Package smile.vision
Class EfficientNet
java.lang.Object
smile.deep.layer.LayerBlock
smile.vision.EfficientNet
EfficientNet is an image classification model family. It was first
described in EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks.
-
Constructor Summary
ConstructorDescriptionEfficientNet
(MBConvConfig[] invertedResidualSetting, double dropout, double stochasticDepthProb, int numClasses, int lastChannel, IntFunction<Layer> normLayer) Constructor. -
Method Summary
Modifier and TypeMethodDescriptionfeatures()
Returns the feature layer block.Forward propagation (or forward pass) through the layer.static VisionModel
V2L()
EfficientNet-V2_L (largest) model.static VisionModel
EfficientNet-V2_L (largest) model.static VisionModel
V2M()
EfficientNet-V2_M (larger) model.static VisionModel
EfficientNet-V2_M (larger) model.static VisionModel
V2S()
EfficientNet-V2_S (baseline) model.static VisionModel
EfficientNet-V2_S (baseline) model.Methods inherited from class smile.deep.layer.LayerBlock
add, add, asTorch, toString
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface smile.deep.layer.Layer
apply, isTraining
-
Constructor Details
-
EfficientNet
public EfficientNet(MBConvConfig[] invertedResidualSetting, double dropout, double stochasticDepthProb, int numClasses, int lastChannel, IntFunction<Layer> normLayer) Constructor.- Parameters:
invertedResidualSetting
- the network structure.dropout
- the dropout probability.stochasticDepthProb
- the stochastic depth probability.numClasses
- the number of classes.lastChannel
- the number of channels on the penultimate layer.normLayer
- the functor to create the normalization layer.
-
-
Method Details
-
forward
Description copied from interface:Layer
Forward propagation (or forward pass) through the layer.- Parameters:
input
- the input tensor.- Returns:
- the output tensor.
-
features
Returns the feature layer block.- Returns:
- the feature layer block.
-
V2S
EfficientNet-V2_S (baseline) model.- Returns:
- the model.
-
V2S
EfficientNet-V2_S (baseline) model.- Parameters:
path
- the pre-trained model file path.- Returns:
- the model.
-
V2M
EfficientNet-V2_M (larger) model.- Returns:
- the model.
-
V2M
EfficientNet-V2_M (larger) model.- Parameters:
path
- the pre-trained model file path.- Returns:
- the model.
-
V2L
EfficientNet-V2_L (largest) model.- Returns:
- the model.
-
V2L
EfficientNet-V2_L (largest) model.- Parameters:
path
- the pre-trained model file path.- Returns:
- the model.
-