Interface DataFrameRegression

All Superinterfaces:
Regression<Tuple>, Serializable, ToDoubleFunction<Tuple>
All Known Implementing Classes:
GradientTreeBoost, LinearModel, RandomForest, RegressionTree

public interface DataFrameRegression extends Regression<Tuple>
Regression trait on DataFrame.
  • Method Details

    • formula

      Formula formula()
      Returns the model formula.
      Returns:
      the model formula.
    • schema

      StructType schema()
      Returns the schema of predictors.
      Returns:
      the schema of predictors.
    • predict

      default double[] predict(DataFrame data)
      Predicts the dependent variables of a data frame.
      Parameters:
      data - the data frame.
      Returns:
      the predicted values.
    • of

      static DataFrameRegression of(Formula formula, DataFrame data, Properties params, Regression.Trainer<double[],?> trainer)
      Fits a vector regression model on data frame.
      Parameters:
      formula - a symbolic description of the model to be fitted.
      data - the data frame of the explanatory and response variables.
      params - the hyper-parameters.
      trainer - the training lambda.
      Returns:
      the model.
    • ensemble

      static DataFrameRegression ensemble(DataFrameRegression... models)
      Return an ensemble of multiple base models to obtain better predictive performance.
      Parameters:
      models - the base models.
      Returns:
      the ensemble model.