Package smile.stat.distribution
Class ChiSquareDistribution
java.lang.Object
smile.stat.distribution.ChiSquareDistribution
- All Implemented Interfaces:
Serializable
,Distribution
,ExponentialFamily
Chi-square (or chi-squared) distribution with k degrees of freedom is the
distribution of a sum of the squares of k independent standard normal
random variables. It's mean and variance are k and 2k, respectively. The
chi-square distribution is a special case of the gamma
distribution. It follows from the definition of the chi-square distribution
that the sum of independent chi-square variables is also chi-square
distributed. Specifically, if Xi are independent chi-square
variables with ki degrees of freedom, respectively, then
Y = Σ Xi is chi-square distributed with Σ ki
degrees of freedom.
The chi-square distribution has numerous applications in inferential statistics, for instance in chi-square tests and in estimating variances. Many other statistical tests also lead to a use of this distribution, like Friedman's analysis of variance by ranks.
- See Also:
-
Field Summary
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiondouble
cdf
(double x) Cumulative distribution function.double
entropy()
Returns Shannon entropy of the distribution.int
length()
Returns the number of parameters of the distribution.double
logp
(double x) The density at x in log scale, which may prevents the underflow problem.M
(double[] x, double[] posteriori) The M step in the EM algorithm, which depends on the specific distribution.double
mean()
Returns the mean of distribution.double
p
(double x) The probability density function for continuous distribution or probability mass function for discrete distribution at x.double
quantile
(double p) The quantile, the probability to the left of quantile is p.double
rand()
Generates a random number following this distribution.double
sd()
Returns the standard deviation of distribution.toString()
double
variance()
Returns the variance of distribution.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface smile.stat.distribution.Distribution
inverseTransformSampling, likelihood, logLikelihood, quantile, quantile, rand, rejectionSampling
-
Field Details
-
nu
public final int nuThe degrees of freedom.
-
-
Constructor Details
-
ChiSquareDistribution
public ChiSquareDistribution(int nu) Constructor.- Parameters:
nu
- the degree of freedom.
-
-
Method Details
-
length
public int length()Description copied from interface:Distribution
Returns the number of parameters of the distribution. The "length" is in the sense of the minimum description length principle.- Specified by:
length
in interfaceDistribution
- Returns:
- The number of parameters.
-
mean
public double mean()Description copied from interface:Distribution
Returns the mean of distribution.- Specified by:
mean
in interfaceDistribution
- Returns:
- The mean.
-
variance
public double variance()Description copied from interface:Distribution
Returns the variance of distribution.- Specified by:
variance
in interfaceDistribution
- Returns:
- The variance.
-
sd
public double sd()Description copied from interface:Distribution
Returns the standard deviation of distribution.- Specified by:
sd
in interfaceDistribution
- Returns:
- The standard deviation.
-
entropy
public double entropy()Description copied from interface:Distribution
Returns Shannon entropy of the distribution.- Specified by:
entropy
in interfaceDistribution
- Returns:
- Shannon entropy.
-
toString
-
rand
public double rand()Description copied from interface:Distribution
Generates a random number following this distribution.- Specified by:
rand
in interfaceDistribution
- Returns:
- a random number.
-
p
public double p(double x) Description copied from interface:Distribution
The probability density function for continuous distribution or probability mass function for discrete distribution at x.- Specified by:
p
in interfaceDistribution
- Parameters:
x
- a real number.- Returns:
- the density.
-
logp
public double logp(double x) Description copied from interface:Distribution
The density at x in log scale, which may prevents the underflow problem.- Specified by:
logp
in interfaceDistribution
- Parameters:
x
- a real number.- Returns:
- the log density.
-
cdf
public double cdf(double x) Description copied from interface:Distribution
Cumulative distribution function. That is the probability to the left of x.- Specified by:
cdf
in interfaceDistribution
- Parameters:
x
- a real number.- Returns:
- the probability.
-
quantile
public double quantile(double p) Description copied from interface:Distribution
The quantile, the probability to the left of quantile is p. It is actually the inverse of cdf.- Specified by:
quantile
in interfaceDistribution
- Parameters:
p
- the probability.- Returns:
- the quantile.
-
M
Description copied from interface:ExponentialFamily
The M step in the EM algorithm, which depends on the specific distribution.- Specified by:
M
in interfaceExponentialFamily
- Parameters:
x
- the input data for estimationposteriori
- the posteriori probability.- Returns:
- the (unnormalized) weight of this distribution in the mixture.
-