ppca

fun ppca(data: Array<DoubleArray>, k: Int): ProbabilisticPCA

Probabilistic principal component analysis. PPCA is a simplified factor analysis that employs a latent variable model with linear relationship:

    y &sim; W * x + &mu; + &epsilon;

where latent variables x ∼ N(0, I), error (or noise) ε ∼ N(0, Ψ), and μ is the location term (mean). In PPCA, an isotropic noise model is used, i.e., noise variances constrained to be equal (Ψi = σ2). A close form of estimation of above parameters can be obtained by maximum likelihood method.

====References:====

  • Michael E. Tipping and Christopher M. Bishop. Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 61(3):611-622, 1999.

Parameters

data

training data.

k

the number of principal component to learn.