Package smile.classification
Class SparseLogisticRegression
- All Implemented Interfaces:
Serializable
,ToDoubleFunction<SparseArray>
,ToIntFunction<SparseArray>
,Classifier<SparseArray>
- Direct Known Subclasses:
SparseLogisticRegression.Binomial
,SparseLogisticRegression.Multinomial
Logistic regression on sparse data.
- See Also:
-
Nested Class Summary
Modifier and TypeClassDescriptionstatic class
Binomial logistic regression.static class
Multinomial logistic regression.Nested classes/interfaces inherited from interface smile.classification.Classifier
Classifier.Trainer<T,
M extends Classifier<T>> -
Field Summary
Fields inherited from class smile.classification.AbstractClassifier
classes
-
Constructor Summary
ConstructorDescriptionSparseLogisticRegression
(int p, double L, double lambda, IntSet labels) Constructor. -
Method Summary
Modifier and TypeMethodDescriptiondouble
AIC()
Returns the AIC score.binomial
(SparseDataset<Integer> data) Fits binomial logistic regression.binomial
(SparseDataset<Integer> data, double lambda, double tol, int maxIter) Fits binomial logistic regression.binomial
(SparseDataset<Integer> data, Properties params) Fits binomial logistic regression.static SparseLogisticRegression
fit
(SparseDataset<Integer> data) Fits logistic regression.static SparseLogisticRegression
fit
(SparseDataset<Integer> data, double lambda, double tol, int maxIter) Fits logistic regression.static SparseLogisticRegression
fit
(SparseDataset<Integer> data, Properties params) Fits logistic regression.double
Returns the learning rate of stochastic gradient descent.double
Returns the log-likelihood of model.multinomial
(SparseDataset<Integer> data) Fits multinomial logistic regression.multinomial
(SparseDataset<Integer> data, double lambda, double tol, int maxIter) Fits multinomial logistic regression.multinomial
(SparseDataset<Integer> data, Properties params) Fits multinomial logistic regression.boolean
online()
Returns true if this is an online learner.void
setLearningRate
(double rate) Sets the learning rate of stochastic gradient descent.boolean
soft()
Returns true if this is a soft classifier that can estimate the posteriori probabilities of classification.Methods inherited from class smile.classification.AbstractClassifier
classes, numClasses
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface smile.classification.Classifier
applyAsDouble, applyAsInt, predict, predict, predict, predict, predict, predict, predict, predict, score, update, update, update
-
Constructor Details
-
SparseLogisticRegression
Constructor.- Parameters:
p
- the dimension of input data.L
- the log-likelihood of learned model.lambda
-lambda > 0
gives a "regularized" estimate of linear weights which often has superior generalization performance, especially when the dimensionality is high.labels
- the class label encoder.
-
-
Method Details
-
binomial
Fits binomial logistic regression.- Parameters:
data
- training data.- Returns:
- the model.
-
binomial
public static SparseLogisticRegression.Binomial binomial(SparseDataset<Integer> data, Properties params) Fits binomial logistic regression.- Parameters:
data
- training data.params
- the hyper-parameters.- Returns:
- the model.
-
binomial
public static SparseLogisticRegression.Binomial binomial(SparseDataset<Integer> data, double lambda, double tol, int maxIter) Fits binomial logistic regression.- Parameters:
data
- training data.lambda
-lambda > 0
gives a "regularized" estimate of linear weights which often has superior generalization performance, especially when the dimensionality is high.tol
- the tolerance for stopping iterations.maxIter
- the maximum number of iterations.- Returns:
- the model.
-
multinomial
Fits multinomial logistic regression.- Parameters:
data
- training data.- Returns:
- the model.
-
multinomial
public static SparseLogisticRegression.Multinomial multinomial(SparseDataset<Integer> data, Properties params) Fits multinomial logistic regression.- Parameters:
data
- training data.params
- the hyper-parameters.- Returns:
- the model.
-
multinomial
public static SparseLogisticRegression.Multinomial multinomial(SparseDataset<Integer> data, double lambda, double tol, int maxIter) Fits multinomial logistic regression.- Parameters:
data
- training data.lambda
-lambda > 0
gives a "regularized" estimate of linear weights which often has superior generalization performance, especially when the dimensionality is high.tol
- the tolerance for stopping iterations.maxIter
- the maximum number of iterations.- Returns:
- the model.
-
fit
Fits logistic regression.- Parameters:
data
- training data.- Returns:
- the model.
-
fit
Fits logistic regression.- Parameters:
data
- training data.params
- the hyper-parameters.- Returns:
- the model.
-
fit
public static SparseLogisticRegression fit(SparseDataset<Integer> data, double lambda, double tol, int maxIter) Fits logistic regression.- Parameters:
data
- training data.lambda
-lambda > 0
gives a "regularized" estimate of linear weights which often has superior generalization performance, especially when the dimensionality is high.tol
- the tolerance for stopping iterations.maxIter
- the maximum number of iterations.- Returns:
- the model.
-
soft
public boolean soft()Description copied from interface:Classifier
Returns true if this is a soft classifier that can estimate the posteriori probabilities of classification.- Returns:
- true if soft classifier.
-
online
public boolean online()Description copied from interface:Classifier
Returns true if this is an online learner.- Returns:
- true if online learner.
-
setLearningRate
public void setLearningRate(double rate) Sets the learning rate of stochastic gradient descent. It is a good practice to adapt the learning rate for different data sizes. For example, it is typical to set the learning rate to eta/n, where eta is in [0.1, 0.3] and n is the size of the training data.- Parameters:
rate
- the learning rate.
-
getLearningRate
public double getLearningRate()Returns the learning rate of stochastic gradient descent.- Returns:
- the learning rate of stochastic gradient descent.
-
loglikelihood
public double loglikelihood()Returns the log-likelihood of model.- Returns:
- the log-likelihood of model.
-
AIC
public double AIC()Returns the AIC score.- Returns:
- the AIC score.
-