.matrix.fp32.BandMatrix
- size() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the number of stored matrix elements.
- size() - Method in class smile.math.matrix.fp32.Matrix
- size() - Method in class smile.math.matrix.fp32.SparseMatrix
- size() - Method in class smile.math.matrix.fp32.SymmMatrix
- size() - Method in class smile.math.matrix.IMatrix
-
Returns the number of stored matrix elements.
- size() - Method in class smile.math.matrix.Matrix
- size() - Method in class smile.math.matrix.SparseMatrix
- size() - Method in class smile.math.matrix.SymmMatrix
- size() - Method in interface smile.nlp.Corpus
-
Returns the number of words in the corpus.
- size() - Method in interface smile.nlp.dictionary.Dictionary
-
Returns the number of words in this dictionary.
- size() - Method in enum class smile.nlp.dictionary.EnglishDictionary
- size() - Method in class smile.nlp.dictionary.EnglishPunctuations
- size() - Method in enum class smile.nlp.dictionary.EnglishStopWords
- size() - Method in class smile.nlp.dictionary.SimpleDictionary
- size() - Method in class smile.nlp.SimpleCorpus
- size() - Method in class smile.nlp.SimpleText
- size() - Method in interface smile.nlp.TextTerms
-
Returns the number of words.
- size() - Method in class smile.nlp.Trie
-
Returns the number of entries.
- size() - Method in class smile.regression.GradientTreeBoost
-
Returns the number of trees in the model.
- size() - Method in class smile.regression.RandomForest
-
Returns the number of trees in the model.
- size() - Method in class smile.sort.HeapSelect
-
Returns the number of objects that have been added into heap.
- size() - Method in class smile.stat.distribution.DiscreteMixture
-
Returns the number of components in the mixture.
- size() - Method in class smile.stat.distribution.Mixture
-
Returns the number of components in the mixture.
- size() - Method in class smile.stat.distribution.MultivariateMixture
-
Returns the number of components in the mixture.
- size() - Method in class smile.util.DoubleArrayList
-
Returns the number of values in the list.
- size() - Method in class smile.util.IntArrayList
-
Returns the number of values in the list.
- size() - Method in class smile.util.IntDoubleHashMap
-
Returns the number of key-value mappings in this map.
- size() - Method in class smile.util.IntHashSet
-
Returns the number of elements in this set.
- size() - Method in class smile.util.IntSet
-
Returns the number of values.
- size() - Method in class smile.util.PairingHeap
- size() - Method in class smile.util.SparseArray
-
Returns the number of nonzero entries.
- size() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
size
record component. - size() - Method in record class smile.validation.RegressionMetrics
-
Returns the value of the
size
record component. - size() - Method in class smile.vision.ImageDataset
- size(int) - Method in class smile.deep.tensor.Tensor
-
Returns the size of given dimension.
- size(int) - Method in class smile.plot.vega.Mark
-
Sets the size of the point marks.
- SKY_BLUE - Static variable in interface smile.plot.swing.Palette
- SLATE_BLUE - Static variable in interface smile.plot.swing.Palette
- SLATE_GRAY - Static variable in interface smile.plot.swing.Palette
- slice(double[], int[]) - Static method in class smile.math.MathEx
-
Returns a slice of data for given indices.
- slice(float[], int[]) - Static method in class smile.math.MathEx
-
Returns a slice of data for given indices.
- slice(int[], int[]) - Static method in class smile.math.MathEx
-
Returns a slice of data for given indices.
- slice(int, int) - Method in interface smile.data.DataFrame
-
Copies the specified range into a new data frame.
- slice(int, int) - Method in record class smile.util.Bytes
-
Returns a copy of byte string slice.
- slice(E[], int[]) - Static method in class smile.math.MathEx
-
Returns a slice of data for given indices.
- slice(Integer, Integer) - Static method in class smile.deep.tensor.Index
-
Returns the slice index for [start, end) with step 1.
- slice(Integer, Integer, Integer) - Static method in class smile.deep.tensor.Index
-
Returns the slice index for [start, end) with the given step.
- slice(Long, Long) - Static method in class smile.deep.tensor.Index
-
Returns the slice index for [start, end) with step 1.
- slice(Long, Long, Long) - Static method in class smile.deep.tensor.Index
-
Returns the slice index for [start, end) with the given step.
- slices() - Method in class smile.plot.swing.Axis
-
Returns the number of slices in linear scale.
- SM - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
-
The eigenvalues smallest in magnitude.
- SM - Enum constant in enum class smile.math.matrix.ARPACK.SymmOption
-
The eigenvalues smallest in magnitude.
- SM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
The eigenvalues smallest in magnitude.
- SM - Enum constant in enum class smile.math.matrix.fp32.ARPACK.SymmOption
-
The eigenvalues smallest in magnitude.
- smile.anomaly - package smile.anomaly
-
Anomaly detection is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data.
- smile.association - package smile.association
-
Frequent item set mining and association rule mining.
- smile.base.cart - package smile.base.cart
-
Classification and regression tree base package.
- smile.base.mlp - package smile.base.mlp
-
Multilayer perceptron neural network base package.
- smile.base.rbf - package smile.base.rbf
-
RBF network base package.
- smile.base.svm - package smile.base.svm
-
Support vector machine base package.
- smile.classification - package smile.classification
-
Classification algorithms.
- smile.clustering - package smile.clustering
-
Clustering analysis.
- smile.clustering.linkage - package smile.clustering.linkage
-
Cluster dissimilarity measures.
- smile.data - package smile.data
-
Data and attribute encapsulation classes.
- smile.data.formula - package smile.data.formula
-
The formula interface symbolically specifies the predictors and the response.
- smile.data.measure - package smile.data.measure
-
Level of measurement or scale of measure.
- smile.data.transform - package smile.data.transform
-
Data transformations.
- smile.data.type - package smile.data.type
-
Data types.
- smile.data.vector - package smile.data.vector
-
Immutable named vectors.
- smile.deep - package smile.deep
-
Deep learning.
- smile.deep.activation - package smile.deep.activation
-
Activation functions.
- smile.deep.layer - package smile.deep.layer
-
Neural network layers.
- smile.deep.metric - package smile.deep.metric
-
Model validation metrics.
- smile.deep.tensor - package smile.deep.tensor
-
A tensor is a multidimensional array.
- smile.feature.extraction - package smile.feature.extraction
-
Feature extraction.
- smile.feature.importance - package smile.feature.importance
-
Feature importance.
- smile.feature.imputation - package smile.feature.imputation
-
Missing value imputation.
- smile.feature.selection - package smile.feature.selection
-
Feature selection.
- smile.feature.transform - package smile.feature.transform
-
Feature transformations.
- smile.gap - package smile.gap
-
Genetic algorithm and programming.
- smile.glm - package smile.glm
-
Generalized linear models.
- smile.glm.model - package smile.glm.model
-
The error distribution models.
- smile.graph - package smile.graph
-
Graphs are mathematical structures used to model pairwise relations between objects from a certain collection.
- smile.hash - package smile.hash
-
Hashing functions.
- smile.hpo - package smile.hpo
-
Hyperparameter optimization.
- smile.ica - package smile.ica
-
Independent Component Analysis (ICA).
- smile.interpolation - package smile.interpolation
-
Interpolation is the process of constructing a function that takes on specified values at specified points.
- smile.interpolation.variogram - package smile.interpolation.variogram
-
Variogram functions.
- smile.io - package smile.io
-
Interfaces to read/write a Dataset.
- smile.llm - package smile.llm
-
Large language models.
- smile.llm.llama - package smile.llm.llama
-
Meta Llama models.
- smile.llm.tokenizer - package smile.llm.tokenizer
-
LLM Tokenization.
- smile.manifold - package smile.manifold
-
Manifold learning finds a low-dimensional basis for describing high-dimensional data.
- smile.math - package smile.math
-
Basic mathematical functions, complex, differentiable function interfaces, random number generators, unconstrained optimization, and raw data type (int and double) array lists, etc.
- smile.math.blas - package smile.math.blas
-
BLAS and LAPACK interfaces.
- smile.math.blas.openblas - package smile.math.blas.openblas
-
OpenBLAS library.
- smile.math.distance - package smile.math.distance
-
Distance and metric measures.
- smile.math.kernel - package smile.math.kernel
-
Mercer kernels.
- smile.math.matrix - package smile.math.matrix
-
Matrix interface, dense and sparse (band or irregular) matrix encapsulation classes, LU, QR, Cholesky, SVD and eigen decompositions, etc.
- smile.math.matrix.fp32 - package smile.math.matrix.fp32
-
Single-precision (32-bit) matrix.
- smile.math.random - package smile.math.random
-
High quality random number generators as a replacement of the standard Random class of Java system.
- smile.math.rbf - package smile.math.rbf
-
Radial basis functions.
- smile.math.special - package smile.math.special
-
Special mathematical functions including beta, erf, and gamma.
- smile.neighbor - package smile.neighbor
-
Nearest neighbor search.
- smile.neighbor.lsh - package smile.neighbor.lsh
-
LSH internal classes.
- smile.nlp - package smile.nlp
-
Natural language processing.
- smile.nlp.collocation - package smile.nlp.collocation
-
Collocation finding algorithms.
- smile.nlp.dictionary - package smile.nlp.dictionary
-
Common dictionaries such as stop words, punctuation, common English words, etc.
- smile.nlp.embedding - package smile.nlp.embedding
-
Word embedding.
- smile.nlp.keyword - package smile.nlp.keyword
-
Keyword extraction.
- smile.nlp.normalizer - package smile.nlp.normalizer
-
Text normalization.
- smile.nlp.pos - package smile.nlp.pos
-
Part-of-speech taggers.
- smile.nlp.relevance - package smile.nlp.relevance
-
Term-document relevance ranking algorithms.
- smile.nlp.stemmer - package smile.nlp.stemmer
-
English word stemmer algorithms.
- smile.nlp.tokenizer - package smile.nlp.tokenizer
-
Sentence splitter and word tokenizer.
- smile.plot.swing - package smile.plot.swing
-
Mathematical and statistical plots.
- smile.plot.vega - package smile.plot.vega
-
Declarative data visualization.
- smile.regression - package smile.regression
-
Regression analysis.
- smile.sequence - package smile.sequence
-
Learning algorithms for sequence data.
- smile.sort - package smile.sort
-
Sorting algorithms.
- smile.stat - package smile.stat
-
Probability distributions and statistical hypothesis tests.
- smile.stat.distribution - package smile.stat.distribution
-
Probability distributions.
- smile.stat.hypothesis - package smile.stat.hypothesis
-
Statistical hypothesis tests.
- smile.swing - package smile.swing
-
Enhanced and additional Swing components (FileChooser, FontChooser, Table, Button, AlphaIcon, and Printer).
- smile.swing.table - package smile.swing.table
-
Enhancement to Swing JTable and cell components.
- smile.swing.text - package smile.swing.text
- smile.taxonomy - package smile.taxonomy
-
A taxonomy is a tree of terms (concepts) where leaves must be named but intermediary nodes can be anonymous.
- smile.timeseries - package smile.timeseries
-
Time series analysis.
- smile.util - package smile.util
-
Utility functions.
- smile.validation - package smile.validation
-
Model validation and selection.
- smile.validation.metric - package smile.validation.metric
-
Model validation metrics.
- smile.vision - package smile.vision
-
Computer vision models.
- smile.vision.layer - package smile.vision.layer
-
Neural network layers for computer vision tasks.
- smile.vision.transform - package smile.vision.transform
-
Image transformations.
- smile.vq - package smile.vq
-
Vector quantization is a lossy compression technique used in speech and image coding.
- smile.vq.hebb - package smile.vq.hebb
-
Hebbian theory is a neuroscientific theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell.
- smile.wavelet - package smile.wavelet
-
Discrete wavelet transform (DWT).
- smoothness() - Method in class smile.math.kernel.Matern
-
Returns the smoothness of kernel.
- SNLSH<K,
V> - Class in smile.neighbor -
Locality-Sensitive Hashing for Signatures.
- SNLSH(int, SimHash<K>) - Constructor for class smile.neighbor.SNLSH
-
Constructor.
- soft() - Method in class smile.classification.AdaBoost
- soft() - Method in interface smile.classification.Classifier
-
Returns true if this is a soft classifier that can estimate the posteriori probabilities of classification.
- soft() - Method in class smile.classification.DecisionTree
- soft() - Method in class smile.classification.DiscreteNaiveBayes
- soft() - Method in class smile.classification.GradientTreeBoost
- soft() - Method in class smile.classification.KNN
- soft() - Method in class smile.classification.LDA
- soft() - Method in class smile.classification.LogisticRegression
- soft() - Method in class smile.classification.Maxent
- soft() - Method in class smile.classification.MLP
- soft() - Method in class smile.classification.NaiveBayes
- soft() - Method in class smile.classification.OneVersusOne
- soft() - Method in class smile.classification.OneVersusRest
- soft() - Method in class smile.classification.QDA
- soft() - Method in class smile.classification.RandomForest
- soft() - Method in class smile.classification.SparseLogisticRegression
- softmax(double[]) - Static method in class smile.math.MathEx
-
The softmax function without overflow.
- softmax(double[], int) - Static method in class smile.math.MathEx
-
The softmax function without overflow.
- softmax(int) - Method in class smile.deep.tensor.Tensor
-
Rescales a tensor so that the elements lie in the range [0,1] and sum to 1.
- softmax(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with softmax activation function.
- Softmax - Class in smile.deep.activation
-
Softmax activation function.
- Softmax() - Constructor for class smile.deep.activation.Softmax
-
Constructor.
- SOFTMAX - Enum constant in enum class smile.base.mlp.OutputFunction
-
Softmax for multi-class cross entropy objection function.
- softShrink(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with soft shrink activation function.
- SoftShrink - Class in smile.deep.activation
-
Soft Shrink activation function.
- SoftShrink() - Constructor for class smile.deep.activation.SoftShrink
-
Constructor.
- SoftShrink(double) - Constructor for class smile.deep.activation.SoftShrink
-
Constructor.
- SOLID - Enum constant in enum class smile.plot.swing.Line.Style
- solve(double[]) - Method in class smile.math.matrix.BandMatrix.Cholesky
-
Solves the linear system
A * x = b
. - solve(double[]) - Method in class smile.math.matrix.BandMatrix.LU
-
Solve
A * x = b
. - solve(double[]) - Method in class smile.math.matrix.BigMatrix.Cholesky
-
Solves the linear system A * x = b.
- solve(double[]) - Method in class smile.math.matrix.BigMatrix.LU
-
Solve A * x = b.
- solve(double[]) - Method in class smile.math.matrix.BigMatrix.QR
-
Solves the least squares min || B - A*X ||.
- solve(double[]) - Method in class smile.math.matrix.BigMatrix.SVD
-
Solves the least squares min || B - A*X ||.
- solve(double[]) - Method in class smile.math.matrix.Matrix.Cholesky
-
Solves the linear system A * x = b.
- solve(double[]) - Method in class smile.math.matrix.Matrix.LU
-
Solve A * x = b.
- solve(double[]) - Method in class smile.math.matrix.Matrix.QR
-
Solves the least squares min || B - A*X ||.
- solve(double[]) - Method in class smile.math.matrix.Matrix.SVD
-
Solves the least squares min || B - A*X ||.
- solve(double[]) - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
-
Solve A * x = b.
- solve(double[]) - Method in class smile.math.matrix.SymmMatrix.Cholesky
-
Solves the linear system A * x = b.
- solve(double[], double[]) - Method in class smile.math.matrix.IMatrix
-
Solves A * x = b by iterative biconjugate gradient method with Jacobi preconditioner matrix.
- solve(double[], double[], double[], double[]) - Static method in class smile.math.MathEx
-
Solve the tridiagonal linear set which is of diagonal dominance |bi|
>
|ai| + |ci|. - solve(double[], double[], IMatrix.Preconditioner, double, int, int) - Method in class smile.math.matrix.IMatrix
-
Solves A * x = b by iterative biconjugate gradient method.
- solve(float[]) - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
-
Solves the linear system
A * x = b
. - solve(float[]) - Method in class smile.math.matrix.fp32.BandMatrix.LU
-
Solve
A * x = b
. - solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.Cholesky
-
Solves the linear system A * x = b.
- solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.LU
-
Solve A * x = b.
- solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.QR
-
Solves the least squares min || B - A*X ||.
- solve(float[]) - Method in class smile.math.matrix.fp32.Matrix.SVD
-
Solves the least squares min || B - A*X ||.
- solve(float[]) - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
Solve A * x = b.
- solve(float[]) - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
-
Solves the linear system A * x = b.
- solve(float[], float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Solves A * x = b by iterative biconjugate gradient method with Jacobi preconditioner matrix.
- solve(float[], float[], IMatrix.Preconditioner, float, int, int) - Method in class smile.math.matrix.fp32.IMatrix
-
Solves A * x = b by iterative biconjugate gradient method.
- solve(BigMatrix) - Method in class smile.math.matrix.BigMatrix.Cholesky
-
Solves the linear system A * X = B.
- solve(BigMatrix) - Method in class smile.math.matrix.BigMatrix.LU
-
Solve A * X = B.
- solve(BigMatrix) - Method in class smile.math.matrix.BigMatrix.QR
-
Solves the least squares min || B - A*X ||.
- solve(Matrix) - Method in class smile.math.matrix.fp32.BandMatrix.Cholesky
-
Solves the linear system
A * X = B
. - solve(Matrix) - Method in class smile.math.matrix.fp32.BandMatrix.LU
-
Solve
A * X = B
. - solve(Matrix) - Method in class smile.math.matrix.fp32.Matrix.Cholesky
-
Solves the linear system A * X = B.
- solve(Matrix) - Method in class smile.math.matrix.fp32.Matrix.LU
-
Solve A * X = B.
- solve(Matrix) - Method in class smile.math.matrix.fp32.Matrix.QR
-
Solves the least squares min || B - A*X ||.
- solve(Matrix) - Method in class smile.math.matrix.fp32.SymmMatrix.BunchKaufman
-
Solve A * X = B.
- solve(Matrix) - Method in class smile.math.matrix.fp32.SymmMatrix.Cholesky
-
Solves the linear system A * X = B.
- solve(Matrix) - Method in class smile.math.matrix.BandMatrix.Cholesky
-
Solves the linear system
A * X = B
. - solve(Matrix) - Method in class smile.math.matrix.BandMatrix.LU
-
Solve
A * X = B
. - solve(Matrix) - Method in class smile.math.matrix.Matrix.Cholesky
-
Solves the linear system A * X = B.
- solve(Matrix) - Method in class smile.math.matrix.Matrix.LU
-
Solve A * X = B.
- solve(Matrix) - Method in class smile.math.matrix.Matrix.QR
-
Solves the least squares min || B - A*X ||.
- solve(Matrix) - Method in class smile.math.matrix.SymmMatrix.BunchKaufman
-
Solve A * X = B.
- solve(Matrix) - Method in class smile.math.matrix.SymmMatrix.Cholesky
-
Solves the linear system A * X = B.
- SOM - Class in smile.vq
-
Self-Organizing Map.
- SOM(double[][][], TimeFunction, Neighborhood) - Constructor for class smile.vq.SOM
-
Constructor.
- sort() - Method in class smile.math.matrix.BigMatrix.EVD
-
Sorts the eigenvalues in descending order and reorders the corresponding eigenvectors.
- sort() - Method in class smile.math.matrix.fp32.Matrix.EVD
-
Sorts the eigenvalues in descending order and reorders the corresponding eigenvectors.
- sort() - Method in class smile.math.matrix.Matrix.EVD
-
Sorts the eigenvalues in descending order and reorders the corresponding eigenvectors.
- sort() - Method in class smile.sort.DoubleHeapSelect
-
Sort the smallest values.
- sort() - Method in class smile.sort.FloatHeapSelect
-
Sort the smallest values.
- sort() - Method in class smile.sort.HeapSelect
-
Sort the smallest values.
- sort() - Method in class smile.sort.IntHeapSelect
-
Sort the smallest values.
- sort() - Method in class smile.util.SparseArray
-
Sorts the array elements such that the indices are in ascending order.
- sort(double[]) - Static method in interface smile.sort.HeapSort
-
Sorts the specified array into ascending numerical order.
- sort(double[]) - Static method in class smile.sort.QuickSort
-
Sorts the specified array into ascending numerical order.
- sort(double[]) - Static method in interface smile.sort.ShellSort
-
Sorts the specified array into ascending numerical order.
- sort(double[][]) - Static method in class smile.math.MathEx
-
Sorts each variable and returns the index of values in ascending order.
- sort(double[], double[]) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(double[], double[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(double[], int[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(double[], int[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(double[], Object[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(double[], Object[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(float[]) - Static method in interface smile.sort.HeapSort
-
Sorts the specified array into ascending numerical order.
- sort(float[]) - Static method in class smile.sort.QuickSort
-
Sorts the specified array into ascending numerical order.
- sort(float[]) - Static method in interface smile.sort.ShellSort
-
Sorts the specified array into ascending numerical order.
- sort(float[], float[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(float[], float[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(float[], int[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(float[], int[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(float[], Object[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(float[], Object[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(int[]) - Static method in interface smile.sort.HeapSort
-
Sorts the specified array into ascending numerical order.
- sort(int[]) - Static method in class smile.sort.QuickSort
-
Sorts the specified array into ascending numerical order.
- sort(int[]) - Static method in interface smile.sort.ShellSort
-
Sorts the specified array into ascending numerical order.
- sort(int[], double[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(int[], double[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(int[], int[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array, the array b will be also rearranged as the same order of array.
- sort(int[], int[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(int[], Object[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(int[], Object[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(String) - Method in class smile.plot.vega.Field
-
Sets the sorting property.
- sort(String...) - Method in class smile.plot.vega.StackTransform
-
Sets the fields for sorting data objects within a window.
- sort(String...) - Method in class smile.plot.vega.WindowTransform
-
Sets the fields for sorting data objects within a window.
- sort(SortField...) - Method in class smile.plot.vega.StackTransform
-
Sets the fields for sorting data objects within a window.
- sort(SortField...) - Method in class smile.plot.vega.WindowTransform
-
Sets the fields for sorting data objects within a window.
- sort(T[]) - Static method in interface smile.sort.HeapSort
-
Sorts the specified array into ascending order.
- sort(T[]) - Static method in class smile.sort.QuickSort
-
Sorts the specified array into ascending order.
- sort(T[]) - Static method in interface smile.sort.ShellSort
-
Sorts the specified array into ascending order.
- sort(T[], int[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(T[], int[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(T[], int[], int, Comparator<T>) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- sort(T[], Object[]) - Static method in class smile.sort.QuickSort
-
Besides sorting the array x, the array y will be also rearranged as the same order of x.
- sort(T[], Object[], int) - Static method in class smile.sort.QuickSort
-
This is an efficient implementation Quick Sort algorithm without recursive.
- Sort - Interface in smile.sort
-
Sort algorithm trait that includes useful static functions such as swap and swift up/down used in many sorting algorithms.
- SortField - Record Class in smile.plot.vega
-
A sort field definition for sorting data objects within a window.
- SortField(String, String) - Constructor for record class smile.plot.vega.SortField
-
Creates an instance of a
SortField
record class. - spacing(double) - Method in class smile.plot.vega.FacetField
-
Sets the spacing in pixels between facet's sub-views.
- spacing(double) - Method in class smile.plot.vega.Field
-
For facet, row and column channels, sets the spacing in pixels between facet's sub-views.
- spacing(int) - Method in class smile.plot.vega.Concat
- spacing(int) - Method in class smile.plot.vega.Facet
- spacing(int) - Method in class smile.plot.vega.FacetField
-
For the facet channel, sets the number of columns to include in the view composition layout.
- spacing(int) - Method in class smile.plot.vega.Repeat
- spacing(int) - Method in interface smile.plot.vega.ViewLayoutComposition
-
Sets the spacing in pixels between sub-views of the composition operator.
- spacing(int, int) - Method in class smile.plot.vega.Concat
- spacing(int, int) - Method in class smile.plot.vega.Facet
- spacing(int, int) - Method in class smile.plot.vega.Repeat
- spacing(int, int) - Method in interface smile.plot.vega.ViewLayoutComposition
-
Sets different spacing values for rows and columns.
- sparse(int, int, String...) - Static method in class smile.feature.extraction.RandomProjection
-
Generates a sparse random projection.
- sparse(int, KernelMachine<SparseArray>) - Static method in class smile.base.svm.LinearKernelMachine
-
Creates a linear kernel machine.
- sparse(String) - Static method in interface smile.math.kernel.MercerKernel
-
Returns a sparse kernel function.
- SparseArray - Class in smile.util
-
Sparse array of double values.
- SparseArray() - Constructor for class smile.util.SparseArray
-
Constructor.
- SparseArray(int) - Constructor for class smile.util.SparseArray
-
Constructor.
- SparseArray(Collection<SparseArray.Entry>) - Constructor for class smile.util.SparseArray
-
Constructor.
- SparseArray(Stream<SparseArray.Entry>) - Constructor for class smile.util.SparseArray
-
Constructor.
- SparseArray.Entry - Record Class in smile.util
-
The entry in a sparse array of double values.
- SparseBSC - Enum constant in enum class smile.deep.tensor.Layout
-
Sparse tensor in BSC format.
- SparseBSR - Enum constant in enum class smile.deep.tensor.Layout
-
Sparse tensor in BSR format.
- SparseChebyshevDistance - Class in smile.math.distance
-
Chebyshev distance (or Tchebychev distance), or L∞ metric is a metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension.
- SparseChebyshevDistance() - Constructor for class smile.math.distance.SparseChebyshevDistance
-
Constructor.
- SparseCOO - Enum constant in enum class smile.deep.tensor.Layout
-
Sparse tensor in COO format.
- SparseCSC - Enum constant in enum class smile.deep.tensor.Layout
-
Sparse tensor in CSC format.
- SparseCSR - Enum constant in enum class smile.deep.tensor.Layout
-
Sparse tensor in CSR format.
- SparseDataset<T> - Interface in smile.data
-
List of Lists sparse matrix format.
- SparseEncoder - Class in smile.feature.extraction
-
Encodes numeric and categorical features into sparse array with on-hot encoding of categorical variables.
- SparseEncoder(StructType, String...) - Constructor for class smile.feature.extraction.SparseEncoder
-
Constructor.
- SparseEuclideanDistance - Class in smile.math.distance
-
Euclidean distance on sparse arrays.
- SparseEuclideanDistance() - Constructor for class smile.math.distance.SparseEuclideanDistance
-
Constructor.
- SparseEuclideanDistance(double[]) - Constructor for class smile.math.distance.SparseEuclideanDistance
-
Constructor with a given weight vector.
- SparseGaussianKernel - Class in smile.math.kernel
-
Gaussian kernel, also referred as RBF kernel or squared exponential kernel.
- SparseGaussianKernel(double) - Constructor for class smile.math.kernel.SparseGaussianKernel
-
Constructor.
- SparseGaussianKernel(double, double, double) - Constructor for class smile.math.kernel.SparseGaussianKernel
-
Constructor.
- SparseHyperbolicTangentKernel - Class in smile.math.kernel
-
The hyperbolic tangent kernel on sparse data.
- SparseHyperbolicTangentKernel() - Constructor for class smile.math.kernel.SparseHyperbolicTangentKernel
-
Constructor with scale 1.0 and offset 0.0.
- SparseHyperbolicTangentKernel(double, double) - Constructor for class smile.math.kernel.SparseHyperbolicTangentKernel
-
Constructor.
- SparseHyperbolicTangentKernel(double, double, double[], double[]) - Constructor for class smile.math.kernel.SparseHyperbolicTangentKernel
-
Constructor.
- SparseLaplacianKernel - Class in smile.math.kernel
-
Laplacian kernel, also referred as exponential kernel.
- SparseLaplacianKernel(double) - Constructor for class smile.math.kernel.SparseLaplacianKernel
-
Constructor.
- SparseLaplacianKernel(double, double, double) - Constructor for class smile.math.kernel.SparseLaplacianKernel
-
Constructor.
- SparseLinearKernel - Class in smile.math.kernel
-
The linear dot product kernel on sparse arrays.
- SparseLinearKernel() - Constructor for class smile.math.kernel.SparseLinearKernel
-
Constructor.
- SparseLogisticRegression - Class in smile.classification
-
Logistic regression on sparse data.
- SparseLogisticRegression(int, double, double, IntSet) - Constructor for class smile.classification.SparseLogisticRegression
-
Constructor.
- SparseLogisticRegression.Binomial - Class in smile.classification
-
Binomial logistic regression.
- SparseLogisticRegression.Multinomial - Class in smile.classification
-
Multinomial logistic regression.
- SparseManhattanDistance - Class in smile.math.distance
-
Manhattan distance, also known as L1 distance or L1 norm, is the sum of the (absolute) differences of their coordinates.
- SparseManhattanDistance() - Constructor for class smile.math.distance.SparseManhattanDistance
-
Constructor.
- SparseManhattanDistance(double[]) - Constructor for class smile.math.distance.SparseManhattanDistance
-
Constructor.
- SparseMaternKernel - Class in smile.math.kernel
-
The class of Matérn kernels is a generalization of the Gaussian/RBF.
- SparseMaternKernel(double, double) - Constructor for class smile.math.kernel.SparseMaternKernel
-
Constructor.
- SparseMaternKernel(double, double, double, double) - Constructor for class smile.math.kernel.SparseMaternKernel
-
Constructor.
- SparseMatrix - Class in smile.math.matrix.fp32
-
A sparse matrix is a matrix populated primarily with zeros.
- SparseMatrix - Class in smile.math.matrix
-
A sparse matrix is a matrix populated primarily with zeros.
- SparseMatrix(double[][]) - Constructor for class smile.math.matrix.SparseMatrix
-
Constructor.
- SparseMatrix(double[][], double) - Constructor for class smile.math.matrix.SparseMatrix
-
Constructor.
- SparseMatrix(float[][]) - Constructor for class smile.math.matrix.fp32.SparseMatrix
-
Constructor.
- SparseMatrix(float[][], float) - Constructor for class smile.math.matrix.fp32.SparseMatrix
-
Constructor.
- SparseMatrix(int, int, double[], int[], int[]) - Constructor for class smile.math.matrix.SparseMatrix
-
Constructor.
- SparseMatrix(int, int, float[], int[], int[]) - Constructor for class smile.math.matrix.fp32.SparseMatrix
-
Constructor.
- SparseMatrix.Entry - Class in smile.math.matrix.fp32
-
Encapsulates an entry in a matrix for use in streaming.
- SparseMatrix.Entry - Class in smile.math.matrix
-
Encapsulates an entry in a matrix for use in streaming.
- SparseMatrixPlot - Class in smile.plot.swing
-
A graphical representation of sparse matrix data.
- SparseMatrixPlot(SparseMatrix, Color) - Constructor for class smile.plot.swing.SparseMatrixPlot
-
Constructor.
- SparseMatrixPlot(SparseMatrix, Color[]) - Constructor for class smile.plot.swing.SparseMatrixPlot
-
Constructor.
- SparseMinkowskiDistance - Class in smile.math.distance
-
Minkowski distance of order p or Lp-norm, is a generalization of Euclidean distance that is actually L2-norm.
- SparseMinkowskiDistance(int) - Constructor for class smile.math.distance.SparseMinkowskiDistance
-
Constructor.
- SparseMinkowskiDistance(int, double[]) - Constructor for class smile.math.distance.SparseMinkowskiDistance
-
Constructor.
- SparsePolynomialKernel - Class in smile.math.kernel
-
The polynomial kernel on sparse data.
- SparsePolynomialKernel(int) - Constructor for class smile.math.kernel.SparsePolynomialKernel
-
Constructor with scale 1 and offset 0.
- SparsePolynomialKernel(int, double, double) - Constructor for class smile.math.kernel.SparsePolynomialKernel
-
Constructor.
- SparsePolynomialKernel(int, double, double, double[], double[]) - Constructor for class smile.math.kernel.SparsePolynomialKernel
-
Constructor.
- SparseThinPlateSplineKernel - Class in smile.math.kernel
-
The Thin Plate Spline kernel on sparse data.
- SparseThinPlateSplineKernel(double) - Constructor for class smile.math.kernel.SparseThinPlateSplineKernel
-
Constructor.
- SparseThinPlateSplineKernel(double, double, double) - Constructor for class smile.math.kernel.SparseThinPlateSplineKernel
-
Constructor.
- spearman(double[], double[]) - Static method in class smile.math.MathEx
-
The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (i.e.
- spearman(double[], double[]) - Static method in record class smile.stat.hypothesis.CorTest
-
Spearman rank correlation coefficient test.
- spearman(float[], float[]) - Static method in class smile.math.MathEx
-
The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (i.e.
- spearman(int[], int[]) - Static method in class smile.math.MathEx
-
The Spearman Rank Correlation Coefficient is a form of the Pearson coefficient with the data converted to rankings (i.e.
- spec() - Method in class smile.plot.vega.VegaLite
-
Returns the Vega-Lite specification.
- spec() - Method in interface smile.plot.vega.ViewComposition
-
Returns the top level Vega-Lite specification.
- specialToken(String) - Method in class smile.llm.tokenizer.Tiktoken
-
Returns the special token id.
- specialTokens - Variable in class smile.llm.tokenizer.Tiktoken
-
Special Token -> Rank
- specificity() - Method in record class smile.validation.ClassificationMetrics
-
Returns the value of the
specificity
record component. - Specificity - Class in smile.validation.metric
-
Specificity (SPC) or True Negative Rate is a statistical measures of the performance of a binary classification test.
- Specificity() - Constructor for class smile.validation.metric.Specificity
- SpectralClustering - Class in smile.clustering
-
Spectral Clustering.
- SpectralClustering(double, int, int[]) - Constructor for class smile.clustering.SpectralClustering
-
Constructor.
- SphericalVariogram - Class in smile.interpolation.variogram
-
Spherical variogram.
- SphericalVariogram(double, double) - Constructor for class smile.interpolation.variogram.SphericalVariogram
-
Constructor.
- SphericalVariogram(double, double, double) - Constructor for class smile.interpolation.variogram.SphericalVariogram
-
Constructor.
- split(String) - Method in class smile.nlp.tokenizer.BreakIteratorSentenceSplitter
- split(String) - Method in class smile.nlp.tokenizer.BreakIteratorTokenizer
- split(String) - Method in interface smile.nlp.tokenizer.ParagraphSplitter
-
Splits the text into paragraphs.
- split(String) - Method in class smile.nlp.tokenizer.PennTreebankTokenizer
- split(String) - Method in interface smile.nlp.tokenizer.SentenceSplitter
-
Splits the text into sentences.
- split(String) - Method in class smile.nlp.tokenizer.SimpleParagraphSplitter
- split(String) - Method in class smile.nlp.tokenizer.SimpleSentenceSplitter
- split(String) - Method in class smile.nlp.tokenizer.SimpleTokenizer
- split(String) - Method in interface smile.nlp.tokenizer.Tokenizer
-
Splits the string into a list of tokens.
- split(Split, PriorityQueue<Split>) - Method in class smile.base.cart.CART
-
Split a node into two children nodes.
- Split - Class in smile.base.cart
-
The data about of a potential split for a leaf node.
- Split(LeafNode, int, double, int, int, int, int) - Constructor for class smile.base.cart.Split
-
Constructor.
- SplitRule - Enum Class in smile.base.cart
-
The criterion to choose variable to split instances.
- splom(DataFrame, char, Color) - Static method in class smile.plot.swing.PlotGrid
-
Scatterplot Matrix (SPLOM).
- splom(DataFrame, char, String) - Static method in class smile.plot.swing.PlotGrid
-
Scatterplot Matrix (SPLOM).
- spmv(Layout, UPLO, int, double, double[], double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric packed matrix.
- spmv(Layout, UPLO, int, double, double[], double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- spmv(Layout, UPLO, int, double, DoubleBuffer, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric packed matrix.
- spmv(Layout, UPLO, int, double, DoubleBuffer, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- spmv(Layout, UPLO, int, float, float[], float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric packed matrix.
- spmv(Layout, UPLO, int, float, float[], float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- spmv(Layout, UPLO, int, float, FloatBuffer, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric packed matrix.
- spmv(Layout, UPLO, int, float, FloatBuffer, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- spr(Layout, UPLO, int, double, double[], int, double[]) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric packed matrix.
- spr(Layout, UPLO, int, double, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- spr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric packed matrix.
- spr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- spr(Layout, UPLO, int, float, float[], int, float[]) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric packed matrix.
- spr(Layout, UPLO, int, float, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- spr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric packed matrix.
- spr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- spsv(Layout, UPLO, int, int, double[], int[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- spsv(Layout, UPLO, int, int, double[], int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- spsv(Layout, UPLO, int, int, float[], int[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- spsv(Layout, UPLO, int, int, float[], int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- spsv(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- spsv(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- spsv(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- spsv(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrf(Layout, UPLO, int, double[], int[]) - Method in interface smile.math.blas.LAPACK
-
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
- sptrf(Layout, UPLO, int, double[], int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrf(Layout, UPLO, int, float[], int[]) - Method in interface smile.math.blas.LAPACK
-
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
- sptrf(Layout, UPLO, int, float[], int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrf(Layout, UPLO, int, DoubleBuffer, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
- sptrf(Layout, UPLO, int, DoubleBuffer, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrf(Layout, UPLO, int, FloatBuffer, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the Bunch–Kaufman factorization of a symmetric packed matrix A.
- sptrf(Layout, UPLO, int, FloatBuffer, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrs(Layout, UPLO, int, int, double[], int[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- sptrs(Layout, UPLO, int, int, double[], int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrs(Layout, UPLO, int, int, float[], int[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- sptrs(Layout, UPLO, int, int, float[], int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrs(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- sptrs(Layout, UPLO, int, int, DoubleBuffer, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- sptrs(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a system of linear equations
- sptrs(Layout, UPLO, int, int, FloatBuffer, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- SQL - Class in smile.data
-
An in-process SQL database management interface.
- SQL() - Constructor for class smile.data.SQL
-
Constructor of in-memory database.
- SQL(String) - Constructor for class smile.data.SQL
-
Constructor to open or create a persistent database.
- sqrt(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (sqrt(H(y1) * H(y2)) - E(MI)).
- sqrt(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of I(y1, y2) / sqrt(H(y1) * H(y2)).
- sqrt(String) - Static method in interface smile.data.formula.Terms
-
The
sqrt(x)
term. - sqrt(Term) - Static method in interface smile.data.formula.Terms
-
The
sqrt(x)
term. - SQRT - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
I(y1, y2) / sqrt(H(y1) * H(y2))
- SQRT - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
I(y1, y2) / sqrt(H(y1) * H(y2))
- SQRT - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with sqrt normalization.
- SQRT - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with sqrt normalization.
- square() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the square matrix of
A' * A
orA * A'
, whichever is smaller. - square() - Method in class smile.math.matrix.IMatrix
-
Returns the square matrix of
A' * A
orA * A'
, whichever is smaller. - squaredDistance(double[], double[]) - Static method in class smile.math.MathEx
-
The squared Euclidean distance.
- squaredDistance(float[], float[]) - Static method in class smile.math.MathEx
-
The squared Euclidean distance.
- squaredDistance(int[], int[]) - Static method in class smile.math.MathEx
-
The squared Euclidean distance on binary sparse arrays, which are the indices of nonzero elements in ascending order.
- squaredDistance(SparseArray, SparseArray) - Static method in class smile.math.MathEx
-
The Euclidean distance on sparse arrays.
- squaredDistanceWithMissingValues(double[], double[]) - Static method in class smile.math.MathEx
-
The squared Euclidean distance with handling missing values (represented as NaN).
- SqueezeExcitation - Class in smile.vision.layer
-
Squeeze-and-Excitation block from "Squeeze-and-Excitation Networks".
- SqueezeExcitation(int, int) - Constructor for class smile.vision.layer.SqueezeExcitation
-
Constructor.
- SqueezeExcitation(int, int, ActivationFunction, ActivationFunction) - Constructor for class smile.vision.layer.SqueezeExcitation
-
Constructor.
- SR - Enum constant in enum class smile.math.matrix.ARPACK.AsymmOption
-
The eigenvalues of smallest real part.
- SR - Enum constant in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
The eigenvalues of smallest real part.
- sse - Variable in class smile.math.LevenbergMarquardt
-
The sum of squares due to error.
- stack(String) - Method in class smile.plot.vega.Field
-
Sets the type of stacking offset if the field should be stacked.
- stack(String, String, String...) - Method in class smile.plot.vega.Transform
-
Adds a stack transform.
- StackTransform - Class in smile.plot.vega
-
The stack transform.
- Staircase - Class in smile.plot.swing
-
This class represents a poly line in the plot.
- Staircase(double[][], Color) - Constructor for class smile.plot.swing.Staircase
-
Constructor.
- StaircasePlot - Class in smile.plot.swing
-
Staircase plot is a special case of line which is most useful to display empirical distribution.
- StaircasePlot(Staircase...) - Constructor for class smile.plot.swing.StaircasePlot
-
Constructor.
- StaircasePlot(Staircase[], Legend[]) - Constructor for class smile.plot.swing.StaircasePlot
-
Constructor.
- standardize() - Method in class smile.math.matrix.BigMatrix
-
Standardizes the columns of matrix.
- standardize() - Method in class smile.math.matrix.fp32.Matrix
-
Standardizes the columns of matrix.
- standardize() - Method in class smile.math.matrix.Matrix
-
Standardizes the columns of matrix.
- standardize(double[]) - Static method in class smile.math.MathEx
-
Standardizes an array to mean 0 and variance 1.
- standardize(double[][]) - Static method in class smile.math.MathEx
-
Standardizes each column of a matrix to 0 mean and unit variance.
- standardizer(double[]) - Static method in class smile.math.Scaler
-
Returns the standardize scaler to 0 mean and unit variance.
- standardizer(double[], boolean) - Static method in class smile.math.Scaler
-
Returns the standardize scaler to 0 mean and unit variance.
- Standardizer - Class in smile.feature.transform
-
Standardizes numeric feature to 0 mean and unit variance.
- Standardizer() - Constructor for class smile.feature.transform.Standardizer
- stateChanged(ChangeEvent) - Method in class smile.swing.Table.RowHeader
- STEEL_BLUE - Static variable in interface smile.plot.swing.Palette
- stem(String) - Method in class smile.nlp.stemmer.LancasterStemmer
- stem(String) - Method in class smile.nlp.stemmer.PorterStemmer
- stem(String) - Method in interface smile.nlp.stemmer.Stemmer
-
Transforms a word into its root form.
- Stemmer - Interface in smile.nlp.stemmer
-
A Stemmer transforms a word into its root form.
- step() - Method in class smile.deep.Optimizer
-
Updates the parameters based on the calculated gradients.
- step(double) - Method in class smile.plot.vega.BinParams
-
Sets the exact step size between bins.
- step(double) - Method in class smile.plot.vega.QuantileTransform
-
Sets a probability step size (default 0.01) for sampling quantile values.
- step(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the default step size for x-/y- discrete fields.
- steps(double...) - Method in class smile.plot.vega.BinParams
-
Sets an array of allowable step sizes to choose from.
- steps(int) - Method in class smile.plot.vega.DensityTransform
-
Sets the exact number of samples to take along the extent domain for plotting the density.
- StochasticDepth - Class in smile.vision.layer
-
Stochastic Depth for randomly dropping residual branches of residual architectures, from "Deep Networks with Stochastic Depth".
- StochasticDepth(double, String) - Constructor for class smile.vision.layer.StochasticDepth
-
Constructor.
- stop - Enum constant in enum class smile.llm.FinishReason
-
A message terminated by one of the stop tokens.
- stopCellEditing() - Method in class smile.swing.table.DateCellEditor
- stopCellEditing() - Method in class smile.swing.table.DoubleArrayCellEditor
- stopCellEditing() - Method in class smile.swing.table.DoubleCellEditor
- stopCellEditing() - Method in class smile.swing.table.IntegerArrayCellEditor
- stopCellEditing() - Method in class smile.swing.table.IntegerCellEditor
- stopTokens() - Method in class smile.llm.llama.Tokenizer
-
Returns the stop tokens.
- StopWords - Interface in smile.nlp.dictionary
-
A set of stop words in some language.
- strata(int[]) - Static method in interface smile.stat.Sampling
-
Returns the strata of samples as a two-dimensional array.
- stratify(int[], double) - Static method in interface smile.stat.Sampling
-
Stratified sampling from a population which can be partitioned into subpopulations.
- stratify(int[], int) - Static method in interface smile.validation.CrossValidation
-
Cross validation with stratified folds.
- stratify(int, int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Repeated stratified cross validation of classification.
- stratify(int, int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Repeated stratified cross validation of classification.
- stratify(int, Formula, DataFrame, BiFunction<Formula, DataFrame, M>) - Static method in interface smile.validation.CrossValidation
-
Stratified cross validation of classification.
- stratify(int, T[], int[], BiFunction<T[], int[], M>) - Static method in interface smile.validation.CrossValidation
-
Stratified cross validation of classification.
- stream() - Method in interface smile.data.DataFrame
-
Returns a (possibly parallel) Stream of rows.
- stream() - Method in interface smile.data.Dataset
-
Returns a (possibly parallel) Stream with this collection as its source.
- stream() - Method in class smile.data.IndexDataFrame
- stream() - Method in interface smile.data.vector.BaseVector
-
Returns a stream of vector elements.
- stream() - Method in class smile.util.DoubleArrayList
-
Returns the stream of the array list.
- stream() - Method in class smile.util.IntArrayList
-
Returns the stream of the array list.
- stream() - Method in class smile.util.SparseArray
-
Returns the stream of nonzero entries.
- stream(String) - Static method in interface smile.io.HadoopInput
-
Returns the reader of a file path or URI.
- stream(String) - Static method in interface smile.io.Input
-
Returns the input stream of a file path or URI.
- stress - Variable in class smile.manifold.SammonMapping
-
The final stress achieved.
- stress() - Method in record class smile.manifold.IsotonicMDS
-
Returns the value of the
stress
record component. - stride() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns the value of the
stride
record component. - stride() - Method in record class smile.vision.layer.MBConvConfig
-
Returns the value of the
stride
record component. - Strided - Enum constant in enum class smile.deep.tensor.Layout
-
Dense tensor.
- String - Enum constant in enum class smile.data.type.DataType.ID
-
String type ID.
- Strings - Interface in smile.util
-
String utility functions.
- stringToValue(String) - Method in class smile.swing.text.FloatArrayFormatter
- stringToValue(String) - Method in class smile.swing.text.IntegerArrayFormatter
- StringType - Class in smile.data.type
-
String data type.
- StringType - Static variable in class smile.data.type.DataTypes
-
String data type.
- stringVector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- stringVector(int) - Method in class smile.data.IndexDataFrame
- stringVector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- stringVector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- StringVector - Interface in smile.data.vector
-
An immutable string vector.
- stripPluralParticiple(String) - Method in class smile.nlp.stemmer.PorterStemmer
-
Removes plurals and participles.
- stroke(String) - Method in class smile.plot.vega.Background
-
Sets the stroke color.
- stroke(String) - Method in class smile.plot.vega.Mark
-
Sets the default stroke color.
- stroke(String) - Method in class smile.plot.vega.ViewConfig
-
Sets the stroke color.
- strokeCap(String) - Method in class smile.plot.vega.Background
-
Sets the stroke cap for line ending style.
- strokeCap(String) - Method in class smile.plot.vega.Mark
-
Sets the stroke cap for line ending style.
- strokeCap(String) - Method in class smile.plot.vega.ViewConfig
-
Sets the stroke cap for line ending style.
- strokeColor(String) - Method in class smile.plot.vega.Legend
-
Sets the border stroke color for the full legend.
- strokeDash(double, double) - Method in class smile.plot.vega.Background
-
Sets the alternating [stroke, space] lengths for stroke dash.
- strokeDash(double, double) - Method in class smile.plot.vega.Mark
-
Sets the alternating [stroke, space] lengths for dashed lines.
- strokeDash(double, double) - Method in class smile.plot.vega.ViewConfig
-
Sets the alternating [stroke, space] lengths for stroke dash.
- strokeDashOffset(double) - Method in class smile.plot.vega.Mark
-
Sets the pixel offset at which to start drawing with the dash array.
- strokeDashOffset(int) - Method in class smile.plot.vega.Background
-
Sets the offset (in pixels) into which to begin drawing with the stroke dash array.
- strokeDashOffset(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the offset (in pixels) into which to begin drawing with the stroke dash array.
- strokeJoin(String) - Method in class smile.plot.vega.Background
-
Sets the stroke line join method.
- strokeJoin(String) - Method in class smile.plot.vega.Mark
-
Sets the stroke line join method.
- strokeJoin(String) - Method in class smile.plot.vega.ViewConfig
-
Sets the stroke line join method.
- strokeMiterLimit(double) - Method in class smile.plot.vega.Mark
-
Sets the miter limit at which to bevel a line join.
- strokeMiterLimit(int) - Method in class smile.plot.vega.Background
-
Sets the miter limit at which to bevel a line join.
- strokeMiterLimit(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the miter limit at which to bevel a line join.
- strokeOpacity(double) - Method in class smile.plot.vega.Background
-
Sets the stroke opacity
- strokeOpacity(double) - Method in class smile.plot.vega.Mark
-
Sets the stroke opacity.
- strokeOpacity(double) - Method in class smile.plot.vega.ViewConfig
-
Sets the stroke opacity
- strokeWidth(double) - Method in class smile.plot.vega.Mark
-
Sets the stroke width of axis domain line.
- strokeWidth(int) - Method in class smile.plot.vega.Background
-
Sets the stroke width.
- strokeWidth(int) - Method in class smile.plot.vega.ViewConfig
-
Sets the stroke width.
- struct(ResultSet) - Static method in class smile.data.type.DataTypes
-
Creates a struct data type from JDBC result set meta data.
- struct(ResultSetMetaData, String) - Static method in class smile.data.type.DataTypes
-
Creates a struct data type from JDBC result set meta data.
- struct(List<StructField>) - Static method in class smile.data.type.DataTypes
-
Creates a struct data type.
- struct(StructField...) - Static method in class smile.data.type.DataTypes
-
Creates a struct data type.
- Struct - Enum constant in enum class smile.data.type.DataType.ID
-
Struct type ID.
- StructField - Class in smile.data.type
-
A field in a Struct data type.
- StructField(String, DataType) - Constructor for class smile.data.type.StructField
-
Constructor.
- StructField(String, DataType, Measure) - Constructor for class smile.data.type.StructField
-
Constructor.
- StructType - Class in smile.data.type
-
Struct data type is determined by the fixed order of the fields of primitive data types in the struct.
- StructType(List<StructField>) - Constructor for class smile.data.type.StructType
-
Constructor.
- StructType(StructField...) - Constructor for class smile.data.type.StructType
-
Constructor.
- structure() - Method in interface smile.data.DataFrame
-
Returns the structure of data frame.
- sturges(int) - Static method in interface smile.math.Histogram
-
Returns the number of bins by Sturges' rule k = ceil(log2(n) + 1).
- style(String...) - Method in class smile.plot.vega.Axis
-
Sets the custom styles to apply to the axis.
- style(String...) - Method in class smile.plot.vega.Background
-
Sets the custom styles.
- style(String...) - Method in class smile.plot.vega.Mark
-
Sets the style.
- sub(double) - Method in class smile.deep.tensor.Tensor
-
Returns A -= b.
- sub(double) - Method in class smile.math.matrix.BigMatrix
-
A -= b
- sub(double) - Method in class smile.math.matrix.Matrix
-
A -= b
- sub(double) - Method in class smile.util.Array2D
-
A -= x.
- sub(double[], double[]) - Static method in class smile.math.MathEx
-
Element-wise subtraction of two arrays a -= b.
- sub(float) - Method in class smile.deep.tensor.Tensor
-
Returns A - b.
- sub(float) - Method in class smile.math.matrix.fp32.Matrix
-
A -= b
- sub(int) - Method in class smile.util.IntArray2D
-
A -= x.
- sub(int, int, double) - Method in class smile.math.matrix.BigMatrix
-
A[i,j] -= b
- sub(int, int, double) - Method in class smile.math.matrix.Matrix
-
A[i,j] -= b
- sub(int, int, double) - Method in class smile.util.Array2D
-
A[i, j] -= x.
- sub(int, int, float) - Method in class smile.math.matrix.fp32.Matrix
-
A[i,j] -= b
- sub(int, int, int) - Method in class smile.util.IntArray2D
-
A[i, j] -= x.
- sub(String, String) - Static method in interface smile.data.formula.Terms
-
Subtracts two terms.
- sub(String, Term) - Static method in interface smile.data.formula.Terms
-
Subtracts two terms.
- sub(Term, String) - Static method in interface smile.data.formula.Terms
-
Subtracts two terms.
- sub(Term, Term) - Static method in interface smile.data.formula.Terms
-
Subtracts two terms.
- sub(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A - B.
- sub(Tensor, double) - Method in class smile.deep.tensor.Tensor
-
Returns A - alpha * B.
- sub(Complex) - Method in class smile.math.Complex
-
Returns this - b.
- sub(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Element-wise subtraction A -= B
- sub(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Element-wise subtraction A -= B
- sub(Matrix) - Method in class smile.math.matrix.Matrix
-
Element-wise subtraction A -= B
- sub(Array2D) - Method in class smile.util.Array2D
-
A -= B.
- sub(IntArray2D) - Method in class smile.util.IntArray2D
-
A -= B.
- Sub - Class in smile.data.formula
-
The term of
a - b
expression. - Sub(Term, Term) - Constructor for class smile.data.formula.Sub
-
Constructor.
- sub_(double) - Method in class smile.deep.tensor.Tensor
-
Returns A -= b.
- sub_(float) - Method in class smile.deep.tensor.Tensor
-
Returns A - b.
- sub_(Tensor) - Method in class smile.deep.tensor.Tensor
-
Returns A -= B.
- sub_(Tensor, double) - Method in class smile.deep.tensor.Tensor
-
Returns A -= alpha * B.
- subgraph(int[]) - Method in class smile.graph.AdjacencyList
- subgraph(int[]) - Method in class smile.graph.AdjacencyMatrix
- subgraph(int[]) - Method in class smile.graph.Graph
-
Returns a subgraph containing all given vertices.
- submatrix(int, int, int, int) - Method in class smile.math.matrix.BigMatrix
-
Returns the submatrix which top left at (i, j) and bottom right at (k, l).
- submatrix(int, int, int, int) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the submatrix which top left at (i, j) and bottom right at (k, l).
- submatrix(int, int, int, int) - Method in class smile.math.matrix.Matrix
-
Returns the submatrix which top left at (i, j) and bottom right at (k, l).
- sum() - Method in class smile.deep.tensor.Tensor
-
Returns the sum of all elements in the tensor.
- sum() - Method in class smile.math.matrix.BigMatrix
-
Returns the sum of all elements.
- sum() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the sum of all elements.
- sum() - Method in class smile.math.matrix.Matrix
-
Returns the sum of all elements.
- sum() - Method in class smile.util.Array2D
-
Returns the sum of all elements.
- sum() - Method in class smile.util.IntArray2D
-
Returns the sum of all elements.
- sum(byte[]) - Static method in class smile.math.MathEx
-
Returns the sum of an array.
- sum(double[]) - Static method in class smile.math.MathEx
-
Returns the sum of an array.
- sum(float[]) - Static method in class smile.math.MathEx
-
Returns the sum of an array.
- sum(int[]) - Static method in class smile.math.MathEx
-
Returns the sum of an array.
- sum(int[], int[]) - Static method in class smile.validation.metric.AdjustedMutualInformation
-
Calculates the adjusted mutual information of (I(y1, y2) - E(MI)) / (0.5 * (H(y1) + H(y2)) - E(MI)).
- sum(int[], int[]) - Static method in class smile.validation.metric.NormalizedMutualInformation
-
Calculates the normalized mutual information of 2 * I(y1, y2) / (H(y1) + H(y2)).
- SUM - Enum constant in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
2 * I(y1, y2) / (H(y1) + H(y2))
- SUM - Enum constant in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
2 * I(y1, y2) / (H(y1) + H(y2))
- SUM - Static variable in class smile.validation.metric.AdjustedMutualInformation
-
Default instance with sum normalization.
- SUM - Static variable in class smile.validation.metric.NormalizedMutualInformation
-
Default instance with sum normalization.
- SumKernel<T> - Class in smile.math.kernel
-
The sum kernel takes two kernels and combines them via k1(x, y) + k2(x, y)
- SumKernel(MercerKernel<T>, MercerKernel<T>) - Constructor for class smile.math.kernel.SumKernel
-
Constructor.
- summary() - Method in interface smile.data.DataFrame
-
Returns the statistic summary of numeric columns.
- SumSquaresRatio - Record Class in smile.feature.selection
-
The ratio of between-groups to within-groups sum of squares is a univariate feature ranking metric, which can be used as a feature selection criterion for multi-class classification problems.
- SumSquaresRatio(String, double) - Constructor for record class smile.feature.selection.SumSquaresRatio
-
Creates an instance of a
SumSquaresRatio
record class. - support() - Method in record class smile.association.AssociationRule
-
Returns the value of the
support
record component. - support() - Method in record class smile.association.ItemSet
-
Returns the value of the
support
record component. - SupportVector<T> - Class in smile.base.svm
-
Support vector.
- SupportVector(int, T, int, double, double, double, double, double) - Constructor for class smile.base.svm.SupportVector
-
Constructor.
- Surface - Class in smile.plot.swing
-
A surface object gives 3D information e.g.
- Surface(double[][][]) - Constructor for class smile.plot.swing.Surface
-
Constructor for irregular mesh grid.
- Surface(double[][][], Color[]) - Constructor for class smile.plot.swing.Surface
-
Constructor for irregular mesh surface.
- svd() - Method in class smile.math.matrix.BigMatrix
-
Singular Value Decomposition.
- svd() - Method in class smile.math.matrix.fp32.Matrix
-
Singular Value Decomposition.
- svd() - Method in class smile.math.matrix.Matrix
-
Singular Value Decomposition.
- svd(boolean, boolean) - Method in class smile.math.matrix.BigMatrix
-
Singular Value Decomposition.
- svd(boolean, boolean) - Method in class smile.math.matrix.fp32.Matrix
-
Singular Value Decomposition.
- svd(boolean, boolean) - Method in class smile.math.matrix.Matrix
-
Singular Value Decomposition.
- svd(IMatrix, int) - Static method in class smile.math.matrix.fp32.ARPACK
-
Computes k-largest approximate singular triples of a matrix.
- svd(IMatrix, int, int, float) - Static method in class smile.math.matrix.fp32.ARPACK
-
Computes k-largest approximate singular triples of a matrix.
- svd(IMatrix, int) - Static method in class smile.math.matrix.ARPACK
-
Computes k-largest approximate singular triples of a matrix.
- svd(IMatrix, int, int, double) - Static method in class smile.math.matrix.ARPACK
-
Computes k-largest approximate singular triples of a matrix.
- SVD(double[], Matrix, Matrix) - Constructor for class smile.math.matrix.Matrix.SVD
-
Constructor.
- SVD(float[], Matrix, Matrix) - Constructor for class smile.math.matrix.fp32.Matrix.SVD
-
Constructor.
- SVD(int, int, double[]) - Constructor for class smile.math.matrix.Matrix.SVD
-
Constructor.
- SVD(int, int, float[]) - Constructor for class smile.math.matrix.fp32.Matrix.SVD
-
Constructor.
- SVD(int, int, DoublePointer) - Constructor for class smile.math.matrix.BigMatrix.SVD
-
Constructor.
- SVD(DoublePointer, BigMatrix, BigMatrix) - Constructor for class smile.math.matrix.BigMatrix.SVD
-
Constructor.
- SVDImputer - Interface in smile.feature.imputation
-
Missing value imputation with singular value decomposition.
- SVDJob - Enum Class in smile.math.blas
-
The option if computing singular vectors.
- SVM<T> - Class in smile.anomaly
-
One-class support vector machines for novelty detection.
- SVM<T> - Class in smile.classification
-
Support vector machines for classification.
- SVM - Class in smile.regression
-
Epsilon support vector regression.
- SVM() - Constructor for class smile.regression.SVM
- SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.anomaly.SVM
-
Constructor.
- SVM(MercerKernel<T>, T[], double[], double) - Constructor for class smile.classification.SVM
-
Constructor.
- SVR<T> - Class in smile.base.svm
-
Epsilon support vector regression.
- SVR(MercerKernel<T>, double, double, double) - Constructor for class smile.base.svm.SVR
-
Constructor.
- swap(double[], double[]) - Method in interface smile.math.blas.BLAS
-
Swaps two vectors.
- swap(double[], double[]) - Static method in class smile.math.MathEx
-
Swap two arrays.
- swap(double[], int, int) - Static method in class smile.math.MathEx
-
Swap two elements of an array.
- swap(double[], int, int) - Static method in interface smile.sort.Sort
-
Swap two positions.
- swap(float[], float[]) - Method in interface smile.math.blas.BLAS
-
Swaps two vectors.
- swap(float[], float[]) - Static method in class smile.math.MathEx
-
Swap two arrays.
- swap(float[], int, int) - Static method in class smile.math.MathEx
-
Swap two elements of an array.
- swap(float[], int, int) - Static method in interface smile.sort.Sort
-
Swap two positions.
- swap(int[], int[]) - Static method in class smile.math.MathEx
-
Swap two arrays.
- swap(int[], int, int) - Static method in class smile.math.MathEx
-
Swap two elements of an array.
- swap(int[], int, int) - Static method in interface smile.sort.Sort
-
Swap two positions.
- swap(int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
-
Swaps two vectors.
- swap(int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- swap(int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
-
Swaps two vectors.
- swap(int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- swap(E[], E[]) - Static method in class smile.math.MathEx
-
Swap two arrays.
- swap(Object[], int, int) - Static method in class smile.math.MathEx
-
Swap two elements of an array.
- swap(Object[], int, int) - Static method in interface smile.sort.Sort
-
Swap two positions.
- syev(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syev(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- syev(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syev(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- syev(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syev(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- syev(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syev(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- syev(IMatrix, ARPACK.SymmOption, int) - Static method in class smile.math.matrix.fp32.ARPACK
-
Computes NEV eigenvalues of a symmetric single precision matrix.
- syev(IMatrix, ARPACK.SymmOption, int, int, float) - Static method in class smile.math.matrix.fp32.ARPACK
-
Computes NEV eigenvalues of a symmetric single precision matrix.
- syev(IMatrix, ARPACK.SymmOption, int) - Static method in class smile.math.matrix.ARPACK
-
Computes NEV eigenvalues of a symmetric double precision matrix.
- syev(IMatrix, ARPACK.SymmOption, int, int, double) - Static method in class smile.math.matrix.ARPACK
-
Computes NEV eigenvalues of a symmetric double precision matrix.
- syevd(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevd(Layout, EVDJob, UPLO, int, double[], int, double[]) - Method in class smile.math.blas.openblas.OpenBLAS
- syevd(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevd(Layout, EVDJob, UPLO, int, float[], int, float[]) - Method in class smile.math.blas.openblas.OpenBLAS
- syevd(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevd(Layout, EVDJob, UPLO, int, DoubleBuffer, int, DoubleBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- syevd(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevd(Layout, EVDJob, UPLO, int, FloatBuffer, int, FloatBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- syevd(Layout, EVDJob, UPLO, int, DoublePointer, int, DoublePointer) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevd(Layout, EVDJob, UPLO, int, DoublePointer, int, DoublePointer) - Method in class smile.math.blas.openblas.OpenBLAS
- syevr(Layout, EVDJob, EigenRange, UPLO, int, double[], int, double, double, int, int, double, int[], double[], double[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevr(Layout, EVDJob, EigenRange, UPLO, int, double[], int, double, double, int, int, double, int[], double[], double[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- syevr(Layout, EVDJob, EigenRange, UPLO, int, float[], int, float, float, int, int, float, int[], float[], float[], int, int[]) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevr(Layout, EVDJob, EigenRange, UPLO, int, float[], int, float, float, int, int, float, int[], float[], float[], int, int[]) - Method in class smile.math.blas.openblas.OpenBLAS
- syevr(Layout, EVDJob, EigenRange, UPLO, int, DoubleBuffer, int, double, double, int, int, double, IntBuffer, DoubleBuffer, DoubleBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevr(Layout, EVDJob, EigenRange, UPLO, int, DoubleBuffer, int, double, double, int, int, double, IntBuffer, DoubleBuffer, DoubleBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- syevr(Layout, EVDJob, EigenRange, UPLO, int, FloatBuffer, int, float, float, int, int, float, IntBuffer, FloatBuffer, FloatBuffer, int, IntBuffer) - Method in interface smile.math.blas.LAPACK
-
Computes the eigenvalues and, optionally, the left and/or right eigenvectors of a real symmetric matrix A.
- syevr(Layout, EVDJob, EigenRange, UPLO, int, FloatBuffer, int, float, float, int, int, float, IntBuffer, FloatBuffer, FloatBuffer, int, IntBuffer) - Method in class smile.math.blas.openblas.OpenBLAS
- SYM - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Symbol.
- symbolLimit(int) - Method in class smile.plot.vega.Legend
-
Sets the maximum number of allowed entries for a symbol legend.
- SymletWavelet - Class in smile.wavelet
-
Symlet wavelets.
- SymletWavelet(int) - Constructor for class smile.wavelet.SymletWavelet
-
Constructor.
- symm(Layout, Side, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation where the matrix A is symmetric.
- symm(Layout, Side, UPLO, int, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- symm(Layout, Side, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation where the matrix A is symmetric.
- symm(Layout, Side, UPLO, int, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- symm(Layout, Side, UPLO, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation where the matrix A is symmetric.
- symm(Layout, Side, UPLO, int, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- symm(Layout, Side, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation where one input matrix is symmetric.
- symm(Layout, Side, UPLO, int, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- symm(Layout, Side, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-matrix operation where one input matrix is symmetric.
- symm(Layout, Side, UPLO, int, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- SymmMatrix - Class in smile.math.matrix.fp32
-
The symmetric matrix in packed storage.
- SymmMatrix - Class in smile.math.matrix
-
The symmetric matrix in packed storage.
- SymmMatrix(UPLO, double[][]) - Constructor for class smile.math.matrix.SymmMatrix
-
Constructor.
- SymmMatrix(UPLO, float[][]) - Constructor for class smile.math.matrix.fp32.SymmMatrix
-
Constructor.
- SymmMatrix(UPLO, int) - Constructor for class smile.math.matrix.fp32.SymmMatrix
-
Constructor.
- SymmMatrix(UPLO, int) - Constructor for class smile.math.matrix.SymmMatrix
-
Constructor.
- SymmMatrix.BunchKaufman - Class in smile.math.matrix.fp32
-
The LU decomposition.
- SymmMatrix.BunchKaufman - Class in smile.math.matrix
-
The LU decomposition.
- SymmMatrix.Cholesky - Class in smile.math.matrix.fp32
-
The Cholesky decomposition of a symmetric, positive-definite matrix.
- SymmMatrix.Cholesky - Class in smile.math.matrix
-
The Cholesky decomposition of a symmetric, positive-definite matrix.
- symv(Layout, UPLO, int, double, double[], int, double[], int, double, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric matrix.
- symv(Layout, UPLO, int, double, double[], int, double[], int, double, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- symv(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric matrix.
- symv(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int, double, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- symv(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric matrix.
- symv(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int, double, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- symv(Layout, UPLO, int, float, float[], int, float[], int, float, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric matrix.
- symv(Layout, UPLO, int, float, float[], int, float[], int, float, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- symv(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a symmetric matrix.
- symv(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int, float, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- syr(Layout, UPLO, int, double, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric matrix.
- syr(Layout, UPLO, int, double, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- syr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric matrix.
- syr(Layout, UPLO, int, double, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- syr(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric matrix.
- syr(Layout, UPLO, int, double, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- syr(Layout, UPLO, int, float, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric matrix.
- syr(Layout, UPLO, int, float, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- syr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the rank-1 update operation to symmetric matrix.
- syr(Layout, UPLO, int, float, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- system - Enum constant in enum class smile.llm.Role
-
System instructions.
- sysv(Layout, UPLO, int, int, double[], int, int[], double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- sysv(Layout, UPLO, int, int, double[], int, int[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- sysv(Layout, UPLO, int, int, float[], int, int[], float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- sysv(Layout, UPLO, int, int, float[], int, int[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- sysv(Layout, UPLO, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- sysv(Layout, UPLO, int, int, DoubleBuffer, int, IntBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- sysv(Layout, UPLO, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- sysv(Layout, UPLO, int, int, FloatBuffer, int, IntBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- sysv(Layout, UPLO, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a real system of linear equations.
- sysv(Layout, UPLO, int, int, DoublePointer, int, IntPointer, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
T
- t - Variable in class smile.base.mlp.MultilayerPerceptron
-
The training iterations.
- t - Variable in class smile.feature.extraction.GHA
-
The training iterations.
- t() - Method in record class smile.stat.hypothesis.CorTest
-
Returns the value of the
t
record component. - t() - Method in record class smile.stat.hypothesis.TTest
-
Returns the value of the
t
record component. - T - Variable in class smile.vq.BIRCH
-
THe maximum radius of a sub-cluster.
- table - Variable in class smile.validation.metric.ContingencyTable
-
The contingency table.
- Table - Class in smile.swing
-
Customized JTable with optional row number header.
- Table() - Constructor for class smile.swing.Table
-
Constructs a default JTable that is initialized with a default data model, a default column model, and a default selection model.
- Table(int, int) - Constructor for class smile.swing.Table
-
Constructs a JTable with numRows and numColumns of empty cells using DefaultTableModel.
- Table(Object[][], Object[]) - Constructor for class smile.swing.Table
-
Constructs a JTable to display the values in the two-dimensional array, rowData, with column names, columnNames.
- Table(TableModel) - Constructor for class smile.swing.Table
-
Constructs a JTable that is initialized with dm as the data model, a default column model, and a default selection model.
- Table(TableModel, TableColumnModel) - Constructor for class smile.swing.Table
-
Constructs a JTable that is initialized with dm as the data model, cm as the column model, and a default selection model.
- Table(TableModel, TableColumnModel, ListSelectionModel) - Constructor for class smile.swing.Table
-
Constructs a JTable that is initialized with dm as the data model, cm as the column model, and sm as the selection model
- Table.RowHeader - Class in smile.swing
-
Use a JTable as a renderer for row numbers of the main table.
- TableColumnSettings - Class in smile.swing.table
-
Table column settings.
- TableColumnSettings(String) - Constructor for class smile.swing.table.TableColumnSettings
-
Constructor.
- TableCopyPasteAdapter - Class in smile.swing.table
-
TableCopyPasteAdapter enables Copy-Paste Clipboard functionality on JTables.
- tables() - Method in class smile.data.SQL
-
Returns the tables in the database.
- tag(String[]) - Method in class smile.nlp.pos.HMMPOSTagger
- tag(String[]) - Method in interface smile.nlp.pos.POSTagger
-
Tags the sentence in the form of a sequence of words.
- tan() - Method in class smile.math.Complex
-
Returns the complex tangent.
- tan(String) - Static method in interface smile.data.formula.Terms
-
The
tan(x)
term. - tan(Term) - Static method in interface smile.data.formula.Terms
-
The
tan(x)
term. - tanh() - Static method in interface smile.base.mlp.ActivationFunction
-
Hyperbolic tangent activation function.
- tanh(int) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with hyperbolic tangent activation function.
- tanh(int, double) - Static method in class smile.base.mlp.Layer
-
Returns a hidden layer with hyperbolic tangent activation function.
- tanh(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with tanh activation function.
- tanh(String) - Static method in interface smile.data.formula.Terms
-
The
tanh(x)
term. - tanh(Term) - Static method in interface smile.data.formula.Terms
-
The
tanh(x)
term. - Tanh - Class in smile.deep.activation
-
Hyperbolic Tangent activation function.
- Tanh(boolean) - Constructor for class smile.deep.activation.Tanh
-
Constructor.
- tanhShrink(int, int) - Static method in interface smile.deep.layer.Layer
-
Returns a fully connected layer with tanh shrink activation function.
- TanhShrink - Class in smile.deep.activation
-
Hyperbolic Tangent Shrink activation function.
- TanhShrink() - Constructor for class smile.deep.activation.TanhShrink
-
Constructor.
- target - Variable in class smile.base.mlp.MultilayerPerceptron
-
The buffer to store desired target value of training instance.
- target() - Method in record class smile.deep.SampleBatch
-
Returns the value of the
target
record component. - tau - Variable in class smile.math.matrix.BigMatrix.QR
-
The scalar factors of the elementary reflectors
- tau - Variable in class smile.math.matrix.fp32.Matrix.QR
-
The scalar factors of the elementary reflectors
- tau - Variable in class smile.math.matrix.Matrix.QR
-
The scalar factors of the elementary reflectors
- TaxonomicDistance - Class in smile.taxonomy
-
The distance between concepts in a taxonomy.
- TaxonomicDistance(Taxonomy) - Constructor for class smile.taxonomy.TaxonomicDistance
-
Constructor.
- Taxonomy - Class in smile.taxonomy
-
A taxonomy is a tree of terms (aka concept) where leaves must be named but intermediary nodes can be anonymous.
- Taxonomy(String...) - Constructor for class smile.taxonomy.Taxonomy
-
Constructor.
- TDistribution - Class in smile.stat.distribution
-
Student's t-distribution (or simply the t-distribution) is a probability distribution that arises in the problem of estimating the mean of a normally distributed population when the sample size is small.
- TDistribution(int) - Constructor for class smile.stat.distribution.TDistribution
-
Constructor.
- tension(double) - Method in class smile.plot.vega.Mark
-
Depending on the interpolation type, sets the tension parameter (for line and area marks).
- Tensor - Class in smile.deep.tensor
-
A Tensor is a multidimensional array containing elements of a single data type.
- Tensor(Tensor) - Constructor for class smile.deep.tensor.Tensor
-
Constructor.
- Tensor.Options - Class in smile.deep.tensor
-
A class that encapsulates the construction axes of a tensor.
- Term - Interface in smile.data.formula
-
An abstract term in the formula.
- termCount() - Method in interface smile.nlp.Corpus
-
Returns the number of unique terms in the corpus.
- termCount() - Method in class smile.nlp.SimpleCorpus
- terms() - Method in interface smile.nlp.Corpus
-
Returns the iterator over the terms in the corpus.
- terms() - Method in class smile.nlp.SimpleCorpus
- Terms - Interface in smile.data.formula
-
Predefined terms.
- terrain(int) - Static method in interface smile.plot.swing.Palette
-
Generate terrain color palette.
- terrain(int, float) - Static method in interface smile.plot.swing.Palette
-
Generate terrain color palette.
- test(double[], double) - Static method in interface smile.stat.Hypothesis.t
-
Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis.
- test(double[], double) - Static method in record class smile.stat.hypothesis.TTest
-
Independent one-sample t-test whether the mean of a normally distributed population has a value specified in a null hypothesis.
- test(double[], double[]) - Static method in interface smile.stat.Hypothesis.cor
-
Pearson correlation test.
- test(double[], double[]) - Static method in interface smile.stat.Hypothesis.F
-
Test if the arrays x and y have significantly different variances.
- test(double[], double[]) - Static method in record class smile.stat.hypothesis.FTest
-
Test if the arrays x and y have significantly different variances.
- test(double[], double[]) - Static method in interface smile.stat.Hypothesis.KS
-
The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution.
- test(double[], double[]) - Static method in record class smile.stat.hypothesis.KSTest
-
The two-sample KS test for the null hypothesis that the data sets are drawn from the same distribution.
- test(double[], double[]) - Static method in interface smile.stat.Hypothesis.t
-
Test if the arrays x and y have significantly different means.
- test(double[], double[]) - Static method in record class smile.stat.hypothesis.TTest
-
Test if the arrays x and y have significantly different means.
- test(double[], double[], boolean) - Static method in record class smile.stat.hypothesis.TTest
-
Test if the arrays x and y have significantly different means.
- test(double[], double[], String) - Static method in interface smile.stat.Hypothesis.cor
-
Correlation test.
- test(double[], double[], String) - Static method in interface smile.stat.Hypothesis.t
-
Test if the arrays x and y have significantly different means.
- test(double[], Distribution) - Static method in interface smile.stat.Hypothesis.KS
-
The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution.
- test(double[], Distribution) - Static method in record class smile.stat.hypothesis.KSTest
-
The one-sample KS test for the null hypothesis that the data set x is drawn from the given distribution.
- test(double, int) - Static method in interface smile.stat.Hypothesis.t
-
Test whether the Pearson correlation coefficient, the slope of a regression line, differs significantly from 0.
- test(double, int) - Static method in record class smile.stat.hypothesis.TTest
-
Test whether the Pearson correlation coefficient, the slope of a regression line, differs significantly from 0.
- test(int[][]) - Static method in interface smile.stat.Hypothesis.chisq
-
Given a two-dimensional contingency table in the form of an array of integers, returns Chi-square test for independence.
- test(int[][]) - Static method in record class smile.stat.hypothesis.ChiSqTest
-
Independence test on a two-dimensional contingency table.
- test(int[], double[]) - Static method in interface smile.stat.Hypothesis.chisq
-
One-sample chisq test.
- test(int[], double[]) - Static method in record class smile.stat.hypothesis.ChiSqTest
-
One-sample Pearson's chi-square test.
- test(int[], double[]) - Static method in record class smile.stat.hypothesis.FTest
-
One-way analysis of variance (ANOVA) between a categorical independent variable (with two or more categories) and a normally distributed interval dependent variable to test for differences in the means of the dependent variable broken down by the levels of the independent variable.
- test(int[], double[], int) - Static method in interface smile.stat.Hypothesis.chisq
-
One-sample chisq test.
- test(int[], double[], int) - Static method in record class smile.stat.hypothesis.ChiSqTest
-
One-sample Pearson's chi-square test.
- test(int[], int[]) - Static method in interface smile.stat.Hypothesis.chisq
-
Two-sample chisq test.
- test(int[], int[]) - Static method in record class smile.stat.hypothesis.ChiSqTest
-
Two-sample Pearson's chi-square test.
- test(int[], int[], int) - Static method in interface smile.stat.Hypothesis.chisq
-
Two-sample chisq test.
- test(int[], int[], int) - Static method in record class smile.stat.hypothesis.ChiSqTest
-
Two-sample Pearson's chi-square test.
- test(DataFrame) - Method in class smile.classification.AdaBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.classification.GradientTreeBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.classification.RandomForest
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.regression.GradientTreeBoost
-
Test the model on a validation dataset.
- test(DataFrame) - Method in class smile.regression.RandomForest
-
Test the model on a validation dataset.
- testPaired(double[], double[]) - Static method in record class smile.stat.hypothesis.TTest
-
Given the paired arrays x and y, test if they have significantly different means.
- text - Variable in class smile.nlp.relevance.Relevance
-
The document to rank.
- text() - Static method in interface smile.hash.SimHash
-
Returns the
SimHash
for string tokens. - text(Path) - Static method in class smile.math.matrix.fp32.SparseMatrix
-
Reads a sparse matrix from a text file.
- text(Path) - Static method in class smile.math.matrix.SparseMatrix
-
Reads a sparse matrix from a text file.
- Text - Class in smile.nlp
-
A minimal interface of text in the corpus.
- Text(String) - Constructor for class smile.nlp.Text
-
Constructor.
- Text(String, String) - Constructor for class smile.nlp.Text
-
Constructor.
- Text(String, String, String) - Constructor for class smile.nlp.Text
-
Constructor.
- TextPlot - Class in smile.plot.swing
-
The scatter plot of texts.
- TextPlot(Label...) - Constructor for class smile.plot.swing.TextPlot
-
Constructor.
- TextTerms - Interface in smile.nlp
-
The terms in a text.
- tf(String) - Method in class smile.nlp.SimpleText
- tf(String) - Method in interface smile.nlp.TextTerms
-
Returns the term frequency.
- TFIDF - Class in smile.nlp.relevance
-
The tf-idf weight (term frequency-inverse document frequency) is a weight often used in information retrieval and text mining.
- TFIDF() - Constructor for class smile.nlp.relevance.TFIDF
-
Constructor.
- TFIDF(double) - Constructor for class smile.nlp.relevance.TFIDF
-
Constructor.
- theta - Variable in class smile.stat.distribution.GammaDistribution
-
The scale parameter.
- theta(double) - Method in class smile.plot.vega.Mark
-
For arc marks, sets the arc length in radians if theta2 is not specified, otherwise the start arc angle.
- theta2(double) - Method in class smile.plot.vega.Mark
-
Sets the end angle of arc marks in radians.
- theta2Offset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for theta2.
- thetaOffset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for theta.
- ThinPlateRadialBasis - Class in smile.math.rbf
-
Thin plate RBF.
- ThinPlateRadialBasis() - Constructor for class smile.math.rbf.ThinPlateRadialBasis
-
Constructor.
- ThinPlateRadialBasis(double) - Constructor for class smile.math.rbf.ThinPlateRadialBasis
-
Constructor.
- ThinPlateSpline - Class in smile.math.kernel
-
The Thin Plate Spline kernel.
- ThinPlateSpline(double, double, double) - Constructor for class smile.math.kernel.ThinPlateSpline
-
Constructor.
- ThinPlateSplineKernel - Class in smile.math.kernel
-
The Thin Plate Spline kernel.
- ThinPlateSplineKernel(double) - Constructor for class smile.math.kernel.ThinPlateSplineKernel
-
Constructor.
- ThinPlateSplineKernel(double, double, double) - Constructor for class smile.math.kernel.ThinPlateSplineKernel
-
Constructor.
- tickBand(String) - Method in class smile.plot.vega.Axis
-
For band scales, sets if ticks and grid lines should be placed at the "center" of a band or at the band "extent"s to indicate intervals.
- tickCap(String) - Method in class smile.plot.vega.Axis
-
Sets the stroke cap for tick lines' ending style.
- tickColor(String) - Method in class smile.plot.vega.Axis
-
Sets the color of the axis's tick.
- tickCount(int) - Method in class smile.plot.vega.Axis
-
Sets a desired number of ticks, for axes visualizing quantitative scales.
- tickCount(int) - Method in class smile.plot.vega.Legend
-
Sets the desired number of tick values for quantitative legends.
- tickCount(String) - Method in class smile.plot.vega.Legend
-
Sets the desired number of tick values for quantitative legends.
- ticks(boolean) - Method in class smile.plot.vega.Axis
-
Sets whether the axis should include ticks.
- tiktoken(String, Pattern) - Static method in interface smile.llm.tokenizer.Tokenizer
-
Loads a tiktoken model with default BOS token (
) and EOS token (). - tiktoken(String, Pattern, String, String, String...) - Static method in interface smile.llm.tokenizer.Tokenizer
-
Loads a tiktoken model.
- Tiktoken - Class in smile.llm.tokenizer
-
tiktoken is a fast BPE tokenizer by OpenAI.
- Tiktoken(Pattern, Map<Bytes, Integer>, String, String, String...) - Constructor for class smile.llm.tokenizer.Tiktoken
-
Constructor.
- time(String) - Static method in class smile.data.type.DataTypes
-
Time data type with customized format.
- Time - Enum constant in enum class smile.data.type.DataType.ID
-
Time type ID.
- TIME - Static variable in interface smile.util.Regex
-
Time regular expression pattern.
- timeFormat(String) - Method in class smile.plot.vega.FormatConfig
-
Sets custom time format.
- timeFormatType(String) - Method in class smile.plot.vega.FormatConfig
-
Sets custom time format type.
- TimeFunction - Interface in smile.math
-
A time-dependent function.
- TimeSeries - Interface in smile.timeseries
-
Time series utility functions.
- TimeType - Class in smile.data.type
-
Time data type.
- TimeType - Static variable in class smile.data.type.DataTypes
-
Time data type with ISO format.
- TimeType(String) - Constructor for class smile.data.type.TimeType
-
Constructor.
- timeUnit(String) - Method in class smile.plot.vega.FacetField
-
Sets the time unit for a temporal field.
- timeUnit(String) - Method in class smile.plot.vega.Field
-
Sets the time unit for a temporal field.
- timeUnit(String) - Method in class smile.plot.vega.Predicate
-
Sets the time unit for a temporal field.
- timeUnit(String, String, String) - Method in class smile.plot.vega.Transform
-
Adds a time unit transform.
- title - Variable in class smile.nlp.Text
-
The title of document;
- title(String) - Method in class smile.plot.vega.Axis
-
Sets a descriptive title.
- title(String) - Method in class smile.plot.vega.Concat
- title(String) - Method in class smile.plot.vega.Facet
- title(String) - Method in class smile.plot.vega.Field
-
Sets the title for the field.
- title(String) - Method in class smile.plot.vega.Legend
-
Sets a descriptive title.
- title(String) - Method in class smile.plot.vega.Repeat
- title(String) - Method in class smile.plot.vega.VegaLite
-
Sets a descriptive title to a chart.
- title(String) - Method in class smile.plot.vega.View
- tm(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Returns matrix multiplication
A' * B
. - tm(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Returns matrix multiplication
A' * B
. - tm(Matrix) - Method in class smile.math.matrix.Matrix
-
Returns matrix multiplication
A' * B
. - to(Device) - Method in interface smile.deep.layer.Layer
-
Moves the layer block to a device.
- to(Device) - Method in class smile.deep.layer.LayerBlock
- to(Device) - Method in class smile.deep.Model
-
Moves the model to a device.
- to(Device) - Method in class smile.deep.tensor.Tensor
-
Clone the tensor to a device.
- to(Device) - Method in class smile.llm.PositionalEncoding
-
Moves the encoder to a device.
- to(Device, ScalarType) - Method in interface smile.deep.layer.Layer
-
Moves the layer block to a device.
- to(Device, ScalarType) - Method in class smile.deep.layer.LayerBlock
- to(Device, ScalarType) - Method in class smile.deep.Model
-
Moves the model to a device.
- to(Device, ScalarType) - Method in class smile.deep.tensor.Tensor
-
Clone the tensor to a device with a different data type.
- to(ScalarType) - Method in class smile.deep.tensor.Tensor
-
Clone the tensor with a different data type.
- TO - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
to.
- toArray() - Method in interface smile.data.vector.Vector
-
Returns the array of elements.
- toArray() - Method in class smile.graph.AdjacencyMatrix
-
Returns the adjacency matrix.
- toArray() - Method in class smile.math.matrix.BigMatrix
-
Return the two-dimensional array of matrix.
- toArray() - Method in class smile.math.matrix.fp32.Matrix
-
Return the two-dimensional array of matrix.
- toArray() - Method in class smile.math.matrix.Matrix
-
Return the two-dimensional array of matrix.
- toArray() - Method in class smile.sort.HeapSelect
-
Returns the array back the heap.
- toArray() - Method in class smile.util.DoubleArrayList
-
Returns an array containing all the values in this list in proper sequence (from first to last value).
- toArray() - Method in class smile.util.IntArrayList
-
Returns an array containing all the values in this list in proper sequence (from first to last value).
- toArray() - Method in class smile.util.IntHashSet
-
Returns the elements as an array.
- toArray() - Method in class smile.util.PairingHeap
- toArray(boolean, CategoricalEncoder, String...) - Method in interface smile.data.DataFrame
-
Return an array obtained by converting the columns in a data frame to numeric mode and then binding them together as the columns of a matrix.
- toArray(boolean, CategoricalEncoder, String...) - Method in interface smile.data.Tuple
-
Return an array obtained by converting the fields to numeric mode.
- toArray(double[]) - Method in class smile.util.DoubleArrayList
-
Returns an array containing all the values in this list in proper sequence (from first to last value).
- toArray(int[]) - Method in class smile.util.IntArrayList
-
Returns an array containing all the values in this list in proper sequence (from first to last value).
- toArray(String...) - Method in interface smile.data.DataFrame
-
Return an array obtained by converting the columns in a data frame to numeric mode and then binding them together as the columns of a matrix.
- toArray(String...) - Method in interface smile.data.Tuple
-
Return an array obtained by converting the fields to numeric mode.
- toArray(T[]) - Method in class smile.sort.HeapSelect
-
Returns the array back the heap.
- toArray(T[]) - Method in class smile.util.PairingHeap
- toBufferedImage(int, int) - Method in class smile.plot.swing.Canvas
-
Exports the plot to an image.
- toDate() - Method in interface smile.data.vector.Vector
-
Returns a vector of LocalDate.
- toDate(String) - Method in interface smile.data.vector.StringVector
-
Returns a vector of LocalDate.
- toDate(DateTimeFormatter) - Method in interface smile.data.vector.StringVector
-
Returns a vector of LocalDate.
- toDateTime() - Method in interface smile.data.vector.Vector
-
Returns a vector of LocalDateTime.
- toDateTime(String) - Method in interface smile.data.vector.StringVector
-
Returns a vector of LocalDateTime.
- toDateTime(DateTimeFormatter) - Method in interface smile.data.vector.StringVector
-
Returns a vector of LocalDateTime.
- toDoubleArray() - Method in interface smile.data.vector.BaseVector
-
Returns a double array of this vector.
- toDoubleArray(double[]) - Method in interface smile.data.vector.BaseVector
-
Copies the vector value as double to the given array.
- toeplitz(double[]) - Static method in class smile.math.matrix.BigMatrix
-
Returns a symmetric Toeplitz matrix in which each descending diagonal from left to right is constant.
- toeplitz(double[]) - Static method in class smile.math.matrix.Matrix
-
Returns a symmetric Toeplitz matrix in which each descending diagonal from left to right is constant.
- toeplitz(double[], double[]) - Static method in class smile.math.matrix.BigMatrix
-
Returns a Toeplitz matrix in which each descending diagonal from left to right is constant.
- toeplitz(double[], double[]) - Static method in class smile.math.matrix.Matrix
-
Returns a Toeplitz matrix in which each descending diagonal from left to right is constant.
- toeplitz(float[]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a symmetric Toeplitz matrix in which each descending diagonal from left to right is constant.
- toeplitz(float[], float[]) - Static method in class smile.math.matrix.fp32.Matrix
-
Returns a Toeplitz matrix in which each descending diagonal from left to right is constant.
- ToFloatFunction<T> - Interface in smile.util
-
Represents a function that produces a float-valued result.
- toGraph(int) - Method in class smile.neighbor.RandomProjectionForest
-
Returns a k-nearest neighbor graph.
- toIntArray() - Method in interface smile.data.vector.BaseVector
-
Returns an int array of this vector.
- toIntArray(int[]) - Method in interface smile.data.vector.BaseVector
-
Copies the vector value as int to the given array.
- tokenize(String) - Method in class smile.llm.tokenizer.SentencePiece
- tokenize(String) - Method in class smile.llm.tokenizer.Tiktoken
- tokenize(String) - Method in interface smile.llm.tokenizer.Tokenizer
-
Segments text into tokens.
- Tokenizer - Class in smile.llm.llama
-
Custom tokenizer for Llama 3 models.
- Tokenizer - Interface in smile.llm.tokenizer
-
Tokenizing and encoding/decoding text.
- Tokenizer - Interface in smile.nlp.tokenizer
-
A token is a string of characters, categorized according to the rules as a symbol.
- Tokenizer(Map<Bytes, Integer>) - Constructor for class smile.llm.llama.Tokenizer
-
Constructor with default BOS, EOS, and special tokens.
- Tokenizer(Map<Bytes, Integer>, String, String, String...) - Constructor for class smile.llm.llama.Tokenizer
-
Constructor.
- toList() - Method in interface smile.data.DataFrame
-
Returns the
List
of rows. - toList() - Method in interface smile.data.Dataset
-
Returns the
List
of data items. - toMatrix() - Method in interface smile.data.BinarySparseDataset
-
Returns the Harwell-Boeing column-compressed sparse matrix.
- toMatrix() - Method in interface smile.data.DataFrame
-
Return a matrix obtained by converting all the variables in a data frame to numeric mode and then binding them together as the columns of a matrix.
- toMatrix() - Method in interface smile.data.SparseDataset
-
Convert into Harwell-Boeing column-compressed sparse matrix format.
- toMatrix() - Method in class smile.graph.AdjacencyList
- toMatrix() - Method in class smile.graph.AdjacencyMatrix
- toMatrix() - Method in class smile.graph.Graph
-
Returns the (dense or sparse) matrix representation of the graph.
- toMatrix(boolean, CategoricalEncoder, String) - Method in interface smile.data.DataFrame
-
Return a matrix obtained by converting all the variables in a data frame to numeric mode and then binding them together as the columns of a matrix.
- toNode(Node, Node) - Method in class smile.base.cart.NominalSplit
- toNode(Node, Node) - Method in class smile.base.cart.OrdinalSplit
- toNode(Node, Node) - Method in class smile.base.cart.Split
-
Returns an internal node with the feature, value, and score of this split.
- toolbar() - Method in class smile.plot.swing.Plot
-
Returns an optional list of components in toolbar to control the plot.
- tooltip(boolean) - Method in class smile.plot.vega.Mark
-
Turns on/off the tooltip.
- tooltip(double[]) - Method in class smile.plot.swing.BoxPlot
- tooltip(double[]) - Method in class smile.plot.swing.Heatmap
- tooltip(double[]) - Method in class smile.plot.swing.Hexmap
- tooltip(double[]) - Method in class smile.plot.swing.Plot
-
Returns an optional tooltip for the object at given coordinates.
- tooltip(String) - Method in class smile.plot.vega.Mark
-
Sets the tooltip text string to show upon mouse hover or which fields should the tooltip be derived from.
- tooltipFormat() - Method in class smile.plot.vega.Config
-
Define custom format configuration for tooltips.
- topk(int) - Method in class smile.deep.tensor.Tensor
-
Returns the k largest elements.
- topk(int, int, boolean, boolean) - Method in class smile.deep.tensor.Tensor
-
Returns the k largest elements along a given dimension.
- topo(int) - Static method in interface smile.plot.swing.Palette
-
Generate topo color palette.
- topo(int, float) - Static method in interface smile.plot.swing.Palette
-
Generate topo color palette.
- topojson(String, String, String) - Method in class smile.plot.vega.Data
-
Loads a JSON file using the TopoJSON format.
- topp(double) - Method in class smile.deep.tensor.Tensor
-
Performs top-p (nucleus) sampling on a probability distribution.
- toPrettyString() - Method in class smile.plot.vega.Axis
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Background
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Config
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Data
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.DensityTransform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.FacetField
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Field
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.FormatConfig
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.ImputeTransform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Legend
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.LoessTransform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.LookupData
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Mark
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.PivotTransform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Projection
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.QuantileTransform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.RegressionTransform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.StackTransform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.Transform
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.VegaLite
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.ViewConfig
-
Returns the specification in pretty print.
- toPrettyString() - Method in class smile.plot.vega.WindowTransform
-
Returns the specification in pretty print.
- toString() - Method in record class smile.association.AssociationRule
-
Returns a string representation of this record class.
- toString() - Method in record class smile.association.ItemSet
-
Returns a string representation of this record class.
- toString() - Method in class smile.base.cart.CART
-
Returns a text representation of the tree in R's rpart format.
- toString() - Method in class smile.base.cart.Split
- toString() - Method in class smile.base.mlp.HiddenLayer
- toString() - Method in class smile.base.mlp.HiddenLayerBuilder
- toString() - Method in class smile.base.mlp.InputLayer
- toString() - Method in class smile.base.mlp.MultilayerPerceptron
- toString() - Method in class smile.base.mlp.OutputLayer
- toString() - Method in class smile.base.mlp.OutputLayerBuilder
- toString() - Method in class smile.base.svm.KernelMachine
- toString() - Method in class smile.classification.IsotonicRegressionScaling
- toString() - Method in class smile.clustering.CentroidClustering
- toString() - Method in class smile.clustering.linkage.CompleteLinkage
- toString() - Method in class smile.clustering.linkage.SingleLinkage
- toString() - Method in class smile.clustering.linkage.UPGMALinkage
- toString() - Method in class smile.clustering.linkage.UPGMCLinkage
- toString() - Method in class smile.clustering.linkage.WardLinkage
- toString() - Method in class smile.clustering.linkage.WPGMALinkage
- toString() - Method in class smile.clustering.linkage.WPGMCLinkage
- toString() - Method in class smile.clustering.MEC
- toString() - Method in class smile.clustering.PartitionClustering
- toString() - Method in class smile.data.AbstractTuple
- toString() - Method in class smile.data.formula.AbstractBiFunction
- toString() - Method in class smile.data.formula.AbstractFunction
- toString() - Method in class smile.data.formula.Date
- toString() - Method in class smile.data.formula.Delete
- toString() - Method in class smile.data.formula.Dot
- toString() - Method in class smile.data.formula.FactorCrossing
- toString() - Method in class smile.data.formula.FactorInteraction
- toString() - Method in class smile.data.formula.Formula
- toString() - Method in record class smile.data.formula.Intercept
-
Returns a string representation of this record class.
- toString() - Method in class smile.data.formula.Operator
- toString() - Method in record class smile.data.formula.Variable
-
Returns a string representation of this record class.
- toString() - Method in class smile.data.IndexDataFrame
- toString() - Method in class smile.data.measure.IntervalScale
- toString() - Method in class smile.data.measure.NominalScale
- toString() - Method in class smile.data.measure.OrdinalScale
- toString() - Method in class smile.data.measure.RatioScale
- toString() - Method in record class smile.data.SampleInstance
-
Returns a string representation of this record class.
- toString() - Method in class smile.data.SQL
- toString() - Method in class smile.data.transform.ColumnTransform
- toString() - Method in class smile.data.type.ArrayType
- toString() - Method in class smile.data.type.BooleanType
- toString() - Method in class smile.data.type.ByteType
- toString() - Method in class smile.data.type.CharType
- toString() - Method in class smile.data.type.DateTimeType
- toString() - Method in class smile.data.type.DateType
- toString() - Method in class smile.data.type.DecimalType
- toString() - Method in class smile.data.type.DoubleType
- toString() - Method in class smile.data.type.FloatType
- toString() - Method in class smile.data.type.IntegerType
- toString() - Method in class smile.data.type.LongType
- toString() - Method in class smile.data.type.ObjectType
- toString() - Method in class smile.data.type.ShortType
- toString() - Method in class smile.data.type.StringType
- toString() - Method in class smile.data.type.StructField
- toString() - Method in class smile.data.type.StructType
- toString() - Method in class smile.data.type.TimeType
- toString() - Method in class smile.deep.layer.LayerBlock
- toString() - Method in class smile.deep.metric.Accuracy
- toString() - Method in class smile.deep.metric.Precision
- toString() - Method in class smile.deep.metric.Recall
- toString() - Method in class smile.deep.Model
- toString() - Method in record class smile.deep.SampleBatch
-
Returns a string representation of this record class.
- toString() - Method in class smile.deep.tensor.Device
- toString() - Method in class smile.deep.tensor.Tensor
- toString() - Method in class smile.feature.imputation.SimpleImputer
- toString() - Method in record class smile.feature.selection.InformationValue
-
Returns a string representation of this record class.
- toString() - Method in record class smile.feature.selection.SignalNoiseRatio
-
Returns a string representation of this record class.
- toString() - Method in record class smile.feature.selection.SumSquaresRatio
-
Returns a string representation of this record class.
- toString() - Method in class smile.feature.transform.Normalizer
- toString() - Method in class smile.gap.BitString
- toString() - Method in class smile.glm.GLM
- toString() - Method in class smile.graph.AdjacencyList
- toString() - Method in class smile.graph.AdjacencyMatrix
- toString() - Method in record class smile.graph.Graph.Edge
-
Returns a string representation of this record class.
- toString() - Method in record class smile.graph.NearestNeighborGraph
-
Returns a string representation of this record class.
- toString() - Method in class smile.interpolation.BicubicInterpolation
- toString() - Method in class smile.interpolation.BilinearInterpolation
- toString() - Method in class smile.interpolation.CubicSplineInterpolation1D
- toString() - Method in class smile.interpolation.CubicSplineInterpolation2D
- toString() - Method in class smile.interpolation.KrigingInterpolation
- toString() - Method in class smile.interpolation.KrigingInterpolation1D
- toString() - Method in class smile.interpolation.KrigingInterpolation2D
- toString() - Method in class smile.interpolation.LaplaceInterpolation
- toString() - Method in class smile.interpolation.LinearInterpolation
- toString() - Method in class smile.interpolation.RBFInterpolation
- toString() - Method in class smile.interpolation.RBFInterpolation1D
- toString() - Method in class smile.interpolation.RBFInterpolation2D
- toString() - Method in class smile.interpolation.ShepardInterpolation
- toString() - Method in class smile.interpolation.ShepardInterpolation1D
- toString() - Method in class smile.interpolation.ShepardInterpolation2D
- toString() - Method in class smile.interpolation.variogram.ExponentialVariogram
- toString() - Method in class smile.interpolation.variogram.GaussianVariogram
- toString() - Method in class smile.interpolation.variogram.PowerVariogram
- toString() - Method in class smile.interpolation.variogram.SphericalVariogram
- toString() - Method in record class smile.llm.CompletionPrediction
-
Returns a string representation of this record class.
- toString() - Method in class smile.llm.llama.Llama
- toString() - Method in record class smile.llm.llama.ModelArgs
-
Returns a string representation of this record class.
- toString() - Method in record class smile.llm.Message
-
Returns a string representation of this record class.
- toString() - Method in record class smile.manifold.IsotonicMDS
-
Returns a string representation of this record class.
- toString() - Method in record class smile.manifold.MDS
-
Returns a string representation of this record class.
- toString() - Method in class smile.math.Complex
- toString() - Method in class smile.math.distance.ChebyshevDistance
- toString() - Method in class smile.math.distance.CorrelationDistance
- toString() - Method in class smile.math.distance.DynamicTimeWarping
- toString() - Method in class smile.math.distance.EditDistance
- toString() - Method in class smile.math.distance.EuclideanDistance
- toString() - Method in class smile.math.distance.HammingDistance
- toString() - Method in class smile.math.distance.JaccardDistance
- toString() - Method in class smile.math.distance.JensenShannonDistance
- toString() - Method in class smile.math.distance.LeeDistance
- toString() - Method in class smile.math.distance.MahalanobisDistance
- toString() - Method in class smile.math.distance.ManhattanDistance
- toString() - Method in class smile.math.distance.MinkowskiDistance
- toString() - Method in class smile.math.distance.SparseChebyshevDistance
- toString() - Method in class smile.math.distance.SparseEuclideanDistance
- toString() - Method in class smile.math.distance.SparseManhattanDistance
- toString() - Method in class smile.math.distance.SparseMinkowskiDistance
- toString() - Method in class smile.math.kernel.BinarySparseLinearKernel
- toString() - Method in class smile.math.kernel.Gaussian
- toString() - Method in class smile.math.kernel.HellingerKernel
- toString() - Method in class smile.math.kernel.HyperbolicTangent
- toString() - Method in class smile.math.kernel.Laplacian
- toString() - Method in class smile.math.kernel.LinearKernel
- toString() - Method in class smile.math.kernel.Matern
- toString() - Method in class smile.math.kernel.PearsonKernel
- toString() - Method in class smile.math.kernel.Polynomial
- toString() - Method in class smile.math.kernel.SparseLinearKernel
- toString() - Method in class smile.math.kernel.ThinPlateSpline
- toString() - Method in class smile.math.matrix.fp32.IMatrix
- toString() - Method in class smile.math.matrix.fp32.SparseMatrix.Entry
- toString() - Method in class smile.math.matrix.IMatrix
- toString() - Method in class smile.math.matrix.SparseMatrix.Entry
- toString() - Method in class smile.math.rbf.GaussianRadialBasis
- toString() - Method in class smile.math.rbf.InverseMultiquadricRadialBasis
- toString() - Method in class smile.math.rbf.MultiquadricRadialBasis
- toString() - Method in class smile.math.rbf.ThinPlateRadialBasis
- toString() - Method in class smile.neighbor.BKTree
- toString() - Method in class smile.neighbor.CoverTree
- toString() - Method in class smile.neighbor.KDTree
- toString() - Method in class smile.neighbor.LinearSearch
- toString() - Method in record class smile.neighbor.lsh.PrH
-
Returns a string representation of this record class.
- toString() - Method in record class smile.neighbor.lsh.PrZ
-
Returns a string representation of this record class.
- toString() - Method in class smile.neighbor.LSH
- toString() - Method in class smile.neighbor.MPLSH
- toString() - Method in record class smile.neighbor.Neighbor
-
Returns a string representation of this record class.
- toString() - Method in class smile.nlp.Bigram
- toString() - Method in class smile.nlp.collocation.Bigram
- toString() - Method in class smile.nlp.collocation.NGram
- toString() - Method in class smile.nlp.NGram
- toString() - Method in class smile.nlp.SimpleText
- toString() - Method in class smile.plot.swing.Base
- toString() - Method in class smile.plot.vega.Axis
- toString() - Method in class smile.plot.vega.Background
- toString() - Method in class smile.plot.vega.Config
- toString() - Method in class smile.plot.vega.Data
- toString() - Method in class smile.plot.vega.DensityTransform
- toString() - Method in class smile.plot.vega.FacetField
- toString() - Method in class smile.plot.vega.Field
- toString() - Method in class smile.plot.vega.FormatConfig
- toString() - Method in class smile.plot.vega.ImputeTransform
- toString() - Method in class smile.plot.vega.Legend
- toString() - Method in class smile.plot.vega.LoessTransform
- toString() - Method in class smile.plot.vega.LookupData
- toString() - Method in class smile.plot.vega.Mark
- toString() - Method in class smile.plot.vega.PivotTransform
- toString() - Method in class smile.plot.vega.Projection
- toString() - Method in class smile.plot.vega.QuantileTransform
- toString() - Method in class smile.plot.vega.RegressionTransform
- toString() - Method in record class smile.plot.vega.SortField
-
Returns a string representation of this record class.
- toString() - Method in class smile.plot.vega.StackTransform
- toString() - Method in class smile.plot.vega.Transform
- toString() - Method in class smile.plot.vega.VegaLite
- toString() - Method in class smile.plot.vega.ViewConfig
- toString() - Method in class smile.plot.vega.WindowTransform
- toString() - Method in record class smile.plot.vega.WindowTransformField
-
Returns a string representation of this record class.
- toString() - Method in class smile.regression.GaussianProcessRegression.JointPrediction
- toString() - Method in class smile.regression.GaussianProcessRegression
- toString() - Method in class smile.regression.LinearModel
- toString() - Method in class smile.sequence.CRFLabeler
- toString() - Method in class smile.sequence.HMM
- toString() - Method in class smile.sequence.HMMLabeler
- toString() - Method in class smile.stat.distribution.BernoulliDistribution
- toString() - Method in class smile.stat.distribution.BetaDistribution
- toString() - Method in class smile.stat.distribution.BinomialDistribution
- toString() - Method in class smile.stat.distribution.ChiSquareDistribution
- toString() - Method in record class smile.stat.distribution.DiscreteMixture.Component
-
Returns a string representation of this record class.
- toString() - Method in class smile.stat.distribution.DiscreteMixture
- toString() - Method in class smile.stat.distribution.EmpiricalDistribution
- toString() - Method in class smile.stat.distribution.ExponentialDistribution
- toString() - Method in class smile.stat.distribution.FDistribution
- toString() - Method in class smile.stat.distribution.GammaDistribution
- toString() - Method in class smile.stat.distribution.GaussianDistribution
- toString() - Method in class smile.stat.distribution.GeometricDistribution
- toString() - Method in class smile.stat.distribution.HyperGeometricDistribution
- toString() - Method in class smile.stat.distribution.LogisticDistribution
- toString() - Method in class smile.stat.distribution.LogNormalDistribution
- toString() - Method in record class smile.stat.distribution.Mixture.Component
-
Returns a string representation of this record class.
- toString() - Method in class smile.stat.distribution.Mixture
- toString() - Method in class smile.stat.distribution.MultivariateGaussianDistribution
- toString() - Method in record class smile.stat.distribution.MultivariateMixture.Component
-
Returns a string representation of this record class.
- toString() - Method in class smile.stat.distribution.MultivariateMixture
- toString() - Method in class smile.stat.distribution.NegativeBinomialDistribution
- toString() - Method in class smile.stat.distribution.PoissonDistribution
- toString() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- toString() - Method in class smile.stat.distribution.TDistribution
- toString() - Method in class smile.stat.distribution.WeibullDistribution
- toString() - Method in record class smile.stat.hypothesis.ChiSqTest
-
Returns a string representation of this record class.
- toString() - Method in record class smile.stat.hypothesis.CorTest
-
Returns a string representation of this record class.
- toString() - Method in record class smile.stat.hypothesis.FTest
-
Returns a string representation of this record class.
- toString() - Method in record class smile.stat.hypothesis.KSTest
-
Returns a string representation of this record class.
- toString() - Method in record class smile.stat.hypothesis.TTest
-
Returns a string representation of this record class.
- toString() - Method in record class smile.swing.AlphaIcon
-
Returns a string representation of this record class.
- toString() - Method in class smile.taxonomy.Concept
- toString() - Method in class smile.taxonomy.TaxonomicDistance
- toString() - Method in class smile.timeseries.AR
- toString() - Method in class smile.timeseries.ARMA
- toString() - Method in class smile.timeseries.BoxTest
- toString() - Method in class smile.util.Array2D
- toString() - Method in record class smile.util.Bytes
-
Returns a string representation of this record class.
- toString() - Method in class smile.util.DoubleArrayList
- toString() - Method in class smile.util.IntArray2D
- toString() - Method in class smile.util.IntArrayList
- toString() - Method in record class smile.util.IntPair
-
Returns a string representation of this record class.
- toString() - Method in record class smile.util.SparseArray.Entry
-
Returns a string representation of this record class.
- toString() - Method in class smile.util.SparseArray
- toString() - Method in record class smile.util.Tuple2
-
Returns a string representation of this record class.
- toString() - Method in record class smile.validation.Bag
-
Returns a string representation of this record class.
- toString() - Method in record class smile.validation.ClassificationMetrics
-
Returns a string representation of this record class.
- toString() - Method in class smile.validation.ClassificationValidation
- toString() - Method in class smile.validation.ClassificationValidations
- toString() - Method in class smile.validation.metric.Accuracy
- toString() - Method in class smile.validation.metric.AdjustedMutualInformation
- toString() - Method in class smile.validation.metric.AdjustedRandIndex
- toString() - Method in class smile.validation.metric.AUC
- toString() - Method in record class smile.validation.metric.ConfusionMatrix
-
Returns a string representation of this record class.
- toString() - Method in class smile.validation.metric.Error
- toString() - Method in class smile.validation.metric.Fallout
- toString() - Method in class smile.validation.metric.FDR
- toString() - Method in class smile.validation.metric.FScore
- toString() - Method in class smile.validation.metric.LogLoss
- toString() - Method in class smile.validation.metric.MAD
- toString() - Method in class smile.validation.metric.MatthewsCorrelation
- toString() - Method in class smile.validation.metric.MSE
- toString() - Method in class smile.validation.metric.MutualInformation
- toString() - Method in class smile.validation.metric.NormalizedMutualInformation
- toString() - Method in class smile.validation.metric.Precision
- toString() - Method in class smile.validation.metric.R2
- toString() - Method in class smile.validation.metric.RandIndex
- toString() - Method in class smile.validation.metric.Recall
- toString() - Method in class smile.validation.metric.RMSE
- toString() - Method in class smile.validation.metric.RSS
- toString() - Method in class smile.validation.metric.Sensitivity
- toString() - Method in class smile.validation.metric.Specificity
- toString() - Method in record class smile.validation.RegressionMetrics
-
Returns a string representation of this record class.
- toString() - Method in class smile.validation.RegressionValidation
- toString() - Method in class smile.validation.RegressionValidations
- toString() - Method in record class smile.vision.layer.Conv2dNormActivation.Options
-
Returns a string representation of this record class.
- toString() - Method in class smile.vision.layer.Conv2dNormActivation
- toString() - Method in record class smile.vision.layer.MBConvConfig
-
Returns a string representation of this record class.
- toString(boolean) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the string representation of matrix.
- toString(boolean) - Method in class smile.math.matrix.IMatrix
-
Returns the string representation of matrix.
- toString(boolean) - Method in class smile.util.Array2D
-
Returns the string representation of matrix.
- toString(boolean) - Method in class smile.util.IntArray2D
-
Returns the string representation of matrix.
- toString(int) - Method in interface smile.data.DataFrame
-
Returns the string representation of top rows.
- toString(int) - Method in interface smile.data.Dataset
-
Returns the string representation of the dataset.
- toString(int) - Method in class smile.data.measure.CategoricalMeasure
-
Returns the string value of a level.
- toString(int) - Method in interface smile.data.Tuple
-
Returns the string representation of the value at position i.
- toString(int) - Method in interface smile.data.vector.BooleanVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.ByteVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.CharVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.DoubleVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.FloatVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.IntVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.LongVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.ShortVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.StringVector
-
Returns the string representation of vector.
- toString(int) - Method in interface smile.data.vector.Vector
-
Returns the string representation of vector.
- toString(int, boolean) - Method in interface smile.data.DataFrame
-
Returns the string representation of top rows.
- toString(int, int) - Method in interface smile.data.DataFrame
-
Returns the string representation of the value at position (i, j).
- toString(int, int) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the string representation of matrix.
- toString(int, int) - Method in class smile.math.matrix.IMatrix
-
Returns the string representation of matrix.
- toString(int, int) - Method in class smile.util.Array2D
-
Returns the string representation of matrix.
- toString(int, int) - Method in class smile.util.IntArray2D
-
Returns the string representation of matrix.
- toString(int, String) - Method in interface smile.data.DataFrame
-
Returns the string representation of the field value.
- toString(Object) - Method in class smile.data.measure.CategoricalMeasure
- toString(Object) - Method in interface smile.data.measure.Measure
-
Returns the string representation of an object in the measure.
- toString(Object) - Method in class smile.data.measure.NumericalMeasure
- toString(Object) - Method in class smile.data.type.ArrayType
- toString(Object) - Method in interface smile.data.type.DataType
-
Returns the string representation of a value of the type.
- toString(Object) - Method in class smile.data.type.DateTimeType
- toString(Object) - Method in class smile.data.type.DateType
- toString(Object) - Method in class smile.data.type.DoubleType
- toString(Object) - Method in class smile.data.type.FloatType
- toString(Object) - Method in class smile.data.type.ObjectType
- toString(Object) - Method in class smile.data.type.StructField
-
Returns the string representation of the field object.
- toString(Object) - Method in class smile.data.type.StructType
- toString(Object) - Method in class smile.data.type.TimeType
- toString(String) - Method in interface smile.data.Tuple
-
Returns the string representation of the field value.
- toString(StructType, boolean) - Method in class smile.base.cart.InternalNode
-
Returns the string representation of branch.
- toString(StructType, boolean) - Method in class smile.base.cart.NominalNode
- toString(StructType, boolean) - Method in class smile.base.cart.OrdinalNode
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.DecisionNode
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.InternalNode
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in interface smile.base.cart.Node
-
Adds the string representation (R's rpart format) to a collection.
- toString(StructType, StructField, InternalNode, int, BigInteger, List<String>) - Method in class smile.base.cart.RegressionNode
- toString(InformationValue[]) - Static method in record class smile.feature.selection.InformationValue
-
Returns a string representation of the array of information values.
- toStringArray() - Method in interface smile.data.vector.BaseVector
-
Returns a string array of this vector.
- toStringArray(String[]) - Method in interface smile.data.vector.BaseVector
-
Copies the vector value as string to the given array.
- toStrings(int) - Method in interface smile.data.DataFrame
-
Returns the string representation of top rows.
- toStrings(int, boolean) - Method in interface smile.data.DataFrame
-
Returns the string representation of top rows.
- toTensor(float[], float[], BufferedImage...) - Method in interface smile.vision.transform.Transform
-
Returns the tensor with NCHW shape [samples, channels, height, width] of the images.
- toTime() - Method in interface smile.data.vector.Vector
-
Returns a vector of LocalTime.
- toTime(String) - Method in interface smile.data.vector.StringVector
-
Returns a vector of LocalTime.
- toTime(DateTimeFormatter) - Method in interface smile.data.vector.StringVector
-
Returns a vector of LocalDate.
- toTransform(InformationValue[]) - Static method in record class smile.feature.selection.InformationValue
-
Returns the data transformation that covert feature value to its weight of evidence.
- Tournament(int, double) - Static method in interface smile.gap.Selection
-
Tournament Selection.
- tpmv(Layout, UPLO, Transpose, Diag, int, double[], double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular packed matrix.
- tpmv(Layout, UPLO, Transpose, Diag, int, double[], double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- tpmv(Layout, UPLO, Transpose, Diag, int, float[], float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular packed matrix.
- tpmv(Layout, UPLO, Transpose, Diag, int, float[], float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- tpmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular packed matrix.
- tpmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- tpmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular packed matrix.
- tpmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- trace() - Method in class smile.math.matrix.fp32.IMatrix
-
Returns the matrix trace.
- trace() - Method in class smile.math.matrix.IMatrix
-
Returns the matrix trace.
- train() - Method in class smile.deep.layer.LayerBlock
-
Sets the layer block in the training mode.
- train() - Method in class smile.deep.Model
-
Sets the model in the training mode.
- train(int, Optimizer, Loss, Dataset) - Method in class smile.deep.Model
-
Trains the model.
- train(int, Optimizer, Loss, Dataset, Dataset, String, Metric...) - Method in class smile.deep.Model
-
Trains the model.
- transform() - Method in class smile.plot.vega.VegaLite
-
Returns the data transformation object.
- transform() - Method in class smile.vision.VisionModel
-
Returns the associated image transform.
- transform(double[]) - Method in class smile.base.mlp.HiddenLayer
- transform(double[]) - Method in class smile.base.mlp.InputLayer
- transform(double[]) - Method in class smile.base.mlp.Layer
-
The activation or output function.
- transform(double[]) - Method in class smile.base.mlp.OutputLayer
- transform(double[]) - Method in class smile.wavelet.Wavelet
-
Discrete wavelet transform.
- Transform - Class in smile.plot.vega
-
View-level data transformations such as filter and new field calculation.
- Transform - Interface in smile.data.transform
-
Data transformation interface.
- Transform - Interface in smile.vision.transform
-
Transformation from image to tensor.
- Transformer - Class in smile.llm.llama
-
The Transformer model.
- Transformer(ModelArgs, Device) - Constructor for class smile.llm.llama.Transformer
-
Constructor.
- TransformerBlock - Class in smile.llm.llama
-
A block in Transformer model.
- TransformerBlock(int, ModelArgs) - Constructor for class smile.llm.llama.TransformerBlock
-
Constructor.
- translate(double) - Method in class smile.plot.vega.Axis
-
Sets the coordinate space translation offset for axis layout.
- translate(double, double) - Method in class smile.plot.vega.Projection
-
Sets the projection's translation offset.
- transpose() - Method in class smile.math.matrix.BigMatrix
-
Returns the transpose of matrix.
- transpose() - Method in class smile.math.matrix.fp32.Matrix
-
Returns the transpose of matrix.
- transpose() - Method in class smile.math.matrix.fp32.SparseMatrix
-
Returns the transpose of matrix.
- transpose() - Method in class smile.math.matrix.Matrix
-
Returns the transpose of matrix.
- transpose() - Method in class smile.math.matrix.SparseMatrix
-
Returns the transpose of matrix.
- transpose(boolean) - Method in class smile.math.matrix.BigMatrix
-
Returns the transpose of matrix.
- transpose(boolean) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the transpose of matrix.
- transpose(boolean) - Method in class smile.math.matrix.Matrix
-
Returns the transpose of matrix.
- transpose(double[][]) - Static method in class smile.math.MathEx
-
Returns the matrix transpose.
- transpose(long, long) - Method in class smile.deep.tensor.Tensor
-
Returns a tensor that is a transposed version of input.
- Transpose - Enum Class in smile.math.blas
-
Matrix transpose.
- TRANSPOSE - Enum constant in enum class smile.math.blas.Transpose
-
Transpose operation on the matrix.
- tree - Variable in class smile.classification.RandomForest.Model
-
The decision tree.
- tree - Variable in class smile.regression.RandomForest.Model
-
The decision tree.
- tree() - Method in class smile.clustering.HierarchicalClustering
-
Returns an n-1 by 2 matrix of which row i describes the merging of clusters at step i of the clustering.
- trees() - Method in class smile.anomaly.IsolationForest
-
Returns the isolation trees in the model.
- trees() - Method in class smile.classification.AdaBoost
-
Returns the decision trees.
- trees() - Method in class smile.classification.GradientTreeBoost
-
Returns the regression trees.
- trees() - Method in class smile.classification.RandomForest
- trees() - Method in interface smile.feature.importance.TreeSHAP
-
Returns the decision trees.
- trees() - Method in class smile.regression.GradientTreeBoost
- trees() - Method in class smile.regression.RandomForest
- TreeSHAP - Interface in smile.feature.importance
-
SHAP of ensemble tree methods.
- triangular() - Method in class smile.math.matrix.BigMatrix
-
Gets the flag if a triangular matrix has unit diagonal elements.
- triangular() - Method in class smile.math.matrix.fp32.Matrix
-
Gets the flag if a triangular matrix has unit diagonal elements.
- triangular() - Method in class smile.math.matrix.Matrix
-
Gets the flag if a triangular matrix has unit diagonal elements.
- triangular(Diag) - Method in class smile.math.matrix.BigMatrix
-
Sets/unsets if the matrix is triangular.
- triangular(Diag) - Method in class smile.math.matrix.fp32.Matrix
-
Sets/unsets if the matrix is triangular.
- triangular(Diag) - Method in class smile.math.matrix.Matrix
-
Sets/unsets if the matrix is triangular.
- Trie<K,
V> - Class in smile.nlp -
A trie, also called digital tree or prefix tree, is an ordered tree data structure that is used to store a dynamic set or associative array where the keys are usually strings.
- Trie() - Constructor for class smile.nlp.Trie
-
Constructor.
- Trie(int) - Constructor for class smile.nlp.Trie
-
Constructor.
- Trie.Node - Class in smile.nlp
-
The nodes in the trie.
- trim() - Method in class smile.util.DoubleArrayList
-
Trims the capacity to be the list's current size.
- trim() - Method in class smile.util.IntArrayList
-
Trims the capacity to be the list's current size.
- trim(int) - Method in class smile.classification.AdaBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.classification.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.GradientTreeBoost
-
Trims the tree model set to a smaller size in case of over-fitting.
- trim(int) - Method in class smile.regression.RandomForest
-
Trims the tree model set to a smaller size in case of over-fitting.
- tripleMarginRanking(Tensor, Tensor, Tensor) - Static method in interface smile.deep.Loss
-
Triplet Margin Ranking Loss Function.
- triu(long) - Method in class smile.deep.tensor.Tensor
-
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
- triu_(long) - Method in class smile.deep.tensor.Tensor
-
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
- trmv(Layout, UPLO, Transpose, Diag, int, double[], int, double[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular matrix.
- trmv(Layout, UPLO, Transpose, Diag, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- trmv(Layout, UPLO, Transpose, Diag, int, float[], int, float[], int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular matrix.
- trmv(Layout, UPLO, Transpose, Diag, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- trmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular matrix.
- trmv(Layout, UPLO, Transpose, Diag, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- trmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular matrix.
- trmv(Layout, UPLO, Transpose, Diag, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- trmv(Layout, UPLO, Transpose, Diag, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.BLAS
-
Performs the matrix-vector operation using a triangular matrix.
- trmv(Layout, UPLO, Transpose, Diag, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- trtrs(Layout, UPLO, Transpose, Diag, int, int, double[], int, double[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a triangular system of the form
- trtrs(Layout, UPLO, Transpose, Diag, int, int, double[], int, double[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- trtrs(Layout, UPLO, Transpose, Diag, int, int, float[], int, float[], int) - Method in interface smile.math.blas.LAPACK
-
Solves a triangular system of the form
- trtrs(Layout, UPLO, Transpose, Diag, int, int, float[], int, float[], int) - Method in class smile.math.blas.openblas.OpenBLAS
- trtrs(Layout, UPLO, Transpose, Diag, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a triangular system of the form
- trtrs(Layout, UPLO, Transpose, Diag, int, int, DoubleBuffer, int, DoubleBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- trtrs(Layout, UPLO, Transpose, Diag, int, int, FloatBuffer, int, FloatBuffer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a triangular system of the form
- trtrs(Layout, UPLO, Transpose, Diag, int, int, FloatBuffer, int, FloatBuffer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- trtrs(Layout, UPLO, Transpose, Diag, int, int, DoublePointer, int, DoublePointer, int) - Method in interface smile.math.blas.LAPACK
-
Solves a triangular system of the form
- trtrs(Layout, UPLO, Transpose, Diag, int, int, DoublePointer, int, DoublePointer, int) - Method in class smile.math.blas.openblas.OpenBLAS
- trueChild() - Method in class smile.base.cart.InternalNode
-
Returns the true branch child.
- truth - Variable in class smile.validation.ClassificationValidation
-
The true class labels of validation data.
- truth - Variable in class smile.validation.RegressionValidation
-
The true response variable of validation data.
- tryDecode(int[]) - Method in class smile.llm.tokenizer.Tiktoken
- tryDecode(int[]) - Method in interface smile.llm.tokenizer.Tokenizer
-
Try to decode a list of token IDs into a string.
- TSNE - Class in smile.manifold
-
The t-distributed stochastic neighbor embedding.
- TSNE(double[][], int) - Constructor for class smile.manifold.TSNE
-
Constructor.
- TSNE(double[][], int, double, double, int) - Constructor for class smile.manifold.TSNE
-
Constructor.
- tsp() - Method in class smile.graph.Graph
-
Returns the optimal travelling salesman problem (TSP) tour with branch and bound algorithm.
- tsv(String, Map<String, String>) - Method in class smile.plot.vega.Data
-
Loads a tab-separated values (TSV) file
- tt(BigMatrix) - Method in class smile.math.matrix.BigMatrix
-
Returns matrix multiplication
A' * B'
. - tt(Matrix) - Method in class smile.math.matrix.fp32.Matrix
-
Returns matrix multiplication
A' * B'
. - tt(Matrix) - Method in class smile.math.matrix.Matrix
-
Returns matrix multiplication
A' * B'
. - ttest() - Method in class smile.regression.LinearModel
-
Returns the t-test of the coefficients (including intercept).
- ttest() - Method in class smile.timeseries.AR
-
Returns the t-test of the coefficients (including intercept).
- ttest() - Method in class smile.timeseries.ARMA
-
Returns the t-test of the coefficients (including intercept).
- TTest - Record Class in smile.stat.hypothesis
-
Student's t test.
- TTest(String, double, double, double) - Constructor for record class smile.stat.hypothesis.TTest
-
Creates an instance of a
TTest
record class. - Tuple - Interface in smile.data
-
A tuple is an immutable finite ordered list (sequence) of elements.
- Tuple2<T1,
T2> - Record Class in smile.util -
A tuple of 2 elements.
- Tuple2(T1, T2) - Constructor for record class smile.util.Tuple2
-
Creates an instance of a
Tuple2
record class. - TURQUOISE - Static variable in interface smile.plot.swing.Palette
- tv(double[]) - Method in class smile.math.matrix.IMatrix
-
Returns Matrix-vector multiplication
A' * x
. - tv(double[], double[]) - Method in class smile.math.matrix.IMatrix
-
Matrix-vector multiplication
y = A' * x
. - tv(double[], int, int) - Method in class smile.math.matrix.BandMatrix
- tv(double[], int, int) - Method in class smile.math.matrix.BigMatrix
- tv(double[], int, int) - Method in class smile.math.matrix.IMatrix
-
Matrix-vector multiplication
A' * x
. - tv(double[], int, int) - Method in class smile.math.matrix.Matrix
- tv(double[], int, int) - Method in class smile.math.matrix.SparseMatrix
- tv(double[], int, int) - Method in class smile.math.matrix.SymmMatrix
- tv(double, double[], double, double[]) - Method in class smile.math.matrix.IMatrix
-
Matrix-vector multiplication.
- tv(float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Returns Matrix-vector multiplication
A' * x
. - tv(float[], float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Matrix-vector multiplication
y = A' * x
. - tv(float[], int, int) - Method in class smile.math.matrix.fp32.BandMatrix
- tv(float[], int, int) - Method in class smile.math.matrix.fp32.IMatrix
-
Matrix-vector multiplication
A' * x
. - tv(float[], int, int) - Method in class smile.math.matrix.fp32.Matrix
- tv(float[], int, int) - Method in class smile.math.matrix.fp32.SparseMatrix
- tv(float[], int, int) - Method in class smile.math.matrix.fp32.SymmMatrix
- tv(float, float[], float, float[]) - Method in class smile.math.matrix.fp32.IMatrix
-
Matrix-vector multiplication.
- TWCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
Transformed Weight-normalized Complement Naive Bayes.
- TWO_POINT - Enum constant in enum class smile.gap.Crossover
-
Two point crossover - two crossover point are selected, binary string from beginning of chromosome to the first crossover point is copied from one parent, the part from the first to the second crossover point is copied from the second parent and the rest is copied from the first parent.
- type - Variable in class smile.data.type.StructField
-
Field data type.
- type - Variable in class smile.timeseries.BoxTest
-
The type of test.
- type() - Method in class smile.data.measure.CategoricalMeasure
-
Returns the data type that is suitable for this measure scale.
- type() - Method in interface smile.data.vector.BaseVector
-
Returns the data type of elements.
- type() - Method in interface smile.data.vector.BooleanVector
- type() - Method in interface smile.data.vector.ByteVector
- type() - Method in interface smile.data.vector.CharVector
- type() - Method in interface smile.data.vector.DoubleVector
- type() - Method in interface smile.data.vector.FloatVector
- type() - Method in interface smile.data.vector.IntVector
- type() - Method in interface smile.data.vector.LongVector
- type() - Method in interface smile.data.vector.ShortVector
- type() - Method in class smile.deep.tensor.Device
-
Returns the device type.
- type(int) - Method in class smile.data.type.StructType
-
Returns the field data type.
- type(String) - Method in class smile.plot.vega.FacetField
-
Sets the field's type of measurement.
- type(String) - Method in class smile.plot.vega.Field
-
Sets the field's type of measurement.
- type(String) - Method in class smile.plot.vega.Legend
-
Sets the type of the legend.
- types() - Method in interface smile.data.DataFrame
-
Returns the column data types.
- types() - Method in interface smile.data.Tuple
-
Returns the field data types.
- types() - Method in class smile.data.type.StructType
-
Returns the field data types.
U
- u() - Method in record class smile.graph.Graph.Edge
-
Returns the value of the
u
record component. - u() - Method in record class smile.neighbor.lsh.PrH
-
Returns the value of the
u
record component. - U - Variable in class smile.math.matrix.BigMatrix.SVD
-
The left singular vectors U.
- U - Variable in class smile.math.matrix.fp32.Matrix.SVD
-
The left singular vectors U.
- U - Variable in class smile.math.matrix.Matrix.SVD
-
The left singular vectors U.
- UH - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Interjection.
- ulp(String) - Static method in interface smile.data.formula.Terms
-
The
ulp(x)
term. - ulp(Term) - Static method in interface smile.data.formula.Terms
-
The
ulp(x)
term. - UMAP - Class in smile.manifold
-
Uniform Manifold Approximation and Projection.
- UMAP() - Constructor for class smile.manifold.UMAP
- umatrix() - Method in class smile.vq.SOM
-
Calculates the unified distance matrix (u-matrix) for visualization.
- unboxed() - Method in interface smile.data.type.DataType
-
Returns the unboxed data type if this is a boxed primitive type.
- unboxed() - Method in class smile.data.type.StructType
-
Updates the field type to the primitive one.
- unescape(String) - Static method in interface smile.util.Strings
-
Unescapes a string that contains standard Java escape sequences.
- UNIFORM - Enum constant in enum class smile.gap.Crossover
-
Uniform crossover - bits are randomly copied from the first or from the second parent.
- union(DataFrame...) - Method in interface smile.data.DataFrame
-
Unions data frames vertically by rows.
- union(DataFrame...) - Method in class smile.data.IndexDataFrame
- unique() - Method in class smile.nlp.SimpleText
- unique() - Method in interface smile.nlp.TextTerms
-
Returns the iterator of unique words.
- unique(int[]) - Static method in class smile.math.MathEx
-
Find unique elements of vector.
- unique(String[]) - Static method in class smile.math.MathEx
-
Find unique elements of vector.
- UNIT - Enum constant in enum class smile.math.blas.Diag
-
Unit triangular.
- unitize() - Method in interface smile.data.SparseDataset
-
Unitize each row so that L2 norm of x = 1.
- unitize(double[]) - Static method in class smile.math.MathEx
-
Unitize an array so that L2 norm of array = 1.
- unitize1() - Method in interface smile.data.SparseDataset
-
Unitize each row so that L1 norm of x is 1.
- unitize1(double[]) - Static method in class smile.math.MathEx
-
Unitize an array so that L1 norm of array is 1.
- unitize2(double[]) - Static method in class smile.math.MathEx
-
Unitize an array so that L2 norm of array = 1.
- UniversalGenerator - Class in smile.math.random
-
The so-called "Universal Generator" based on multiplicative congruential method, which originally appeared in "Toward a Universal Random Number Generator" by Marsaglia, Zaman and Tsang.
- UniversalGenerator() - Constructor for class smile.math.random.UniversalGenerator
-
Initialize Random with default seed.
- UniversalGenerator(int) - Constructor for class smile.math.random.UniversalGenerator
-
Initialize Random with a specified integer seed
- UniversalGenerator(long) - Constructor for class smile.math.random.UniversalGenerator
-
Initialize Random with a specified long seed
- unsqueeze(long) - Method in class smile.deep.tensor.Tensor
-
Returns a new tensor with a dimension of size one inserted at the specified position.
- update(double) - Method in class smile.math.matrix.SparseMatrix.Entry
-
Update the entry value in the matrix.
- update(double[]) - Method in class smile.feature.extraction.GHA
-
Update the model with a new sample.
- update(double[]) - Method in class smile.vq.BIRCH
- update(double[]) - Method in class smile.vq.GrowingNeuralGas
- update(double[]) - Method in class smile.vq.NeuralGas
- update(double[]) - Method in class smile.vq.NeuralMap
- update(double[]) - Method in class smile.vq.SOM
- update(double[]) - Method in interface smile.vq.VectorQuantizer
-
Update the codebook with a new observation.
- update(double[][]) - Method in class smile.feature.extraction.GHA
-
Update the model with a set of samples.
- update(double[][], double[]) - Method in class smile.regression.MLP
-
Updates the model with a mini-batch.
- update(double[][], int[]) - Method in class smile.classification.MLP
-
Updates the model with a mini-batch.
- update(double[], double) - Method in class smile.regression.LinearModel
-
Growing window recursive least squares with lambda = 1.
- update(double[], double) - Method in class smile.regression.MLP
-
Updates the model with a single sample.
- update(double[], double) - Method in class smile.vq.hebb.Neuron
-
Updates the reference vector by w += eps * (x - w).
- update(double[], double, double) - Method in class smile.regression.LinearModel
-
Recursive least squares.
- update(double[], int) - Method in class smile.classification.LogisticRegression.Binomial
- update(double[], int) - Method in class smile.classification.LogisticRegression.Multinomial
- update(double[], int) - Method in class smile.classification.MLP
-
Updates the model with a single sample.
- update(double[], E) - Method in class smile.neighbor.MutableLSH
-
Update an entry with new key.
- update(float) - Method in class smile.math.matrix.fp32.SparseMatrix.Entry
-
Update the entry value in the matrix.
- update(int) - Method in class smile.base.mlp.MultilayerPerceptron
-
Updates the weights for mini-batch training.
- update(int) - Method in class smile.manifold.TSNE
-
Performs additional iterations.
- update(int[][], int) - Method in class smile.sequence.HMM
-
Updates the HMM by the Baum-Welch algorithm.
- update(int[][], int[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
- update(int[], int) - Method in class smile.classification.DiscreteNaiveBayes
-
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
- update(int[], int) - Method in class smile.classification.Maxent.Binomial
- update(int[], int) - Method in class smile.classification.Maxent.Multinomial
- update(int, double) - Method in class smile.math.Complex.Array
-
Sets the i-th element with a real value.
- update(int, double, double, double, double, double) - Method in class smile.base.mlp.InputLayer
- update(int, double, double, double, double, double) - Method in class smile.base.mlp.Layer
-
Adjust network weights by back-propagation algorithm.
- update(int, int, double) - Method in class smile.math.matrix.IMatrix
-
Sets
A[i,j] = x
for Scala users. - update(int, int, float) - Method in class smile.math.matrix.fp32.IMatrix
-
Sets
A[i,j] = x
for Scala users. - update(int, Complex) - Method in class smile.math.Complex.Array
-
Sets the i-th element.
- update(String) - Method in class smile.data.SQL
-
Executes an INSERT, UPDATE, or DELETE statement.
- update(DataFrame) - Method in class smile.feature.extraction.GHA
-
Update the model with a new data frame.
- update(DataFrame) - Method in class smile.regression.LinearModel
-
Online update the regression model with a new data frame.
- update(Dataset<T, Double>) - Method in interface smile.regression.Regression
-
Updates the model with a mini-batch of new samples.
- update(Dataset<T, Integer>) - Method in interface smile.classification.Classifier
-
Updates the model with a mini-batch of new samples.
- update(Tuple) - Method in class smile.feature.extraction.GHA
-
Update the model with a new sample.
- update(Tuple) - Method in class smile.regression.LinearModel
-
Online update the regression model with a new training instance.
- update(Tensor, Tensor) - Method in class smile.deep.metric.Accuracy
- update(Tensor, Tensor) - Method in interface smile.deep.metric.Metric
-
Updates the metric states with input data.
- update(Tensor, Tensor) - Method in class smile.deep.metric.Precision
- update(Tensor, Tensor) - Method in class smile.deep.metric.Recall
- update(ArrayElementFunction) - Method in class smile.util.SparseArray
-
Updates each nonzero entry.
- update(SparseArray[], int[]) - Method in class smile.classification.DiscreteNaiveBayes
-
Batch learning of naive Bayes classifier on sequences, which are modeled as a bag of words.
- update(SparseArray, int) - Method in class smile.classification.DiscreteNaiveBayes
-
Online learning of naive Bayes classifier on a sequence, which is modeled as a bag of words.
- update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Binomial
- update(SparseArray, int) - Method in class smile.classification.SparseLogisticRegression.Multinomial
- update(T[][], int) - Method in class smile.sequence.HMMLabeler
-
Updates the HMM by the Baum-Welch algorithm.
- update(T[][], int, ToIntFunction<T>) - Method in class smile.sequence.HMM
-
Updates the HMM by the Baum-Welch algorithm.
- update(T[], double[]) - Method in interface smile.regression.Regression
-
Updates the model with a mini-batch of new samples.
- update(T[], int[]) - Method in interface smile.classification.Classifier
-
Updates the model with a mini-batch of new samples.
- update(T, double) - Method in interface smile.regression.Regression
-
Online update the classifier with a new training instance.
- update(T, int) - Method in interface smile.classification.Classifier
-
Online update the classifier with a new training instance.
- updateEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyList
- updateEdges(int, ArrayElementFunction) - Method in class smile.graph.AdjacencyMatrix
- updateEdges(int, ArrayElementFunction) - Method in class smile.graph.Graph
-
Updates the edge weights of a vertex.
- UPGMALinkage - Class in smile.clustering.linkage
-
Unweighted Pair Group Method with Arithmetic mean (also known as average linkage).
- UPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMALinkage
-
Constructor.
- UPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMALinkage
-
Constructor.
- UPGMCLinkage - Class in smile.clustering.linkage
-
Unweighted Pair Group Method using Centroids (also known as centroid linkage).
- UPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
-
Constructor.
- UPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.UPGMCLinkage
-
Constructor.
- uplo() - Method in class smile.math.matrix.BandMatrix
-
Gets the format of packed matrix.
- uplo() - Method in class smile.math.matrix.BigMatrix
-
Gets the format of packed matrix.
- uplo() - Method in class smile.math.matrix.fp32.BandMatrix
-
Gets the format of packed matrix.
- uplo() - Method in class smile.math.matrix.fp32.Matrix
-
Gets the format of packed matrix.
- uplo() - Method in class smile.math.matrix.fp32.SymmMatrix
-
Gets the format of packed matrix.
- uplo() - Method in class smile.math.matrix.Matrix
-
Gets the format of packed matrix.
- uplo() - Method in class smile.math.matrix.SymmMatrix
-
Gets the format of packed matrix.
- uplo(UPLO) - Method in class smile.math.matrix.BandMatrix
-
Sets the format of symmetric band matrix.
- uplo(UPLO) - Method in class smile.math.matrix.BigMatrix
-
Sets the format of packed matrix.
- uplo(UPLO) - Method in class smile.math.matrix.fp32.BandMatrix
-
Sets the format of symmetric band matrix.
- uplo(UPLO) - Method in class smile.math.matrix.fp32.Matrix
-
Sets the format of packed matrix.
- uplo(UPLO) - Method in class smile.math.matrix.Matrix
-
Sets the format of packed matrix.
- UPLO - Enum Class in smile.math.blas
-
The format of packed matrix storage.
- UPPER - Enum constant in enum class smile.math.blas.UPLO
-
Upper triangle is stored.
- url(String) - Method in class smile.plot.vega.Data
-
Sets the url of the data source.
- URL - Static variable in interface smile.util.Regex
-
Internet URLs.
- user - Enum constant in enum class smile.llm.Role
-
End user.
- usermeta(JsonNode) - Method in class smile.plot.vega.Concat
- usermeta(JsonNode) - Method in class smile.plot.vega.Facet
- usermeta(JsonNode) - Method in class smile.plot.vega.Repeat
- usermeta(JsonNode) - Method in class smile.plot.vega.VegaLite
-
Optional metadata that will be passed to Vega.
- usermeta(JsonNode) - Method in class smile.plot.vega.View
- usermeta(Object) - Method in class smile.plot.vega.Concat
- usermeta(Object) - Method in class smile.plot.vega.Facet
- usermeta(Object) - Method in class smile.plot.vega.Repeat
- usermeta(Object) - Method in class smile.plot.vega.VegaLite
-
Optional metadata that will be passed to Vega.
- usermeta(Object) - Method in class smile.plot.vega.View
V
- v() - Method in record class smile.graph.Graph.Edge
-
Returns the value of the
v
record component. - V - Variable in class smile.math.matrix.BigMatrix.SVD
-
The right singular vectors V.
- V - Variable in class smile.math.matrix.fp32.Matrix.SVD
-
The right singular vectors V.
- V - Variable in class smile.math.matrix.Matrix.SVD
-
The right singular vectors V.
- V2L() - Static method in class smile.vision.EfficientNet
-
EfficientNet-V2_L (largest) model.
- V2L(String) - Static method in class smile.vision.EfficientNet
-
EfficientNet-V2_L (largest) model.
- V2M() - Static method in class smile.vision.EfficientNet
-
EfficientNet-V2_M (larger) model.
- V2M(String) - Static method in class smile.vision.EfficientNet
-
EfficientNet-V2_M (larger) model.
- V2S() - Static method in class smile.vision.EfficientNet
-
EfficientNet-V2_S (baseline) model.
- V2S(String) - Static method in class smile.vision.EfficientNet
-
EfficientNet-V2_S (baseline) model.
- val(boolean) - Static method in interface smile.data.formula.Terms
-
Returns a constant boolean term.
- val(byte) - Static method in interface smile.data.formula.Terms
-
Returns a constant byte term.
- val(char) - Static method in interface smile.data.formula.Terms
-
Returns a constant char term.
- val(double) - Static method in interface smile.data.formula.Terms
-
Returns a constant double precision floating number term.
- val(float) - Static method in interface smile.data.formula.Terms
-
Returns a constant single precision floating number term.
- val(int) - Static method in interface smile.data.formula.Terms
-
Returns a constant integer term.
- val(long) - Static method in interface smile.data.formula.Terms
-
Returns a constant long integer term.
- val(short) - Static method in interface smile.data.formula.Terms
-
Returns a constant short integer term.
- val(Object) - Static method in interface smile.data.formula.Terms
-
Returns a constant object term.
- valid(String) - Static method in class smile.plot.vega.Predicate
-
Test if a field is valid, meaning it is neither null nor NaN.
- value - Variable in class smile.util.MutableInt
-
The integer value.
- value() - Method in enum class smile.deep.tensor.DeviceType
-
Returns the byte value of device type, which is compatible with PyTorch.
- value() - Method in record class smile.neighbor.Neighbor
-
Returns the value of the
value
record component. - value() - Method in record class smile.util.SparseArray.Entry
-
Returns the value of the
value
record component. - value(JsonNode) - Method in class smile.plot.vega.ImputeTransform
-
Sets the field value to use when the imputation method is "value".
- VALUE - Enum constant in enum class smile.math.blas.EigenRange
-
All eigenvalues in the half-open interval (VL,VU] will be found.
- valueOf(int) - Method in class smile.util.IntSet
-
Maps an index to the corresponding value.
- valueOf(String) - Static method in enum class smile.base.cart.Loss.Type
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in interface smile.base.cart.Loss
-
Parses the loss.
- valueOf(String) - Static method in enum class smile.base.cart.SplitRule
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.base.mlp.Cost
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.base.mlp.OutputFunction
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.data.CategoricalEncoder
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.data.formula.DateFeature
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Method in class smile.data.measure.CategoricalMeasure
- valueOf(String) - Method in interface smile.data.measure.Measure
-
Returns a measurement value object represented by the argument string s.
- valueOf(String) - Method in class smile.data.measure.NumericalMeasure
- valueOf(String) - Method in class smile.data.type.ArrayType
- valueOf(String) - Method in class smile.data.type.BooleanType
- valueOf(String) - Method in class smile.data.type.ByteType
- valueOf(String) - Method in class smile.data.type.CharType
- valueOf(String) - Static method in enum class smile.data.type.DataType.ID
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Method in interface smile.data.type.DataType
-
Returns the value from its string representation.
- valueOf(String) - Method in class smile.data.type.DateTimeType
- valueOf(String) - Method in class smile.data.type.DateType
- valueOf(String) - Method in class smile.data.type.DecimalType
- valueOf(String) - Method in class smile.data.type.DoubleType
- valueOf(String) - Method in class smile.data.type.FloatType
- valueOf(String) - Method in class smile.data.type.IntegerType
- valueOf(String) - Method in class smile.data.type.LongType
- valueOf(String) - Method in class smile.data.type.ObjectType
- valueOf(String) - Method in class smile.data.type.ShortType
- valueOf(String) - Method in class smile.data.type.StringType
- valueOf(String) - Method in class smile.data.type.StructField
-
Returns the object value of string.
- valueOf(String) - Method in class smile.data.type.StructType
- valueOf(String) - Method in class smile.data.type.TimeType
- valueOf(String) - Static method in enum class smile.deep.metric.Averaging
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.deep.tensor.DeviceType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.deep.tensor.Layout
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.deep.tensor.ScalarType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.feature.transform.Normalizer.Norm
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.gap.Crossover
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.io.JSON.Mode
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.llm.FinishReason
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.llm.Role
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.Diag
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.EigenRange
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.EVDJob
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.Layout
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.Side
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.SVDJob
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.Transpose
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.blas.UPLO
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.matrix.ARPACK.AsymmOption
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.matrix.ARPACK.SymmOption
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.math.matrix.fp32.ARPACK.SymmOption
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.nlp.dictionary.EnglishDictionary
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.nlp.dictionary.EnglishStopWords
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.nlp.pos.PennTreebankPOS
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.plot.swing.Line.Style
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.timeseries.AR.Method
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.timeseries.BoxTest.Type
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.validation.metric.Averaging
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
Returns the enum constant of this class with the specified name.
- values - Variable in class smile.util.IntSet
-
Map of index to original values.
- values() - Static method in enum class smile.base.cart.Loss.Type
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.base.cart.SplitRule
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.base.mlp.Cost
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.base.mlp.OutputFunction
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.classification.DiscreteNaiveBayes.Model
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.data.CategoricalEncoder
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.data.formula.DateFeature
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Method in class smile.data.measure.CategoricalMeasure
-
Returns the valid value set.
- values() - Static method in enum class smile.data.type.DataType.ID
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.deep.metric.Averaging
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.deep.tensor.DeviceType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.deep.tensor.Layout
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.deep.tensor.ScalarType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.feature.transform.Normalizer.Norm
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.gap.Crossover
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.io.JSON.Mode
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.llm.FinishReason
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.llm.Role
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.Diag
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.EigenRange
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.EVDJob
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.Layout
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.Side
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.SVDJob
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.Transpose
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.blas.UPLO
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.matrix.ARPACK.AsymmOption
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.matrix.ARPACK.SymmOption
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.matrix.fp32.ARPACK.AsymmOption
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.math.matrix.fp32.ARPACK.SymmOption
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Method in class smile.neighbor.MutableLSH
-
Returns the values.
- values() - Static method in enum class smile.nlp.dictionary.EnglishDictionary
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.nlp.dictionary.EnglishStopWords
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.nlp.pos.PennTreebankPOS
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.plot.swing.Line.Style
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.timeseries.AR.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.timeseries.BoxTest.Type
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.validation.metric.AdjustedMutualInformation.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.validation.metric.Averaging
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class smile.validation.metric.NormalizedMutualInformation.Method
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values(String) - Method in class smile.plot.vega.Data
-
Sets an array describing the data source.
- values(String...) - Method in class smile.plot.vega.Legend
-
Sets the explicitly set the visible legend values.
- values(List<T>) - Method in class smile.plot.vega.Data
-
Sets a list describing the data source.
- values(T[]) - Method in class smile.plot.vega.Data
-
Sets an array describing the data source.
- valueStream() - Method in class smile.util.SparseArray
-
Returns the stream of the values of nonzero entries.
- valueToString(Object) - Method in class smile.swing.text.FloatArrayFormatter
- valueToString(Object) - Method in class smile.swing.text.IntegerArrayFormatter
- var - Variable in class smile.neighbor.lsh.NeighborHashValueModel
-
The variance of hash values of neighbors.
- var(double[]) - Static method in class smile.math.MathEx
-
Returns the variance of an array.
- var(float[]) - Static method in class smile.math.MathEx
-
Returns the variance of an array.
- var(int[]) - Static method in class smile.math.MathEx
-
Returns the variance of an array.
- Variable - Record Class in smile.data.formula
-
A variable in the formula.
- Variable(String) - Constructor for record class smile.data.formula.Variable
-
Creates an instance of a
Variable
record class. - variables() - Method in class smile.data.formula.AbstractBiFunction
- variables() - Method in class smile.data.formula.AbstractFunction
- variables() - Method in class smile.data.formula.Constant
- variables() - Method in class smile.data.formula.Date
- variables() - Method in class smile.data.formula.Delete
- variables() - Method in class smile.data.formula.Dot
- variables() - Method in class smile.data.formula.FactorCrossing
- variables() - Method in class smile.data.formula.FactorInteraction
- variables() - Method in record class smile.data.formula.Intercept
- variables() - Method in interface smile.data.formula.Term
-
Returns the set of variables used in this term.
- variables() - Method in record class smile.data.formula.Variable
- variance() - Method in class smile.feature.extraction.PCA
-
Returns the principal component variances, ordered from largest to smallest, which are the eigenvalues of the covariance or correlation matrix of learning data.
- variance() - Method in class smile.feature.extraction.ProbabilisticPCA
-
Returns the variance of noise.
- variance() - Method in class smile.stat.distribution.BernoulliDistribution
- variance() - Method in class smile.stat.distribution.BetaDistribution
- variance() - Method in class smile.stat.distribution.BinomialDistribution
- variance() - Method in class smile.stat.distribution.ChiSquareDistribution
- variance() - Method in class smile.stat.distribution.DiscreteMixture
- variance() - Method in interface smile.stat.distribution.Distribution
-
Returns the variance of distribution.
- variance() - Method in class smile.stat.distribution.EmpiricalDistribution
- variance() - Method in class smile.stat.distribution.ExponentialDistribution
- variance() - Method in class smile.stat.distribution.FDistribution
- variance() - Method in class smile.stat.distribution.GammaDistribution
- variance() - Method in class smile.stat.distribution.GaussianDistribution
- variance() - Method in class smile.stat.distribution.GeometricDistribution
- variance() - Method in class smile.stat.distribution.HyperGeometricDistribution
- variance() - Method in class smile.stat.distribution.KernelDensity
- variance() - Method in class smile.stat.distribution.LogisticDistribution
- variance() - Method in class smile.stat.distribution.LogNormalDistribution
- variance() - Method in class smile.stat.distribution.Mixture
- variance() - Method in class smile.stat.distribution.NegativeBinomialDistribution
- variance() - Method in class smile.stat.distribution.PoissonDistribution
- variance() - Method in class smile.stat.distribution.ShiftedGeometricDistribution
- variance() - Method in class smile.stat.distribution.TDistribution
- variance() - Method in class smile.stat.distribution.WeibullDistribution
- variance() - Method in class smile.timeseries.AR
-
Returns the residual variance.
- variance() - Method in class smile.timeseries.ARMA
-
Returns the residual variance.
- variance(double) - Method in interface smile.glm.model.Model
-
The variance function.
- varianceProportion() - Method in class smile.feature.extraction.PCA
-
Returns the proportion of variance contained in each principal component, ordered from largest to smallest.
- variances() - Method in class smile.manifold.KPCA
-
Returns the eigenvalues of kernel principal components, ordered from largest to smallest.
- Variogram - Interface in smile.interpolation.variogram
-
In spatial statistics the theoretical variogram
2γ(x,y)
is a function describing the degree of spatial dependence of a spatial random field or stochastic processZ(x)
. - VB - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Verb, base form.
- VBD - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Verb, past tense.
- VBG - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Verb, gerund or present participle.
- VBN - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Verb, past participle.
- VBP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Verb, non-3rd person singular present.
- VBZ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Verb, 3rd person singular present.
- vector(int) - Method in interface smile.data.DataFrame
-
Selects column based on the column index.
- vector(int) - Method in class smile.data.IndexDataFrame
- vector(Enum<?>) - Method in interface smile.data.DataFrame
-
Selects column using an enum value.
- vector(String) - Method in interface smile.data.DataFrame
-
Selects column based on the column name.
- Vector<T> - Interface in smile.data.vector
-
An immutable generic vector.
- VectorQuantizer - Interface in smile.vq
-
Vector quantizer with competitive learning.
- vectors - Variable in class smile.nlp.embedding.Word2Vec
-
The vector space.
- vectors() - Method in class smile.base.svm.KernelMachine
-
Returns the support vectors of kernel machines.
- VECTORS - Enum constant in enum class smile.math.blas.EVDJob
-
Both eigen values and vectors are computed.
- VegaLite - Class in smile.plot.vega
-
Vega-Lite specifications are JSON objects that describe a diverse range of interactive visualizations.
- VegaLite() - Constructor for class smile.plot.vega.VegaLite
-
Constructor.
- VertexVisitor - Interface in smile.graph
-
A visitor is encapsulation of some operation on graph vertices during traveling graph (DFS or BFS).
- vertical(VegaLite...) - Static method in class smile.plot.vega.Concat
-
Returns a vertical concatenation of views.
- view(long...) - Method in class smile.deep.tensor.Tensor
-
Returns a view tensor that shares the same underlying data with this base tensor.
- View - Class in smile.plot.vega
-
Single view specification, which describes a view that uses a single mark type to visualize the data.
- View() - Constructor for class smile.plot.vega.View
-
Constructor.
- View(String) - Constructor for class smile.plot.vega.View
-
Constructor.
- viewAsComplex() - Method in class smile.deep.tensor.Tensor
-
Returns a view of tensor as a complex tensor.
- viewAsReal() - Method in class smile.deep.tensor.Tensor
-
Returns a view of tensor as a real tensor.
- ViewComposition - Interface in smile.plot.vega
-
All view composition specifications (layer, facet, concat, and repeat) can have the resolve property for scale, axes, and legend resolution.
- viewConfig() - Method in class smile.plot.vega.VegaLite
-
Returns the configuration object defining the style of a single view visualization.
- ViewConfig - Class in smile.plot.vega
-
The style of a single view visualization.
- ViewLayoutComposition - Interface in smile.plot.vega
-
All view layout composition (facet, concat, and repeat) can have the following layout properties: align, bounds, center, spacing.
- VIOLET_RED - Static variable in interface smile.plot.swing.Palette
- VisionModel - Class in smile.vision
-
The computer vision models.
- VisionModel(LayerBlock, Transform) - Constructor for class smile.vision.VisionModel
-
Constructor.
- viterbi(Tuple[]) - Method in class smile.sequence.CRF
-
Labels sequence with Viterbi algorithm.
- viterbi(T[]) - Method in class smile.sequence.CRFLabeler
-
Labels sequence with Viterbi algorithm.
- Vl - Variable in class smile.math.matrix.BigMatrix.EVD
-
The left eigenvectors.
- Vl - Variable in class smile.math.matrix.fp32.Matrix.EVD
-
The left eigenvectors.
- Vl - Variable in class smile.math.matrix.Matrix.EVD
-
The left eigenvectors.
- vocabSize() - Method in record class smile.llm.llama.ModelArgs
-
Returns the value of the
vocabSize
record component. - vote(Tuple, double[]) - Method in class smile.classification.RandomForest
-
Predict and estimate the probability by voting.
- Vr - Variable in class smile.math.matrix.BigMatrix.EVD
-
The right eigenvectors.
- Vr - Variable in class smile.math.matrix.fp32.Matrix.EVD
-
The right eigenvectors.
- Vr - Variable in class smile.math.matrix.Matrix.EVD
-
The right eigenvectors.
- vstack(Tensor...) - Static method in class smile.deep.tensor.Tensor
-
Stacks tensors in sequence vertically (row wise).
W
- w - Variable in class smile.neighbor.LSH
-
The width of projection.
- w - Variable in class smile.regression.GaussianProcessRegression
-
The linear weights.
- w - Variable in class smile.vq.hebb.Neuron
-
The reference vector.
- w1 - Variable in class smile.nlp.Bigram
-
Immutable first word of bigram.
- w2 - Variable in class smile.nlp.Bigram
-
Immutable second word of bigram.
- walkin(File, List<File>) - Static method in class smile.nlp.pos.HMMPOSTagger
-
Recursive function to descend into the directory tree and find all the files that end with ".POS"
- WardLinkage - Class in smile.clustering.linkage
-
Ward's linkage.
- WardLinkage(double[][]) - Constructor for class smile.clustering.linkage.WardLinkage
-
Constructor.
- WardLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WardLinkage
-
Constructor.
- Wavelet - Class in smile.wavelet
-
A wavelet is a wave-like oscillation with an amplitude that starts out at zero, increases, and then decreases back to zero.
- Wavelet(double[]) - Constructor for class smile.wavelet.Wavelet
-
Constructor.
- WaveletShrinkage - Interface in smile.wavelet
-
The wavelet shrinkage is a signal denoising technique based on the idea of thresholding the wavelet coefficients.
- WCNB - Enum constant in enum class smile.classification.DiscreteNaiveBayes.Model
-
Weight-normalized Complement Naive Bayes.
- WDT - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Wh-determiner.
- WEEK_OF_MONTH - Enum constant in enum class smile.data.formula.DateFeature
-
The count of weeks within the month.
- WEEK_OF_YEAR - Enum constant in enum class smile.data.formula.DateFeature
-
The count of weeks within the year.
- WeibullDistribution - Class in smile.stat.distribution
-
The Weibull distribution is one of the most widely used lifetime distributions in reliability engineering.
- WeibullDistribution(double) - Constructor for class smile.stat.distribution.WeibullDistribution
-
Constructor.
- WeibullDistribution(double, double) - Constructor for class smile.stat.distribution.WeibullDistribution
-
Constructor.
- weight - Variable in class smile.base.mlp.Layer
-
The affine transformation matrix.
- weight - Variable in class smile.classification.RandomForest.Model
-
The weight of tree, which can be used when aggregating tree votes.
- weight() - Method in record class smile.graph.Graph.Edge
-
Returns the value of the
weight
record component. - Weighted - Enum constant in enum class smile.deep.metric.Averaging
-
Weighted macro for imbalanced classes.
- Weighted - Enum constant in enum class smile.validation.metric.Averaging
-
Weighted macro for imbalanced classes.
- weightGradient - Variable in class smile.base.mlp.Layer
-
The weight gradient.
- weightGradientMoment1 - Variable in class smile.base.mlp.Layer
-
The first moment of weight gradient.
- weightGradientMoment2 - Variable in class smile.base.mlp.Layer
-
The second moment of weight gradient.
- weights() - Method in class smile.base.svm.KernelMachine
-
Returns the weights of instances.
- weightUpdate - Variable in class smile.base.mlp.Layer
-
The weight update.
- where(Tensor, double, double) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor of elements selected from either input or other, depending on condition.
- where(Tensor, int, int) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor of elements selected from either input or other, depending on condition.
- where(Tensor, Tensor, Tensor) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor of elements selected from either input or other, depending on condition.
- whichMax(double[]) - Static method in class smile.math.MathEx
-
Returns the index of maximum value of an array.
- whichMax(double[][]) - Static method in class smile.math.MathEx
-
Returns the index of maximum value of a matrix.
- whichMax(float[]) - Static method in class smile.math.MathEx
-
Returns the index of maximum value of an array.
- whichMax(int[]) - Static method in class smile.math.MathEx
-
Returns the index of maximum value of an array.
- whichMin(double[]) - Static method in class smile.math.MathEx
-
Returns the index of minimum value of an array.
- whichMin(double[][]) - Static method in class smile.math.MathEx
-
Returns the index of minimum value of a matrix.
- whichMin(float[]) - Static method in class smile.math.MathEx
-
Returns the index of minimum value of an array.
- whichMin(int[]) - Static method in class smile.math.MathEx
-
Returns the index of minimum value of an array.
- WHITE - Static variable in interface smile.plot.swing.Palette
- wi - Variable in class smile.math.matrix.BigMatrix.EVD
-
The imaginary part of eigenvalues.
- wi - Variable in class smile.math.matrix.fp32.Matrix.EVD
-
The imaginary part of eigenvalues.
- wi - Variable in class smile.math.matrix.Matrix.EVD
-
The imaginary part of eigenvalues.
- width - Variable in class smile.plot.swing.Projection
-
The width of canvas in Java2D coordinate space.
- width(double) - Method in class smile.plot.vega.Mark
-
Sets the width of the marks.
- width(int) - Method in class smile.plot.vega.Layer
- width(int) - Method in class smile.plot.vega.View
-
Sets the width of a plot with a continuous x-field, or the fixed width of a plot a discrete x-field or no x-field.
- width(String) - Method in class smile.plot.vega.Layer
- width(String) - Method in class smile.plot.vega.View
-
To enable responsive sizing on width.
- widthStep(int) - Method in class smile.plot.vega.Layer
- widthStep(int) - Method in class smile.plot.vega.View
-
For a discrete x-field, sets the width per discrete step.
- window() - Method in class smile.plot.swing.Canvas
-
Shows the plot in a window.
- window() - Method in class smile.plot.swing.PlotGrid
-
Shows the plot group in a window.
- window() - Method in class smile.plot.swing.PlotPanel
-
Shows the plot in a window.
- window(WindowTransformField...) - Method in class smile.plot.vega.Transform
-
Creates a data specification object.
- WindowTransform - Class in smile.plot.vega
-
The window transform performs calculations over sorted groups of data objects.
- WindowTransformField - Record Class in smile.plot.vega
-
A sort field definition for sorting data objects within a window.
- WindowTransformField(String, String, double, String) - Constructor for record class smile.plot.vega.WindowTransformField
-
Creates an instance of a
WindowTransformField
record class. - winsor(double[]) - Static method in class smile.math.Scaler
-
Returns the scaler that map the values into the range [0, 1].
- winsor(double[], double, double) - Static method in class smile.math.Scaler
-
Returns the scaler that map the values into the range [0, 1].
- WinsorScaler - Class in smile.feature.transform
-
Scales all numeric variables into the range [0, 1].
- WinsorScaler() - Constructor for class smile.feature.transform.WinsorScaler
- Wireframe - Class in smile.plot.swing
-
A wire frame model specifies each edge of the physical object where two mathematically continuous smooth surfaces meet, or by connecting an object's constituent vertices using straight lines or curves.
- Wireframe(double[][], int[][], Color) - Constructor for class smile.plot.swing.Wireframe
-
Constructor.
- woe() - Method in record class smile.feature.selection.InformationValue
-
Returns the value of the
woe
record component. - Word2Vec - Class in smile.nlp.embedding
-
Word2vec is a group of related models that are used to produce word embeddings.
- Word2Vec(String[], float[][]) - Constructor for class smile.nlp.embedding.Word2Vec
-
Constructor.
- words - Variable in class smile.nlp.embedding.Word2Vec
-
The vocabulary.
- words - Variable in class smile.nlp.NGram
-
Immutable word sequences.
- words() - Method in class smile.nlp.SimpleText
- words() - Method in interface smile.nlp.TextTerms
-
Returns the iterator of the words of the document.
- WP - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Wh-pronoun.
- WP$ - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Possessive wh-pronoun.
- WPGMALinkage - Class in smile.clustering.linkage
-
Weighted Pair Group Method with Arithmetic mean.
- WPGMALinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMALinkage
-
Constructor.
- WPGMALinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMALinkage
-
Constructor.
- WPGMCLinkage - Class in smile.clustering.linkage
-
Weighted Pair Group Method using Centroids (also known as median linkage).
- WPGMCLinkage(double[][]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
-
Constructor.
- WPGMCLinkage(int, float[]) - Constructor for class smile.clustering.linkage.WPGMCLinkage
-
Constructor.
- wr - Variable in class smile.math.matrix.BigMatrix.EVD
-
The real part of eigenvalues.
- wr - Variable in class smile.math.matrix.fp32.Matrix.EVD
-
The real part of eigenvalues.
- wr - Variable in class smile.math.matrix.Matrix.EVD
-
The real part of eigenvalues.
- WRB - Enum constant in enum class smile.nlp.pos.PennTreebankPOS
-
Wh-adverb.
- write(DataFrame, Path) - Method in class smile.io.Arrow
-
Writes the data frame to an arrow file.
- write(DataFrame, Path) - Method in class smile.io.CSV
-
Writes the data frame to a csv file with UTF-8 encoding.
- write(DataFrame, Path, String) - Static method in class smile.io.Arff
-
Writes the data frame to an ARFF file.
- Write - Interface in smile.io
-
Writes data to external storage systems.
X
- x - Variable in class smile.base.cart.CART
-
The training data.
- x - Variable in class smile.math.matrix.fp32.SparseMatrix.Entry
-
The value.
- x - Variable in class smile.math.matrix.SparseMatrix.Entry
-
The value.
- x - Variable in class smile.regression.GaussianProcessRegression.JointPrediction
-
The query points where the GP is evaluated.
- x() - Method in record class smile.data.SampleInstance
-
Returns the value of the
x
record component. - x() - Method in class smile.timeseries.AR
-
Returns the time series.
- x() - Method in class smile.timeseries.ARMA
-
Returns the time series.
- x(double) - Method in class smile.plot.vega.Legend
-
Sets the custom x-position for legend with orient "none".
- x(double) - Method in class smile.plot.vega.Mark
-
Sets the X coordinates of the marks.
- x(String) - Method in class smile.plot.vega.Mark
-
Sets the width of horizontal "bar" and "area" without specified x2 or width.
- x(DataFrame) - Method in class smile.data.formula.Formula
-
Returns a data frame of predictors.
- x(Tuple) - Method in class smile.data.formula.Formula
-
Apply the formula on a tuple to generate the predictor data.
- x2(double) - Method in class smile.plot.vega.Mark
-
Sets the X2 coordinates for ranged "area", "bar", "rect", and "rule".
- x2(String) - Method in class smile.plot.vega.Mark
-
Sets the width.
- x2Offset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for x2-position.
- xAx(double[]) - Method in class smile.math.matrix.BigMatrix
-
Returns the quadratic form
x' * A * x
. - xAx(double[]) - Method in class smile.math.matrix.Matrix
-
Returns the quadratic form
x' * A * x
. - xAx(float[]) - Method in class smile.math.matrix.fp32.Matrix
-
Returns the quadratic form
x' * A * x
. - XMeans - Class in smile.clustering
-
X-Means clustering algorithm, an extended K-Means which tries to automatically determine the number of clusters based on BIC scores.
- XMeans(double, double[][], int[]) - Constructor for class smile.clustering.XMeans
-
Constructor.
- xOffset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for x-position.
Y
- y - Variable in class smile.classification.ClassLabels
-
The sample class id in [0, k).
- y - Variable in class smile.clustering.PartitionClustering
-
The cluster labels of data.
- y() - Method in record class smile.data.SampleInstance
-
Returns the value of the
y
record component. - y(double) - Method in class smile.plot.vega.Legend
-
Sets the custom y-position for legend with orient "none".
- y(double) - Method in class smile.plot.vega.Mark
-
Sets the Y coordinates of the marks.
- y(String) - Method in class smile.plot.vega.Mark
-
Sets the height of horizontal "bar" and "area" without specified x2 or width.
- y(DataFrame) - Method in class smile.data.formula.Formula
-
Returns the response vector.
- y(Tuple) - Method in class smile.data.formula.Formula
-
Returns the real-valued response value.
- y2(double) - Method in class smile.plot.vega.Mark
-
Sets the Y2 coordinates for ranged "area", "bar", "rect", and "rule".
- y2(String) - Method in class smile.plot.vega.Mark
-
Sets the width.
- y2Offset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for y2-position.
- YEAR - Enum constant in enum class smile.data.formula.DateFeature
-
The year represented by an integer.
- YELLOW - Static variable in interface smile.plot.swing.Palette
- yint(Tuple) - Method in class smile.data.formula.Formula
-
Returns the integer-valued response value.
- yOffset(double) - Method in class smile.plot.vega.Mark
-
Sets the offset for y-position.
- YuleWalker - Enum constant in enum class smile.timeseries.AR.Method
-
Yule-Walker method.
- YYYYMMDD - Static variable in class smile.swing.table.DateCellEditor
- YYYYMMDD - Static variable in class smile.swing.table.DateCellRenderer
- YYYYMMDD_HHMM - Static variable in class smile.swing.table.DateCellEditor
- YYYYMMDD_HHMM - Static variable in class smile.swing.table.DateCellRenderer
- YYYYMMDD_HHMMSS - Static variable in class smile.swing.table.DateCellEditor
- YYYYMMDD_HHMMSS - Static variable in class smile.swing.table.DateCellRenderer
Z
- zero(boolean) - Method in class smile.plot.vega.Field
-
If true, ensures that a zero baseline value is included in the scale domain.
- zeros(long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with all zeros.
- zeros(Tensor.Options, long...) - Static method in class smile.deep.tensor.Tensor
-
Returns a tensor filled with all zeros.
- zindex(int) - Method in class smile.plot.vega.Axis
-
Sets a non-negative integer indicating the z-index of the axis.
- zindex(int) - Method in class smile.plot.vega.Legend
-
Sets a non-negative integer indicating the z-index of the legend.
- zipWithIndex(double[]) - Static method in class smile.plot.swing.Line
-
Returns a 2-dimensional array with the index as the x coordinate.
- zoom(boolean) - Method in class smile.plot.swing.PlotPanel
-
Zooms in/out the plot.
- ztest - Variable in class smile.glm.GLM
-
The coefficients, their standard errors, z-scores, and p-values.
- ztest() - Method in class smile.glm.GLM
-
Returns the z-test of the coefficients (including intercept).
_
- _1() - Method in record class smile.util.IntPair
-
Returns the value of the
_1
record component. - _1() - Method in record class smile.util.Tuple2
-
Returns the value of the
_1
record component. - _2() - Method in record class smile.util.IntPair
-
Returns the value of the
_2
record component. - _2() - Method in record class smile.util.Tuple2
-
Returns the value of the
_2
record component.
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form